
 

     

 
 
 
 
 
 
 
 
 
 
 
 
 

TIME DOMAIN DECOMPOSITION IN SOLUTION OF SINGULAR NONLINEAR OPTIMAL 
CONTROL PROBLEMS  

 
 

Raynitchka Tzoneva  
 
 

Cape Peninsula University of Technology, Bellville, South Africa 
 

 
 
 

Abstract: Method for optimal control calculation for discrete optimal control problems 
characterized by non-quadratic criterion, nonlinear model with affine control, state and control 
delays and constraints is developed. An augmented functional of Lagrange is applied and its 
decomposition in time domain is proposed using new coordinating vector for dual 
decomposition in order to calculate the optimal state and control trajectories. The method is 
applied to solve the problems for maximum production of batch and minimum start-up time of 
continuous fermentation processes. Copyright © 2005 IFAC 
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 1.  INTRODUCTION  

 
The industrial processes are characterised by high 
dimension and complexity, non-linearity, multiple 
time delays, goals, uncertainties, constraints. It is well 
known that the methods of the optimal control theory 
have some difficulties in solution of optimal control 
problems for plants with such characteristics (Brayson 
and Ho, 1969). They take also considerable 
computational time. New methods, algorithms and 
programmes are needed. Large scale systems theory 
and methodology gives a possibility the problems for 
optimal control of the technological processes to be 
formulated in the frameworks of hierarchical 
structures (Singh and Titli, 1978), based on the 
information flows, the principle of given hierarchy, 
and the analytical and numerical methods to be used. 
This approach is realised by the central concepts of 
decomposition and coordination (Singh and Titli, 
1978; Bertsekas, 1979). An overall optimisation 
problem might be decomposed into governed by 
interconnected subsystems series of sub-problems 

with lower dimension or lower complexity. The 
solution of the overall problem can be obtained 
through a coordination process of iterative 
computations between the levels of hierarchy.  
The decomposition method of Tamura (Tamura, 
1975) is very useful because it allows the global 
problem to be decomposed in time domain. It gives 
very simple solution for systems with state and 
control delays as the delays can be considered                            
as predictions in the coordinating vector of the 
conjugate variables. The method is developed for a 
quadratic criterion. When the criterion is non-
quadratic one the optimal control problem can be 
solved using augmented towards the model equations 
Lagrange functional (Bertsekas, 1979). In this case it 
appears that application of the coordination procedure 
of prediction of the conjugate variables can not 
decompose the augmented functional in time domain 
because its dual functional is not any more separable 
(Lin, 1992). It is necessary to find additional variables 
to be selected as coordinating ones in order to obtain 
full time domain decomposition. This possibility is 



 

     

investigated in the paper. The results obtained for 
different types of optimal control problems (Tsoneva 
and Patarinska 1995; Tsoneva et al., 1998) are 
generalised in the paper as a  method for nonlinear 
optimal control problems solution. The application of 
the method for two fermentation processes is given. 
 
 

2.        PROBLEM STATEMENT 
 
The optimal control problem is: find the control 

),(ku  ,1,0 −= Kk  such that the criterion 
),(0 KJ xf= ,              (1) 

is maximised, subject to the model equations 
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and constraints 
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where mn RR ∈∈ ux ,  are the vectors of state and 
control variables, RR n →:0f  is the criterion  function 
determined at the end point of the optimisation 
interval, nR∈21,ff , nxmR∈3f are the continuous and 
continuously differentiable functions of state, τ and θ 
are the constant state and control delays, ux ϕϕ ,  are 
the initial functions, ∆t is the discretization period, K 
is the number of steps in the optimization horizon, 

maxminmaxmin ,,, uuxx  are the bound values of the 

constraints, rR∈a  is the vector of the parameters.  
  
 

3. DECOMPOSITION METHOD 
 

The optimal control problems can be solved using a 
functional of Lagrange 
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where nRk ∈)(λ is the conjugate variables' vector. As 
the control vector does not appear in (1) and enters 
linearly the model equations, the considered problem 
is a singular one. The control vector does not appear 
in the necessary conditions for optimality 
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and it has to be calculated using other approaches 
(Brayson and Ho, 1969; Bertsekas, 1979). If an 
augmented Lagrange’s functional with penalty part 
according to the model equations is used 
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where µ is a penalty coefficient, the control vector  
appears in a quadratic term. In this case the functional 
of Lagrange is quadratic according to the control 
vector and the necessary condition of optimality is an 
analytical function of the control vector. Then as the 
considered problem is characterised with state and 
control time delays, the method of Tamura (Tamura, 
1975) can be applied. The optimal control problem (6) 
can be solved on the basis of the necessary conditions 
for optimality 
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where the conjugate variables are selected as 
coordinating ones. But the separability of the dual 
problem can not be reached as the values of the 
variables in the time moments k can not be separated 
because of the vector of variables )1( +kx , which can 
be considered as vector of interconnections in time 
domain. In order to overcome these difficulties it is 
proposed to extend the coordination vector with the 
interconnections vector in time domain  

,1,0),1()( −=+= Kkkk xρ     (8) 
Their values will be set at the beginning and 
calculated in the course of problem solution process. 
Then the optimal control problem can be solved in 
two level calculating structure using the new 



 

     

coordinating vector. 
 
