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1. INTRODUCTION

1.1 Motivation

Electric power utilities aim to provide customers
with electric energy at optimal cost. Their ser-
vice is characterized by the load supplied to cus-
tomers, reliability and quality of voltage. Load
data are needed for planning and analysis of elec-
tricity production, transmission and distribution
(Handschin and Doernemann, 1988). In particu-
lar, consider the case of a designer, who is con-
cerned with the task of determining the weak-
est point of the distribution network, that is a
point, where the load maxima approach techni-
cal parameters of the network. Similarly, a sales
manager needs to know whether a new customer
can be connected at a certain point of the net-
work without violating the technical capacities
of the network, etc. Their available data usu-
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ally consist of customers’ individual loads in the
form of functions of time obtained from energy
meter readings. They may be provided for one
year, sometimes on hourly basis (Janeček and
Vaćık, 2000; Seppälä, 1996).

Such tasks require some knowledge of the network
load profile, i.e., knowledge of the active and reac-
tive load (current and voltage) at any point of the
network. Furthermore, static estimates (usually
mean value) are clearly insufficient as they do
not reveal much about the maximal values that
may occur during the network operation. What is
needed is a boundary value, which is a value that
will not be exceeded with a given probability p.
In other words, upper value of a p% confidence
interval is searched for. Thus, instead of static
estimates, the first two moments of a stationary
process should be found.



1.2 Approach to solution and result

The distribution network is considered as a radial
network. It is perceived as being composed of
orbits characterized by equal depth (number of
branches) from the supply point. To each orbit,
a set of state variables is defined. They allow an
easy calculation of current and voltage profiles.
During the analysis, one node of depth k, called
the analyzed node k, is considered only and its
state variables computed.

The load of one specific customer can not be
exactly predicted - indeed, it is a randomly dis-
tributed variable, described by its mean and vari-
ance. In order to obtain the boundary values, all
calculations are done at one fixed time a work-
day. Then, the load is considered as a stationary
process defined on a discrete time set. In the
following, current model will be used in order to
linearize the problem. In case of a load model, the
current model must be found iteratively, using a
Newton-Raphson method (Krynský, 2003).

Correlation between customers’ currents are con-
sidered equal for all customers (independent of a
customer). The obtained result is in a closed form

parameterized by the correlation coefficients. This
enables to obtain the boundary values (of voltage
and/or current) at any place of the network simply
by changing the correlation coefficients, without
recalculating the whole network load profile.

The proposed algorithm of recursive network anal-
ysis requires two computational passes. During
computation, the radial network is seen as a tree
graph. In the first pass of the algorithm, which
runs from leave nodes to the root node (supply
point), all currents are calculated according to
Proposition 1. Second pass of the algorithm starts
at the root node and proceeds towards the leaves.
Voltage drops are computed according to Proposi-
tion 2. For the sake of obtaining boundary values
of a network with many customers, it is reason-
able to assume that the operating quantities have
normal distributions. Moreover, a designer is more
interested in the boundary values at places close to
the supply point, where the Central limit theorem
applies.

Notation. The following notation will be used
through the paper. The real and imaginary part
of a complex variable X are denoted by <X and
=X , respectively, and X∗ denotes its complex con-
jugate. For a stochastic variable Y , the mean and
standard deviation are denoted by Ȳ = E{Y }

and Ỹ =
√

var(Y ) =
√

E{(Y − Ȳ )(Y − Ȳ )∗},
respectively, where E{·}, var(·) stand for the ex-
pected value and variance, respectively. Covari-
ance between two stochastic variables is denoted
by cov(·, ·).

���

� �
��� � �

� � �
	��� �

�����

�

Fig. 1. Analysis of currents in radial distribution
network

2. RECURSIVE NETWORK ANALYSIS

2.1 Model of the network

The aim of a network analysis is to obtain an
accurate load profile. This profile should respect
effect of customers’ correlations. In particular, it
is desirable to obtain results that would be pa-
rameterized by coefficients of correlation between
customers’ loads.

