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Abstract: In this paper, a neural network (NN) impedance controller is proposed to control
position/force of the tip of a 3 DOF redundantly actuated closed-chain manipulator. The
manipulator is in contact with an unknown environment. The structure of the controller is
derived using a filtered error approach in which no off-line learning phase is needed. The
actuator redundancy is resoled by augmentation of the Jacobian matrix of the manipulator.
Simulation results are presented that illustrate strength of the proposed controller in the
presence of model uncertainties and external disturbances.Copyright c©2005 IFAC
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1. INTRODUCTION

There is increasing interest in the applications of
robots when they are interacting with an external
environment. For example in robot assisted surgery,
robots are expected to do surgical operations but with
much higher accuracy than human hand. In such ap-
plications, robots are usually in contact with unknown
environments. The motivation for this work comes
from the fact that the robot controllers for these ap-
plications must not only be able to accurately control
position/force exerted to the environment, they must
also be able to interact with a desired compliance with
respect to the environment.

A large class of controllers developed for constraint
manipulators are based on the full knowledge of ex-
ternal environment. In the impedance control scheme,
one of the position or force, and their ratio which
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is called compliance, orimpedance, are controlled in
each direction (Anderson and Spong, 1988). Impedance
control is based on the concept that the controller is
used to regulate the dynamic behavior between the
robot manipulator motion and the force exerted on
the environment (Hogan, 1987), rather than consider-
ing the motion and force control problems separately.
In hybrid impedance control, the task space is de-
composed into two subspaces of position and force.
Then in the position subspace, instead of pure position
control, an impedance controller is used. Impedance
control works well when all the dynamics related
terms in the robot and the environment are known. In
practice, many of these parameters are unknown, or
change over time. This becomes more important when
the manipulator comes in contact with an unknown
environment. In such a case, those methods cannot
work very well since the controller does not know the
dynamics of system to be controlled.

A great deal of research in neuro-control robotics
has focused on systems with known parameters for
the robot and environment. In (Kiguchiet al., 2002),
a fuzzy-neuro force controller of a robot manipula-
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tor was presented in an unknown environment using
off line learning. A neural network force tracking
impedance control scheme was proposed in (Jung and
Hsia, 2000). In this paper we present a NN impedance
controller for a redundantly actuated closed-chain ma-
nipulator when it is in contact with an unknown en-
vironment which is different from previous works re-
ported in the literature.

The structure of this paper is as follow: In section two
the mathematical analysis of the problem with one
control scheme is given to justify the use of proposed
controller. In section three, the design of the con-
troller is described. The proposed NN position track-
ing scheme is described in section 4. In section 5, two
different control schemes are studied by simulations
using a NN impedance position controller and a NN
impedance position/force controller.

2. PROBLEM FORMULATION

One objective of this paper is to investigate position
and force control strategies when the manipulator is in
contact with a deformable environment, i.e., in needle
insertion or drilling tasks. In these applications the
end-effector is required to follow a prescribed posi-
tion trajectory while maintaining appropriate contact
forces or a specific compliance with the environment.
Figure 1 shows a closed-chain redundantly actuated
robot which was used for implementing the control
algorithm. The details of the robot design and speci-
fications can be found in (Mesbah-Nejadet al., 2004).
In order to formulate the problem, let us assume that
the dynamics of the environment is given by

F = Meδ̈ + Beδ̇ + Keδ (1)

where
F = [fx fy fψ]T (2)

is the planar force-moment vector exerted on the en-
vironment by the end-effector. The environment is
described by the termsMe, Be and Ke, which are
mass, damping, and stiffness matrices. The termδ is
the vector of generalized coordinates of the environ-

ment. The kinematic equations of the manipulator and
environment are given by

X =h(q) (3)

Y =i(δ) (4)

where X, Y represent the coordinates of the end-
effector and the object’s contact point, respectively.
The functionsh : <l −→ <m andi : <m −→ <n rep-
resent mapping from object and robot generalized co-
ordinates toX andY , respectively.l is the dimension
of the joint space,m is the dimension of generalized
coordinates of environment, andn is the dimension of
the task space withm ≥ n. It is assumed that both
of h andi are twice continuously differentiable. When
the manipulator is in contact with the environment, the
dynamic equations of motion can be described in the
following form

M(q)q̈ + N(q, q̇) + τd = τ + τf (5)

whereM(q) is the mass matrix,N(q, q̇) is a vector
contains all of nonlinearities in the robot dynamics
(Coriolis, centrifugal, friction and gravity terms) and

