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Abstract: Consider stochastic production-inventory control problem in which there are 
multiple capacity sources, multiple heterogeneous products, non-stationary demand and 
time-varying costs. If shortage2 costs can be evaluated the natural objective is to minimize 
expected production, inventory and shortage costs. Otherwise one can use service level 
requirements as target inventory while trying to minimize costs. In this paper we present 
the algorithm for solving optimal production plan with service level requirements. The 
cost for the deviation from target value can be any differentiable and convex function. 
However in this paper we study the problem in which deviation cost is related to 
underlying demand distribution.    Copyright © 2005 IFAC 
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1 Corresponding author 
2 Shortage costs are caused by late deliveries. 

1. INTRODUCTION 
 
This paper concentrates on short term/tactical level 
planning problems where planning horizons vary 
between day and few weeks. Planning horizon 
however depends heavily on industry area and what 
might be short term planning for some areas is 
tactical level planning for some others. Aim of those 
methods considered here is to make decision what 
products, how much and when we should produce.  
 
Existing capacity constrained production-inventory 
control problems can be roughly divided in two 
classes. One is cost minimization where objective is 
to minimize expected production, holding and 
shortage costs over planning horizon. This produces 
optimal solution in terms of costs. However there is 
one important parameter, shortage cost which one 
has to approximate.  

The other way to formulate the problem is to use 
target inventories to guarantee reliable supplies. The 
user sets desired service level as target inventory and 
minimizes deviation from target inventory. There are 
two well studied ways to formulate target inventory 
problem. One uses hard service level constraints 
while minimizing expected holding cost and 
production cost. This approach guarantees reliable 
supplies in every period but there is major drawback 
in this approach. The possibility that production costs 
increase significantly is high. The other well known 
way uses quadratic penalty cost for the deviation 
from target value.  
 
Most closely related to our work at production - 
inventory control problem literature are (Bitran and 
Yanasse, 1984), (Martel et al., 1995), (Sox and 
Muckstadt, 1996) and (Holt et al., 1960). Bitran and 
Yanasse (1984) developed a heuristics for multi-
period production planning problem with service-



     

level constraints. All unmet demand is backlogged. 
Their heuristics are based on deterministic 
approximation and provide results which have small 
relative error with high service levels. They consider 
production, overtime and inventory holding costs. 
Martel et al. (1995) consider both inventory holding 
and shortage costs. They use piecewise linear cost 
approximations and cumulative production quantities 
over planning horizon. They are therefore able to 
formulate problem as a static linear programming 
problem or a mixed integer linear programming 
problem if set-up costs are included. Sox and 
Muckstadt (1996) use Lagrangian relaxation to 
develop a sub-gradient optimization algorithm. Their 
approach is similar to Martel et al. (1995) in a way 
that they also use cumulative inventory and 
production quantities over planning horizon. All 
demand not met is also backlogged in their study. 
Sox and Muckstadt (1996) formulation allows non-
stationary demand, time-varying costs and multiple 
production sources with convex costs. Holt et al. 
(1960) are the first one who presented production - 
inventory control model with quadratic penalty from 
target inventory value. The other studies from the 
rich production-inventory control literature related to 
our work are (Bookbinder and H’ng, 1986), (Mehrez 
and Ben-Arieh, 1991), (Ramsay and Rardin, 1983), 
(Garcia and Smith, 2000) and (Ciarallo et al., 1994). 
 
The paper is organized as follows. In chapter 2. we 
present problem formulation. Solution algorithm is 
covered in chapter 3. and computational results in 
chapter 4. 
 
 

2. PROBLEM FORMULATION 
 
Our model is finite-horizon, discrete-time, 
production and inventory planning model with 
multiple heterogeneous products. The model assumes 
time-varying stochastic non-stationary demand with 
known demand distributions. It also assumes 
deterministic time-varying costs, multiple production 
and buying sources with convex costs. All unmet 
demand is backlogged. Although our model can 
handle multiple resources we present our model here 
as a single “bottleneck” resource model. Production 
and inventory are modelled as cumulative quantities 
over planning horizon. Model does not contain set-up 
time or costs.  
 

Table 1. Variables 
 

 
itX  the cumulative inventory of item i through 

period t , 

itu  the production amount for product i  in 
period t , 

ity  the rate of capacity usage for item i  

1
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∑    the cost of resource 1  in period t , 

ith  the unit holding costs for product i  in 
period t , 

itp  the unit shortage costs for product i  in 
period t , 

1tul  the upper limit for resource 1  in period t , 

itSl  service level for product i  in period t  
expressed as 0.  decimal number, f.g. 99% 
service level would be 0.99 , 

( )itF x  the c.d.f. of cumulative demand for 
product i through period t , 

( )itF x  1 itF−  and 

( )itf x  the p.d.f. of cumulative demand for 
product i  through period t . 