The radial distribution network, depicted in Fig-
ure 1, is considered as a tree graph composed of
nodes and branches. The depth of each node is
defined by a number of branches from the supply
point of depth zero. The set of all branches from
nodes at orbit k+1 connected to a particular node
at orbit k is denoted Bk. Similarly, Ck denotes the
set of all customers connected directly to the node
k. Clearly, Bk = ∅ holds for a leaf node. Impedance
of a branch l is denoted by Zl. These physical
properties are known before the analysis.

In the following, current of a node k means the
current outputted by the node k. We distinguish
the current Ik , which is the current of the analyzed
node k, from Ij , which is a current outputted by
a customer j ∈ Ck. Note that unless necessary to
avoid confusion, the subscript k will be omitted.
Correlation coefficient between the real and imag-
inary part of a customer current is denoted by
ρ. Then, <ρ, =ρ, <=ρ denote the correlation coeffi-
cients between the real parts, the imaginary parts
and between the real and imaginary part of differ-
ent customers’ currents, respectively. Voltage drop
between the supply point and a nodal point k is
denoted by Uk.

The customer current is obtained from their
respective estimated power load by Newton-
Raphson iterative method that is started from the
nominal voltage. Hence the variables <Īi, = Īi, <Ĩi

and =Ĩi are known for all customers connected to
the network.



2.2 Computational algorithm

Recall the radial network is considered as a set of
orbits, defined by nodes of the same depth. The
operational quantities of the network can then be
described by a set of state variables of each such
orbit. The state variables are defined inside their
respective propositions. The computation starts
at the leaves, with customers’ currents as entry
data.

During the first pass of the algorithm, state vari-
ables related to current are calculated from the
leaves towards the supply point. Variance of the
current of each node k is easily obtained as a
function of the state variables, parameterized by
the correlation coefficients.

Proposition 1. (Current calculation). Let Īk , <V I

k ,
=V I

k , <DI

k and =DI

k be state variables associated
to the analyzed node at the orbit k, defined by
following recurrent formulas (state equations):

Īk =
∑

i∈Bk

[Īk+1]
i +

∑

i∈Ck

Īi

<V I

k =
∑

i∈Bk

[<V I

k+1]
i +

∑

i∈Ck

(<Ĩi)2

=V I

k =
∑

i∈Bk

[=V I

k+1]
i +

∑

i∈Ck

(=Ĩi)2

<DI

k =
∑

i∈Bk

[<DI

k+1]
i +

∑

i∈Ck

<Ĩi

=DI

k =
∑

i∈Bk

[=DI

k+1]
i +

∑

i∈Ck

=Ĩi,

where [<Īk+1]
i stands for the mean of the real

part of the current entering the node k via the
branch i ∈ Bk, and the same notation applies
for the remaining state variables. Then the first
two moments of the stochastic variable Ik are the
mean Īk and variance

Ĩ2
k = (1 − <ρ)<V I

k + <ρ(<DI

k)2

+(1− =ρ)=V I

k + =ρ(=DI

k)2 (1)

=: (<Ĩk)2 + (=Ĩk)2.

Corollary 1. Assume the probability distribution
of the current Ik at the analyzed node k can be
described by the normal distribution N (Īk , Ĩk).
Then its boundary value (Ik)bvp

, which will not
be exceeded with probability p, is given by

(Ik)bvp
= Īk + χpĨk ,

where χp is the pth quantile of the unit normal
distribution N (0, 1).

The second pass of the algorithm proceeds from
the supply point towards the leaves. State vari-
ables related to current are computed for each
node. Variance of the voltage drop between a node
k and the supply point is a function of the state
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Fig. 2. Voltage analysis in radial distribution
network

variables, impedance of the network branches and
is parameterized by the correlation coefficients.

Proposition 2. (Voltage calculation). Let Ūk, <V U

k ,
=V U

k , <DU

k , =DU

k , <=zDU

k and =<zDU

k be state vari-
ables associated to the analyzed node at the orbit
k, defined by the following recurrent formulas
(state equations):

Ūk = Ūk−1 + Zk Īk

<V U

k = <V U

k−1 + Zk
0

<V I

k

=V U

k = =V U

k−1 + Zk
0

=V I

k

<DU

k = <DU

k−1 + <Zk
<DI

k

=DU

k = =DU

k−1 + =Zk
=DI

k

<=zDU

k = <=zDU

k−1 + =Zk
<DI

k

=<zDU

k = =<zDU

k−1 + <Zk
=DI

k,

where Zk denotes impedance of a branch from the
analyzed node k, k = 1, 2, . . . , towards the supply
point, Zk

0 is given by

Zk
0 = <Z2

k + =Z2
k + 2

(
<Zk

k−1∑

i=1

<Zi + =Zk

k−1∑

i=1

=Zi

)
,

and Ū0 = <V U

0 = =V U

0 = <DU

0 = =DU

0 = <=zDU

0 =
=<zDU

0 = 0.