τf = JT
h (q)F (6)

is the vector of torques exerted on the environment and
Jh = ∂h

∂q is the Jacobian matrix of the manipulator.
When the robot is in contact with the environment, it
follows from (3) and (4) that

h(q) = i(δ) · (7)

For clarity and simplicity of notation, the arguments of
the functions will be dropped subsequently. It is also
assumed that the disturbance termτd in (5) is equal to
zero. Taking the first and the second time derivatives
of (7) gives

Jhθ̇ = Jiδ̇ (8)

Jhθ̈ + J̇hθ̇ = Jiδ̈ + J̇iδ̇ (9)

whereJi = ∂i
∂δ . Now solving (1) and (5) for̈δ and q̈

yields

δ̈ = M−1
e (F −Beδ̇ −Keδ) (10)

q̈ = M−1(τ + JT
h F −N) · (11)

Substituting (10) and (11) in (9) and solving it forF
yields

F =(JiM
−1
e − JhM−1JT

h )−1
[
JhM−1(τ −N)

+ JiM
−1
e (Beδ̇ + Keδ) + J̇hq̇ − J̇δ δ̇

] · (12)

Now, Let us define

τ = N + MJ−1
h (v − J̇hq̇) (13)

wherev is a pseudo control input. Then, substituting
τ from (13) in (5), and using (3) results in

Ẍ = v − JhM−1JT
h F · (14)

Also, substitutingτ from (13) in (12), yields

F =(JiM
−1
e − JhM−1JT

h )−1
[
v

+ JiM
−1
e (Beδ̇ + Keδ)− J̇δ δ̇

] · (15)



Let us define the control inputv as

v = JhM−1JT
h (Fd−vn)−Kv(Ẋd−Ẋ)−Kp(Xd−X)

(16)
whereXd andFd are the desired position and force
vectors, respectively, andKv andKp are constant ma-
trices representing the derivative and the proportional
gains of the controller. Substitutingv from (16) into
(15) and (14) and rearranging the terms, after some
manipulations we have

Fd − F = vn −∆ (17)

and

Ẍ +Kv ė+Kpe = JhM−1JT
h (Fd−F − vn) · (18)

where

Ω = (JiM
−1
e − JhM−1JT

h )−1, (19)

∆ =
[
ΩJhM−1JT

h − I
]
(Fd − vn)

− Ω
[
Kv(Ẋd − Ẋ) + Kp(Xd −X)

]

+ Ω
[
JiM

−1
e (Beδ̇ + Keδ)− J̇δ δ̇

]
, (20)

ė = Ẋd−Ẋ, ande = Xd−X. Now, substituting (17)
in (18) yields

Ẍ + Kv ė + Kpe = −JhM−1JT
h vn · (21)

Equation (17) states that by generating an appropriate
control signalvn, which approaches∆, one may force
the manipulator to track a desired force. As it can
be seen from (20), in order to build the control sig-
nal to follow ∆, exact knowledge of the environment
and manipulator dynamics are needed. On the other
hand, (21) states that the position tracking error can
ultimately approach zero if thevn approaches zero.
This means that achieving zero error while controlling
position and force together is impossible. One can see
from (20) and (21) that both force or position tracking
errors can be reduced by selecting appropriate values
for Kv andKp. Therefore, depending on the applica-
tion, one may choose to give priority to either force
or position control and so be able to achieve accept-
able position or force tracking errors by an appro-
priate selection of proportional and derivative gains.
Nevertheless, one can see from (13) and (16) that the
proposed control signal needs the full knowledge of
robot and environment dynamics which are not always
available. The above analysis leads us to use a NN
control approach that does not require knowledge of
robot and environment parameters.

3. NN IMPEDANCE CONTROLLER DESIGN

The target impedance is a desired dynamic behavior
between the motion of the manipulator and the force
exerted on the environment and may be defined as

Md(ẍc− ẍ)+Bd(ẋc− ẋ)+Kd(xc−x) = Fe (22)

where xc is the vector of commanded trajectories
specified by the user which are bounded and twice

differentiable.x is the vector of actual end-effector
position trajectory, andMd, Bd, Kd, are interpreted
as the desired mass, damping, and stiffness matrices
of a mass-spring damper system that quantifies the
mechanical impedance relationship between the end-
effector contact forceFe and the position error(xc −
x). From the impedance model (22), one can see that
impedance control objective can be realized if the end-
effector positionx and the commanded trajectoryxc

satisfy this model. Therefore, ifx closely tracks the
desired trajectoryxd, the commanded trajectory can
be found by solving (22) forxc which yields