 
 
 
We formulate our multi-period production planning 
problem as follows: 
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The expected holding and shortage costs function for 
product i  in period t  is: 
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The optimal expected holding and shortage costs for 
product i  in period t  are used as a reference costs. 
The objective is to keep inventory levels as close as 
possible to desired service levels while minimizing 
the production costs over planning horizon. This 
formulation allows inventory levels to be under 
desired service level in some period while still 
maintaining service level requirements over planning 
horizon. The production costs 1tC  in period t  can be 
any convex function. An example of different 
capacity sources are normal working hours and 
overtime hours. 
 
Cumulative inventory levels at the end of the 
planning horizon are required to be at certain level. 
Therefore it is not necessary to define salvage value 
for inventory left over after planning horizon.  
 



     

 
3. SOLUTION ALGORITHM 

 
The algorithm assumes that initial inventory levels 

0iX  are known. Solution can be seen as an optimal 
open-loop controller (OLC) see f.g. Bertsekas 
(2000). Optimization is done as a static problem 
instead of solving computationally intractable 
dynamic programming problem. Optimal closed-loop 
controller has better or at least as good performance 
as open-loop controller has because it calculates 
optimal control for every possible state over the 
planning horizon. When OLC is used in rolling 
horizon basis control strategy is referred as open-
loop feedback controller (OLFC) f.g. Bertsekas 
(2000). The performance of OLFC is at least as good 
as optimal OLC.  
 
Our approach does not require the user to define 
shortage costs. However it is necessary to define 
desired service level for every product i  in every 
period t . The approximation of shortage costs is 
then calculated by using Newsvendor solution see 
f.g. Winston (1994).  
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The dependence between p  and Sl  has always the 
same form. One however has to consider the strong 
nonlinear nature of dependence. When operating 
with service level values over 90% the increase in 
relative importance of p  is significant.  
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Fig. 1. Dependence between p  and Sl  has always 

the same form which does not depend on h (in 
this case 1h = ). 

 
The cumulative inventory quantity itX  for product i  
and period t  is calculated as follows: 
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Demand is also modelled as cumulative quantities 
over planning horizon. Demand for product i  in 
period t  is a sum distribution of demand through 
periods 1, 2,..., t . Dependence in subsequent periods 
can have any form.  
 
Production cost gradient for product i  in period t  is  
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The expected holding and shortage cost gradient is 
total differential and calculated as follows.  
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Production in some earlier period will affect 
cumulative inventory in later periods. When 
calculating holding and shortage cost gradients one 
has to take this fact into account. Period t  gradient is  
a combination of period t  gradient plus sum of the 
all later period gradients. This calculation will 
guarantee the expected holding and shortage cost 
gradient to be improving direction. 
 
The solution algorithm is based on idea of reasonable 
initial values, calculation of optimal production 
quantities separately for every product and 
calculation of optimal combined production.  
  
 

The solution algorithm: 
 
Step 1. Calculate initial values for every product i  

in every period t , ( )1
, 1it it it i tu F Sl X−

−= − . 
Step 2. Start from product 1,2,..., N , 

1. Set production for other products to zero.  
2. Calculate derivatives for all periods. 
3. Calculate differences between period i  

derivative and periods 1, 2,...,T  derivatives.  
4. Find maximum difference between any 

periods. For chosen pair of periods move 
production from one period to another 
according to the way difference is 
calculated.  

5. Update derivatives. 
6. Continue until maximum difference between 

derivatives is smaller than some chosen 
value ε .  

Step 3. 
1. Combine all products and start similar 

procedure as in Step 2. In multi-product case 
only one product at a time is movable.    

 
The objective of the initial solution is to speed up the 
optimization procedure. If resources have equal costs 
and demand is not very volatile the initial solution is 
close to optimum. Single product optimum solution 
is required to guarantee optimality when costs and 
resources vary between periods. In multi-product 
phase we are interested in smoothing out difference 



     

in resource usage between periods. Single product 
solution is used to simplify multi-product phase 
calculation. Without single product solution it would 
be time consuming to calculate not only derivatives 
for all the control variables but also their effect on 
other variables derivatives. In this algorithm it is  
relatively easy to calculate the cost for moving 
production from one period to another. All existing 
capacity constraints are replaced with penalty costs 
see f.g. Rardin (1998).  In a case where initial 
solution exceeds total capacity available in planning 
horizon it is only necessary to reduce production 
from products which has the least worsening impact.  