The mean and variance of the voltage drop Uk

between the supply point and the analyzed node
k are given by Ūk and

Ũ2
k = (1 − <ρ)<V U

k + (1 − =ρ)=V U

k

+<ρ
(
(<DU

k )2 + (<=zDU

k )2
)

+=ρ
(
(=DU

k )2 + (=<zDU

k )2
)

(2)

−2<=ρ
(
<DU

k
=DU

k − <=zDU

k
=<zDU

k

)
,

respectively.

Corollary 2. Assume the probability distribution
of the voltage drop Uk between the supply and the
analyzed node k can be described by the normal
distribution N (Ūk, Ũk). Then its boundary value
(Uk)bvp

is given by

(Uk)bvp
= Ūk + χpŨk,



where χp is the pth quantile of the unit normal
distribution N (0, 1).

3. SUMMARY

A method of computing operational quantities
in a radial electrical network was presented. It
enables to obtain the second moment of current
and voltage at any place of the network. Moreover,
the variance formulae presented in Proposition 1
and Proposition 2 are in a closed form. They are
functions of the state variables, impedance and
correlation coefficient. As the physical properties
of the network are known and the state variables
can be precomputed, any change in assumed cor-
relation among customers’ currents can be quickly
reflected in the estimated boundary values estima-
tion.

The algorithm was implemented in a robust ap-
plication INVYS, which provides a convenient
user interface for various theoretical methods. It
was successfully tested by West Bohemia Power
Distribution Company on 10 low-voltage net-
works with hundreds of customers in each network
(Krynský, 2003).

There remain several issues to be worked on. Ex-
tending the algorithm to the case where customers
are split into several classes according to their load
profiles (Janeček et al., 1997) is one of them. Then
the correlation coefficients must reflect different
correlations among the customers groups. Also,
fit of other probability distributions than normal
should be tested. This is especially important
when interested in the lower boundary value of
the operational quantities.

Finally, note that the proposed algorithm can
be used in any network where the analogy with
electrical networks and Kirchhoff’s current law
applies.
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Appendix A. PROOFS

More on notation. All proofs presented bellow
are based on induction. An explicit expression of
the number of branches or customers directly con-
nected to a node is then needed. Let Bk be a set.
Its cardinality is denoted by |Bk|. Furthermore,
the argument (nk), e.g. Ĩk(nk), implies that Ĩk

was calculated for nk branches entering the node k

together with customers from the set Ck. With an
abuse of notation, the argument may sometimes
denote the number of customers connected to the
node, that is, be equal to |Ck|. As this notation
is only used for leaf nodes, it should not lead to
confusion.

A.1 Proof of Proposition 1

The formula for the mean Īk follows from Kirch-
hoff’s current law, Figure 1 and from linearity of
E{·}. To prove the variance formula, recall that
for any complex stochastic variable X holds that
X̃2 = <X̃2+=X̃2. Hence we only need to prove (1)
for <Ĩ2

k , the procedure for =Ĩ2
k being analogous.

Claim 1. Let l be the depth of a leaf node, that is,
Bl = ∅. Then, variance of the real part of current
Il is given by

<Ĩ2
l = (1 − <ρ)

∑

i∈Cl

(<Ĩi)2 + <ρ(
∑

i∈Cl

<Ĩi)2

=: (1 − <ρ)<V I

l + <ρ(<DI

l )
2.

Proof. Let the cardinality of Cl be one. Then, the
variance of the real part of the current can be
rewritten as

<Ĩ2
l (1) = (1 − <ρ)(<Ĩ1)2 + <ρ(<Ĩ1)2.