Mdẍc +Bdẋc +Kdxc = Fe +Mdẍd +Bdẋd +Kdxd

(23)
with xc(0) = xd(0) and ẋc(0) = ẋd(0). This equa-
tion may be interpreted as a filter with inputxd. The
matricesMd, Bd, Kd, and the online measurement of
Fe, characterize the desired dynamic relationship be-
tween the end-effector position and the contact force
through the specification ofxc. Therefore, impedance
control can be done first by utilizing the contact force
to modify the commanded trajectory according to the
desired impedance dynamics and then by tracking
xc, which can be implemented by a position tracking
controller. This approach can be used when precise
control of position is required, for example in tasks
such as drilling, sawing or needle insertion. If force
needs to be controlled instead of position, (23) should
be changed to

Mdẍc +Bdẋc +Kdxc = Fd +Mdẍe +Bdẋe +Kdxe

(24)
where Fd is the desired force andxe is the actual
environment position which can be measured on-
line. Againxc can be found by numerical integration
of (24) with initial conditionsxc(0) = xe(0) and
ẋc(0) = ẋe(0). Now forcing a position controller
to track xc results in a desired contact force ofFd.
A known problem of this control scheme is the lack
of force tracking capability under an unknown envi-
ronment (Jung and Hsia, 2000),(Lee and Lee, 1991).
One way to improve the force tracking capability of
the controller is by using the generalized impedance
formulation proposed in (Lee and Lee, 1991). The
problems are, using derivative of force and environ-
ment position which may add noise to the measured
signals and variation of the target impedance from the
impedance which was originally anticipated (24).

In this paper, in order to control the force exerted
on the environment, the desired force is divided by
the online measurement of environment stiffness to
generate the desired position. The desired position is
then supplied to the impedance filter (24) to generate
the commanded position trajectory.

Implementation of the impedance control algorithm
boils down to the implementation of a position track-
ing controller. In this section, the idea of the NN posi-
tion tracking controller, which was proposed in (Lewis
et al., 1996) is used. However, modifications are made



to the algorithm in the context of an impedance control
algorithm. Refereing to (5, the inertia matrixM(q) is
symmetric, positive definite, and bounded. Also the
Coriolis/centripetal vectorVm(q, q̇)q̇ is quadratic inq̇.
Vm is bounded so‖ Vm ‖≤ vB ‖ q ‖, wherevB is
upper bound ofVm. To obtain task space formulation,
consider the relationship

x = h(q) (25)

Taking its first and second time derivative and solving
for q̇ andq̈ we have

q̇ = J#(q)ẋ q̈ = J#(q)
(
ẍ− ˙J(q)q̇

)

+ (I − J#J)ζ (26)

where J = ∂h
∂q is the task space Jacobian matrix

andJ# = (JT J)−1JT is the pseudo-inverse of the
Jacobian matrix.ζ can be any vector. For brevity
of notation, the arguments of the functions will be
dropped in subsequent analysis. Substituting (26) in
(5 yields the task space dynamics

M̄ẍ + V̄ ẋ + F̄r + Ḡ + fd = F (27)

wherex is the task space variable vector and

M̄ = J†MJ# V̄ = J†(VmJ# −MJ̇J#)

F̄r = J†Fr fd = J†τd

Ḡ = J#G F = J#τ (28)

andJ† = J#T
.

Given the desired position trajectoryxd, the position
tracking error and the filtered position tracking error
can be defined by

ep = xd − x (29)

r = ėp + Λep (30)

where ep is the position error andΛ is a positive
definite design parameter matrix. The system (30) is
stable as long asr is bounded andΛ is large enough.
Taking the first and the second time derivatives of (29)
and substituting the results in (27) yields

M̄(ẍd− ëp)+ V̄ (ẋd− ėp)+ F̄r +Ḡ+fd = F · (31)

Differentiating (30) with respect to time and substitut-
ing ëp andėp in (27) results in the robot dynamics in
terms ofr given by

M̄ ṙ = −V̄ r + f(y) + fd − F (32)

where thef(y) is defined by

f(y) = M̄(ẍd + Λėp) + V̄ (ẋd + Λep) + F̄r + Ḡ
(33)

and vectory is defined as

y = [eT
p ėp

T xT
d ẋd

T ẍd
T ]T · (34)

Note that in (32) all of the potentially unknown robot
parameters are included inf(y) except the term−V̄ r.
This term is cancelled out in controller stability anal-
ysis. It is assumed that all the states of the system
are measurable. If not, then additional NN methods

should be used to estimate the unmeasured states (Tian
et al., 2004). The proposed control law is defined as