 
 

4. COMPUTATIONAL RESULTS 
 
The performance of the algorithm is illustrated with 
two examples. Data contains demand distributions, 
service level requirements, production costs, holding 
costs, resource consumption and available capacity 
from two different sources. We first test the 
performance of the algorithm when there are two low 
capacity periods (first capacity source) in the middle 
of the planning horizon. In second test first capacity 
source is linearly increasing. Capacity from second 
source is unlimited in both cases.  
  
To simplify the analysis we set for every period t  
and every product i  the capacity consumption for 
producing one unit to be 1 capacity unit. The 
production costs from capacity source 1 is always 
10$/unit and from capacity source 2 30$/unit. 
Planning horizon is 10 periods and there are 5 
products to produce. The holding costs are randomly 
selected from uniform distribution. For products 
1,2,...,5  they are [1.44, 2.62, 3.79, 4.74 and 5.18] $.  
 
We assume the demand to be normally distributed 
with mean 500. Standard deviation is selected so that 
probability of negative demand occurring is very 
low. We also assume that it is not possible to 
substitute product’s i  demand with other products. 
Demand for consecutive periods is assumed to be 
independent from each other. Standard deviations are 
from uniform distribution in range [10,150] .  
 

Table 3. Standard deviations(Std) for cumulative 
demand. 

 
  Product 
Period  1   2  3  4  5 
 1    89.50 145.92 67.67 39.00 63.76 
 2  150.66 208.27 132.78 102.70 123.39 
 3  151.76 240.59 141.02 142.08 125.52 
 4  178.73 250.96 158.15 154.97 126.40 
 5  179.54 263.33 211.66 179.47 158.57 
 6  192.04 266.35 236.57 193.82 184.95 
 7  199.14 284.53 239.89 194.49 185.35 
 8  239.14 289.76 271.66 194.98 185.76 
 9 239.45 323.75 288.81 202.26 189.33 
 10 266.73 342.49 290.24 202.61 210.58 
 
 
 

In these illustrations only capacity changes but in 
practise it is also common that demand has trends 
and seasonal components. It is however possible to 
show how the algorithm works by only making 
available capacity change over time.  
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Fig. 4. Aggregated production plan with 80% service 

level. Capacity is scaled so that there is same 
amount of free capacity from source 1 over 
planning horizon in 80% and 95% examples. 

  
Since the initial stock 0iX  for every product i  is 
zero the reference value is production plan without 
considering limited capacity from source 1. The 
algorithm moves production to both directions,  
backward and forward. The total cost for reference 
plan are 53.99 10∗ $ and for optimized plan  

53.35 10∗ $.  
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Fig. 3. Aggregated production plan with 95% service 

level. 
 
The difference in production plans between 80% case 
and 95% case is only because of difference in 
shortage costs. Higher service level means higher 
shortage costs when other parameters are fixed. As a 
result from this it is not so likely to move production 
forward in 95% service level case. The total cost for 
reference plan are 54.29 10∗ $ and for optimized plan 
are 53.71 10∗ $. 
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Fig. 4. Aggregated production plan with 80% service 

level. Capacity is scaled so that there is same 
amount of free capacity from source 1 over 
planning horizon in 80% and 95% examples. 

 
Linearly increasing capacity from first source moves 
production forward in both cases.  It is also necessary 
to point out that reference plan is higher when 
service level requirement is 95%. The total cost for 
reference plan are 53.88 10∗ $ and optimized plan are 

53.79 10∗ $. 
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Fig. 5. Aggregated production plan with 95% service 

level. 
 
It might sometimes be desirable to use high service 
level requirements but one has to take into account 
the consequences. Higher service level means higher 
average stock and often higher production costs. The 
total cost for reference plan are 54.25 10∗ $ and 
optimized plan are 54.17 10∗ $. 
 
 

5. CONCLUSION 
 
In this paper we propose a solution algorithm for 
target inventory problems. When shortage costs are 
difficult to evaluate more practical approach is to use 
service level requirements as a target inventory. 
Problem formulation allows cost for deviation from 
reference value to be any differentiable and convex 
function. The Results shows that algorithm has 
capability to find production plan which has lower 
costs than reference plan has.  
 
Future research directions include rolling horizon 
tests as well as multi-echelon studies. This kind of 

algorithm would benefit networks in which reliability 
is essential. By using cumulative quantities it is 
possible to formulate problem as a static optimization 
problem instead of solving complex dynamic 
programming problem. It is obvious that dynamic 
programming solution will perform better than this 
kind of algorithm in rolling horizon manner. 
However this kind of formulation has also potential 
in practical applications. 
 
Development of algorithm in which set-up time is 
included will broaden the class of potential 
applications. Also the case where unmet demand in 
current period will not move to next period makes 
model more usable. Capacity planning is one of the 
major tasks in tactical level production planning. By 
using this type of formulation it is possible to make 
capacity planning more effective. 
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