Assume now that

<Ĩ2
l (n) = (1 − <ρ)

n∑

i=1

(< Ĩi)2 + <ρ(
n∑

i=1

< Ĩi)2

holds for |Cl| = n. Let |Cl| = n + 1. Then,

<Ĩ2
l (n + 1) = var(

∑n

i=1
<Ii) + var(<In+1)

+2 cov(
∑n

i=1
<Ii, <In+1)

= <Ĩ2
l (n) + (< Ĩn+1)2

+2
∑n

i=1 cov(<Ii, <In+1).



Using the fact that cov(<Ii, <In+1) = <ρ<Ĩi< Ĩn+1,
substituting for <Ĩ2

l (n) from above and rearrang-
ing terms, we obtain

<Ĩ2
l (n + 1) = (1 − <ρ)

∑n

i=1(
<Ĩi)2 + <ρ(

∑n

i=1
<Ĩi)2

+(1 − <ρ)(< Ĩn+1)2 + <ρ(<Ĩn+1)2

+2
∑n

i=1
<ρ<Ĩi<Ĩn+1

= (1 − <ρ)
∑n+1

i=1(< Ĩi)2
︸ ︷︷ ︸

<V I
l

(n+1)

+<ρ(
∑n+1

i=1
<Ĩi

︸ ︷︷ ︸

<DI
l
(n+1)

)2.

Induction argument gives the claim. 2

The computation proceeds from the leaves to-
wards the root (supply node). Assume that

<Ĩ2
k+1 = (1 − <ρ)<V I

k+1 + <ρ(<DI

k+1)
2

holds for a node with depth k + 1. Now, if there
is only one branch entering the node k, i.e., if
|Bk| = 1 and |Ck| = ∅, then clearly <Ĩ2

k = <Ĩ2
k+1,

<V I

k = <V I

k+1 and <DI

k = <DI

k+1.

Suppose (1) holds for |Bk| = nk. Then, if |Bk| =
nk +1, it follows for the current of the node k that

<Ĩ2
k (nk + 1) = var

( ∑nk

i=1[
<Ik+1]

i +
∑

i∈Ck

<Ii

+[<Ik+1]
nk+1

)

= (1 − <ρ)<V I

k (nk) + <ρ(<DI

k(nk))2

+(1− <ρ)[<V I

k+1]
nk+1 + <ρ([<DI

k+1]
nk+1)2

+2 cov(<Ik(nk), [<Ik+1]
nk+1).

Let Ci
k denote a set of all customers connected to

the node k via branch i. Expanding the arguments
of the covariance term, applying linearity property
and regrouping with the use of the definition of
<DI

k,

cov
(
<Ik(n), [<Ik+1]

n+1
)

=

= cov
( n∑

i=1

∑

j∈C
j

k

<Ij +
∑

i∈Ck

<Ii,
∑

l∈C
n+1

k

<Il
)

=
∑

l∈C
n+1

k

cov
( n∑

i=1

∑

j∈C
j

k

<Ij +
∑

i∈Ck

<Ii, <Il
)

= <ρ
( n∑

i=1

∑

j∈C
j

k

<Ĩj +
∑

i∈Ck

<Ĩi
) ∑

l∈C
n+1

k

<Ĩl

= <ρ<DI

k(n)[<DI

k+1]
n+1.

Substituting into above yields

<Ĩ2
k (nk + 1) = (1 − <ρ)<V I

k (nk + 1)

+<ρ(<DI

k(nk + 1))2,

which, together with Claim 1 and the induction
argument finishes the proof. 2

A.2 Proof of Proposition 2

Before proceeding to the proof, it is useful to give
the following lemma.

Lemma 1. Let Ik and Il be currents supplying
disjunct set of customers. Their covariance is
given by

cov(Ik, Il) = <ρ<DI

k
<DI

l + =ρ=DI

k
=DI

l

+j<=ρ(=DI

k
<DI

l −
<DI

k
=DI

l ), (A.1)

where the variables <DI

i ,
=DI

i , i = k, l, are as
defined in Proposition 1.

Proof. As Lemma 1 is principally similar to Propo-
sition 1, the proof will be stated briefly.