F = f̂(y) + Kvr + v (35)

where f̂(y) is an estimate off , Kv is a constant
andv(t) a robustifying term. Assuming thatf(y) is
smooth enough, according to the universal approxi-
mation property of neural networks, there exist a two
layer feedforward NN with one hidden layer having
enough neurons and weight matricesV andW such
thatf(y) can be approximated on a compact setS, by

f(y) = WT σ(V T y) + ε (36)

whereε, the functional estimation error is bounded by
εN (NN approximation inaccuracy) fory ∈ S. If the
estimated weight matrices are defined asV̂ and Ŵ ,
the approximated function̂f(y) is

f̂(y) = ŴT σ(V̂ T y) (37)

and the weights errors can be defined asṼ = V − V̂ ,
andW̃ = W − Ŵ .

The weight tuning formulas are given by the following
theorem following a similar analysis in (Lewiset
al., 1996).

Theorem 1.Assume that the dynamics of the robot is
expressed by (27). Also assume that the ideal weights
and the desired trajectory are bounded. It is assumed
that the NN approximation property holds for the
function f given in (33). Then with the control law
(35) wherev is the robustifying term defined by

v(t) = ρ
(∥∥∥Ẑ

∥∥∥
F
+ ZM

)
r with ρ > α8 (38)

where subscriptF stands for Frobenius norm. In (38),
Z is a block diagonal matrix with diagonal elements
V andW and with the upper bound ofZM , α8 is a

positive value given byα8 =
[
1 + 1+ςmax(Λ)

ςmin(Λ)

]
ZM

where ςmax and ςmin are maximum and minimum
singular values ofΛ (Mesbah-Nejad, 2004), andρ is
the robustifying gain. Then with the following NN
weight tuning algorithms

˙̂
W = η2σ(V̂ T y)rT − η2

˙̂σV̂ T yrT − kη2 ‖r‖ Ŵ
(39)

˙̂
V = η1y( ˙̂σT Ŵ r)T − kη1 ‖r‖ V̂ (40)

where the learning ratesη1 and η2 are symmetric
positive definite matrices, andk is a positive constant
value, the position tracking error‖r‖ is uniformly
ultimately bounded.

The first terms of (39) and (40) are backpropagation
terms. The last terms areNarendra’s e-modification
(Narendra and A.Annaswamy, 1987) which adds a

quadrature term in
∥∥∥W̃

∥∥∥
F

and
∥∥∥Ṽ

∥∥∥
F

to make the

derivative of Lyapunov’s function negative. The sec-
ond term in (39) is added to prove that the NN weights
are bounded. Boundedness of the weights is needed
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Fig. 2. Response of the PD position controller to the
input trajectories (41), (42) and 43.

to show that the control input remains bounded. Al-
though the error is not zero, with selection of con-
troller gains it can be reduced to a small enough value.

At the beginning of the control process where all the
weights of the NN controller are zero, the controller
acts like a robust PD controller. The performance im-
proves over time as the NN controller is trained. An-
other interesting feature of the proposed controller is
that, when the end-effector is moving in the free space,
the impedance filter is bypassed as there is no force.
Thus the controller acts like a position controller. As
soon as the end-effector touches the environment, the
impedance filter comes into service. Therefore, there
is no need to design two separate algorithms for free
space movement and constrained space movement and
no need to switch between them. This simplifies the
design and removes the need for a switching mode
controller.

4. SIMULATION RESULTS

To have a reference for comparison of the results
of the proposed controller with a standard controller,
a PD controller with feedback linearization method
is designed. The following position trajectories were
applied as inputs to the system

Xd = 0.1 sin(2πt) (41)

Yd = 0.4 + 0.1 sin(2πt) (42)

Ψ =
π

2
+

π

20
sin(2πt) · (43)

The outputs of the controller using feedback gains
Kp = 200, Kv = 10 are shown in Figure 2. The
tracking error increases with a decrease in the pro-
portional gain. Although the value of overshoots and
the final error can be adjusted by tuning PD gains, for
achieving a tracking error of less than a millimeter, a
relatively large proportional gain should be selected
(Kp ≥ 400). Evaluation of the controller in presence
of disturbance in control signal and variation in the
robot parameters indicates that the PD controller is not
able to track the inputs very well. The functionf in
(33) which can be approximated by a NN is the sum
of four parts which are related to the mass matrix, cen-
trifugal and coriolis terms, gravity, and friction forces.
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Fig. 3. Response of the MFNN Impedance position
controller.