Claim 2. Consider two different leaf nodes of
depth k and l, that is, Bk = Bl = ∅. Covariance of
their respective currents Ik and Il is given by

cov(Ik , Il) = <ρ
∑

i∈Ck

<Ĩi
∑

j∈Cl

< Ĩj + =ρ
∑

i∈Ck

=Ĩi
∑

j∈Cl

=Ĩj

+ j <=ρ
( ∑

i∈Ck

=Ĩi
∑

j∈Cl

<Ĩj −
∑

i∈Ck

<Ĩi
∑

j∈Cl

=Ĩj
)
.

Proof. Let |Ck| = |Cl| = 1. By definition

cov(Ik, Il) = E{(I1k − Ī1k)(I1l − Ī1l )
∗}

= <ρ<Ĩ1k
<Ĩ1l + =ρ=Ĩ1k

=Ĩ1l

+j<=ρ(=Ĩ1k
< Ĩ1l −

<Ĩ1k
= Ĩ1l ).

Assume now that the claim holds for |Ck| = nk

and |Cl| = nl. Then, it follows for |Ck| = nk + 1
that

cov
(
Ik(nk + 1), Il(nl)

)
=

= cov
( ∑nk

i=1 Iik + Ink+1
k ,

∑nl

j=1 Ijl
)

= cov
(
Ik(nk), Il(nl)

)
+

∑nl

j=1 cov(Ink+1
k , Ijl ).

By hypothesis and rearranging terms

cov
(
Ik(nk + 1), Il(nl)

)
=

= <ρ
nk∑

i=1

<Ĩik
nl∑

j=1

<Ĩjl + =ρ
nk∑

i=1

=Ĩik
nl∑

j=1

=Ĩjl

+ j <=ρ
( nk∑

i=1

=Ĩik
nl∑

j=1

< Ĩjl −
nk∑

i=1

<Ĩik
nl∑

j=1

= Ĩjl
)

+
nl∑

j=1

(
<ρ<Ĩnk+1

k
<Ĩjl + =ρ=Ĩnk+1

k
=Ĩjl

+j <=ρ(= Ĩnk+1
k

< Ĩjl −
<Ĩnk+1

k
=Ĩjl )

)

= <ρ
nk+1∑

i=1

<Ĩik
nl∑

j=1

<Ĩjl + =ρ
nk+1∑

i=1

=Ĩik
nl∑

j=1

= Ĩjl

+ j <=ρ
( nk+1∑

i=1

= Ĩik
nl∑

j=1

<Ĩjl −
nk+1∑

i=1

<Ĩik
nl∑

j=1

=Ĩjl
)
.



Skew symmetry of covariance and induction argu-
ment conclude the proof. 2

Assume that (A.1) holds for |Bk| = nk and |Bl| =
nl. For |Bk| = nk + 1 then follows that

cov
(
Ik(nk + 1), Il(nl)

)
= cov

(
Ik(nk), Il(nl)

)

+ cov
(
[Ik+1]

nk+1, Il(nl)
)

Expanding the branch currents up to the individ-
ual customers’ currents and regrouping again as
in the proof of Proposition 1, we obtain that

cov
(
[Ik+1]

nk+1, Il(nl)
)

=

=
∑

i∈C
nk+1

k

cov
(
Ii, Il(nl)

)

= <ρ[<DI

k+1]
nk+1<DI

l (nl)

+=ρ[=DI

k+1]
nk+1=DI

l (nl)

+j <=ρ
(
[=DI

k+1]
nk+1<DI

l (nl)

−[<DI

k+1]
nk+1=DI

l (nl)
)
.

Substitute the result into the equation above, use
the hypothesis and the fact that

<DI

i (ni + 1) = <DI

i (ni) + [<DI

i+1]
ni+1

=DI

i (ni + 1) = =DI

i (ni) + [=DI

i+1]
ni+1

holds for any i, to obtain the required formula.
Skew-symmetry of covariance finishes the proof.
2

Proof of Proposition 2 Denoting the voltage
drop between two nodes, k and l, by ∆Uk,l, the
voltage drop between the supply point and a node
k is given by

Uk = Uk−1 + ∆Uk,k−1 := Uk−1 + ZkIk .