The gravity part is zero as the manipulator is planar.
The neural network controller can be partitioned into
three individual 2-layer NNs, each implementing one
term off . This simplifies the design and reduces the
computational load when some of the parameters such
as mass matrix are well known. This also helps to uti-
lize available knowledge of the system, for example, if
the model of friction or its approximation, is known.
The Sigmoid activation function can be used in the
NN implementation, since the joints are revolute and
joint variables appear insineor cosineform, instead of
using joint angles, theirsineandcosinecan be used.
Another preprocessing uses(ẍd+Λėp) and(ẋd+Λep)
instead ofep andėp in (34).

A 2-layer NN structure was designed to estimate the
nonlinear function (33). The signum function is used
to model the friction of the joints. The environment is
modelled with a mass-spring system with the follow-
ing parameters

Me = 0.5I3×3 Be = I3×3 Ke = 10I3×3· (44)

For NN Impedance Position Control, the controller is
designed to control positions inX andY directions
and the end-effector orientation while maintaining
the required impedance. The NNs are implemented
by 10 hidden layer neurons and Sigmoid activation
function. The controller parameters are selected as
Λ = 100I3×3, Kv = 10I3×3, ρ = 1, ZM = 10.
Also η1 = 50I10×10, η2 = 10I10×10, k = 0.1. The
same position trajectories as PD controller (41, 42 and
43) are selected. The desired system impedance is set
to

Md = I3×3 Bd = 20I3×3 Kd = 500I3×3· (45)

The response of the controller appears in Figure 3.
Comparing the position tracking results with those
obtained in Figure 2 for the PD controller, the NN is
able to achieve arbitrary small overshoot, undershoot,
and tracking errors by adjusting the gains of the con-
troller and the desired impedance. The controller nei-
ther needs to know any a-priori information about the
dynamics of the robot or the environment nor does it
require any initial training. It also gives good flexibil-
ity to the designer as there are many parameters in the
system impedance to adjust. Two different disturbance
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tion/force controller.

signals ofτd = 0.2N.m andτd = 0.2 sin(20πt)N.m
are added to control signal individually in order to
evaluate robustness of the controller to external dis-
turbance. The results indicate that the controller is
robust to unknown but bounded disturbances. In or-
der to evaluate the robustness of the controller in the
presence of uncertainties in robot dynamics, the mass
matrix M and the Coriolis-centrifugal vectorN are
reduced by a factor of80% in the robot simulator.
The response is almost identical to the one shown in
Figure 3 which means that the controller is able to
adapt with variations in robot parameters. TheMe, Be

and Ke terms in (44) have been changed from 0 to
0.9, 0 to 100 and 0 to 18, respectively, to evaluate the
effects of different environments on the controller. The
results show that as long as the desired impedance is
achievable, the controller is able to control the system
with significant changes in characteristics of the envi-
ronment. For NN Impedance Position/Force Control,
the controller is designed to control the force inY
direction, the position inX direction and the end-
effector orientation while maintaining the required
impedance. The NNs are implemented by 10 hidden
layer neurons. The controller parameters are selected
asΛ = 100I3×3, Kv = 10I3×3, ρ = 1, ZM = 10.
Also η1 = 50I10×10, η2 = 10I10×10, k = 0.1. It is
assumed that the variation ofKe is not very large, so
its derivative is set to zero. The same position tracking
trajectories as the PD controller case (41 and 43) are
selected forX andΨ. The desired force is selected to
beFY = 1N . The desired system impedance is given
by (45). Response of the controller appears in Figure
4. Similar to the impedance/position case, the con-
troller neither needs to know any a-priori information
about the dynamics of the robot or the environment,
nor does it require any initial training. The response
of the controller in the presence of disturbance and un-
certainties in robot dynamics indicates that force and
position controllers are robust to the bounded external
disturbance and it is able to adapt to the variations in
the robot parameters.

5. CONCLUSION

In this paper, a NN impedance control scheme was
developed to control the position/force of the end-

effector of the manipulator when it is in contact with
an unknown environment while maintaining a desired
impedance. The controller was partitioned into three
NNs working in parallel. The NNs do not need to be
trained off-line. The controller was designed with a
MFNN. Simulation results were presented in the pres-
ence of external disturbance and variation in model
and environmental parameters and compared with a
PD controller. The results show that the proposed con-
troller can perform better than standard PD controller
in terms of tracking error and robustness to noise and
uncertainties in model dynamics.
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