Application of the expected value operator yields
the formula for Ūk.

By definition, substituting for Ĩ2
1 from Proposi-

tion 1, rearranging and using the trick of adding
zero we obtain that for a node of depth 1 holds

Ũ2
1 = var(U1) = Z1 var(I1)Z

∗
1 = (<Z2

1 + =Z2)Ĩ2
1

= (<Z2
1 + =Z2)

(
(1 − <ρ)<V I

1

+<ρ(<DI

1)
2 + (1 − =ρ)=V I

1 + =ρ(=DI

1)
2
)

= (1 − <ρ)<V U

1 + (1 − =ρ)=V U

1

+<ρ
(
(<DU

1 )2 + (<=zDU

1 )2
)

+=ρ
(
(=DU

1 )2 + (=<zDU

1 )2
)

−2<=ρ
(
<DU

1
=DU

1 − <=zDU

1
=<zDU

1

)
.

Assume (2) holds for a node at an orbit k. Mov-
ing one step towards the leaves, variance of the
voltage drop Uk+1 is given by

Ũ2
k+1 = var(Uk + ∆Uk+1,k)

= Ũ2
k + cov(Uk, ∆Uk+1,k)

+ cov(∆Uk+1,k, Uk) + ∆Ũ2
k+1 (A.2)

= Ũ2
k + ∆Ũ2

k+1 + 2Re{cov(Uk, ∆Uk+1,k)},

where Re(X) gives the real part of a complex
variable X . Let ∆Ik,l = Ik − Il be an auxiliary
variable denoting the current of customers sup-
plied via the node k, but not via the node l. Then,
Ii = ∆Ii,k+1 + Ik+1, i = 1, . . . k, and

cov(Uk, ∆Uk+1,k) =
∑k

i=1 Zi cov(Ii, Ik+1)Z
∗
k+1

=
∑k

i=1 Zi cov(∆Ii,k+1, Ik+1)Z
∗
k+1

+
∑k

i=1 ZiĨ
2
k+1Z

∗
k+1.

Since ∆Ii,k+1 does not contain the currents of
customers supplied by Ik+1, Lemma 1 can be
applied to evaluate cov(∆Ii,k+1, Ik+1). Hence

Re{cov(Uk, ∆Uk+1,k)} =

=
∑k

i=1(
<Zk+1

<Zi + =Zk+1
=Zi)

·
(
Ĩ2
k+1 + <ρ<

∆DI

i,k+1
<DI

k+1

+=ρ=
∆DI

i,k+1
=DI

k+1

)

−<ρ
∑k

i=1(
<Zk+1

=Zi − =Zk+1
<Zi)

·(=∆DI

i,k+1
<DI

k+1 −
<

∆DI

i,k+1
=DI

k+1).

Finally, use the facts that ∆DI

i,k+1 = DI

i − DI

k+1,

and that ∆Ũ2
k+1 = (<Z2

k+1 + =Z2
k+1)Ĩ

2
k+1, where

Ĩ2
k+1 was given in Proposition 1 and note that

<DU

k =
∑k

i=1
<Zi

<DI

i
<=zDU

k =
∑k

i=1
=Zi

<DI

i

=DU

k =
∑k

i=1
=Zi

=DI

i
=<zDU

k =
∑k

i=1
<Zi

=DI

i .

Substituting into (A.2) and regrouping judi-
ciously, we obtain

Ũ2
k+1 = (1 − <ρ)(<V U

k + Zk+1
0

<V I

k+1)

+(1 − =ρ)(=V U

k + Zk+1
0

=V I

k+1)

+<ρ(<DU

k + <Zk+1
<DI

k+1)
2

+<ρ(<=zDU

k + =Zk+1
<DI

k+1)
2

+=ρ(=DU

k + =Zk+1
=DI

k+1)
2

+=ρ(=<zDU

k + <Zk+1
=DI

k+1)
2

−2<=ρ
(
(<DU

k + <Zk+1
<DI

k+1)

·(=DU

k + =Zk+1
=DI

k+1)

−(<=zDU

k + =Zk+1
<DI

k+1)

·(=<zDU

k + <Zk+1
=DI

k+1)
)
,

which is the desired form concluding the proof.
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