The values of the coordinating variables are set from 
the second level of the two level calculating structure: 

,,0),()( Kkkk j == λλ 1,0),()( −== Kkkk jρρ ,(9) 

where j is the index of the coordinating process 
iterations. When the values of the coordinating 
variables are substituted into the Lagrange's 
functional, its full decomposition according to the  
discrete time moments k is obtained. The functional is 
decomposed into K+1 sub-functionals )(kLa  and 
each of them determines the optimal control and state 
at the given moment k. The coordinating sub-problem 
is obtained and solved on the basis of the necessary 
conditions for optimality   
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The coordinating sub-problem is solved using a 
gradient procedure for λ  and direct expressing of ρρρρ 
from (10). The solutions have the form:     
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          (13) 
In (11)-(13) the values of )(),( kk jj ux  are obtained 

after solving the first level sub-problems with the set 
values of 1,0),(,,0),( −== KkkKkk jj ρλ . 

Coordination process terminates upon satisfaction of 
some error conditions: 
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If these conditions are not satisfied, the first level sub-
problems are solved with the obtained values of the 
co-ordinating variables and new values of the penalty 
coefficient. Its value for the new iteration can be 
calculated according to Algorithm 1, using the 
obtained coordinating vector gradients in order to 
achieve quick convergence of the coordinating sub-
problem solution  
 
Algorithm 1: 
1.The error is computed 
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2. The new penalty coefficient is calculated from the 
conditions: 
if j=1 or jj ee <+1 ,then jj µµ =+1 ,  (17) 

if j>1 and jj ee ≥+1 then jj aµµ =+1 , α=[0.1, 10.0] 

 
The first level sub-problems are determined under the 
set from the second level coordinating variables 
according to the necessary conditions for optimality 
of the sub-functionals )(kLa :  
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and are solved by gradient procedures:  
      - for the state variables:  
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 l is the iteration index. Calculations terminate upon 
satisfaction of error conditions. To account for the 
constraints the obtained values of the state and control 
trajectories are projected over their domains (4) 
respectively:  
         )(minmin k(k)(k), j,l xxx < ,        (23) 

{ )()()(),()( max
,

min
,, kkkkk ljljlj xxxxx ≤≤= , 

     )()(),( max
,

max kkk lj xxx > , .,0 Kk =         
The projection of the calculated values of the control 
trajectory over the constraint domain is done as in 
(23), only the time horizon is .1,0 −= Kk   
  
The computational procedure for solving the optimal 
control problem is organised in two level structure  
Fig.1., according to the following: 
Algorithm 2: 



 

     

1.The values of the coordinating variables and those 
of the penalty coefficients are set at the second level 

1,0,),(),( −= Kkkk jjj µρλ  and are transferred to the 

first one, j=1. 
2.At the first level, the initial control trajectory is set 
and the initial trajectory of the state is calculated, 
l=1, j=1.  
3.At the first level the gradients 

1),(,1,0,)( ,, −=−= KkkeKkke lj
u

lj
x  are calculated 

and the new state and control trajectories are obtained 
from equations (19)-(21). They are projected onto the 
constraint domain (23). 
4.The state and control error conditions are checked. 
If they are satisfied, the obtained state and control 
trajectories are transferred to the second level. If the 
conditions are not satisfied, items 3), 4) are repeated, 
l=l+1. 
5.The new values of the coordinating variables are 
calculated from (11)-(13), j=j+1. The conditions 
(14),(15) are checked. If they are satisfied, the optimal 
solutions of the coordinating sub-problem and of the 
global problem are obtained. If these conditions are 
not satisfied, new values of the penalty coefficients 
are calculated according to (16),(17) and items 
3),4),5) are repeated, and so on. 
The convergence of the algorithm is found to depend 
on the selection of the initial trajectories of state and 
control vectors and of the initial trajectory of the 
conjugate variable vector. The adaptive selection of 
the gradient procedure step sizes, allows to make the 
convergence faster. Different types of gradient 
procedures can be used in the above method. 
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Fig.1. Two level calculating structure 
 
 
4.MAXIMUM PRODUCTION OF XANTHAN 
GUM IN A BATCH FERMENTATION PROCESS 
 
Xanthan gum, produced by Xanthomonas campestris 
-- ITS-342, is considered The main problem in 
producing xanthan is the enormous increase of 
viscosity as the product accumulates because of 
changes in oxygen transfer in the fermentor. The 
influence of the oxygen supply is reflected in the 
mathematical model. The process is described by the 
following three difference equations 
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where x,s,p,u [g/l] are respectively the concentrations 
of biomass, substrate, xanthan gum and dissolved 
oxygen, b are the parameters. The oxygen 
concentration is considered as a control input. 
 
The optimal control problem is to find the control 
trajectory 1,0),( −= Kkku , and the state trajectories 

Kkkpkskxkv ,0),(,)(),()( == , which maximize the 
end concentration of the xanthan gum: 

max)( →= KpJ ,      (25) 
under the model equations (24) and satisfy  
constraints of the type (4)  
  
The optimal control problem is solved using the 
above decomposition method.  An augmented 
Lagrange’s functional is introduced: 
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The selection of the coordinating variables is: 
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The coordinating sub-problem is obtained from the 
necessary conditions for optimality and is the same as 
the sub-problem (11)-(14). The optimal control sub-
problems, defined by the sub-functionals )(kLa  are 
solved by gradient procedures according to the 
necessary conditions for optimality:  

1,0,,,,,0)(/)( −=== KkupsxvkvkLa ∂∂ .(29) 

0
2
4

0 10 20 30 40 50

k

p.
10

[g
/k

g]

a) 

0
50

100
150

0 10 20 30 40 50

k

u[
%

]

b) 
Fig.2.Optimal product (a) and control (b) trajectories 
 



 

     

The first level sub-problems for are: 
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where the gradients are obtained at each moment k 
and have the form 
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and 1,0,,,),(, −== Kkpsxzke lj
zλ  are the values of 

the gradients of the Lagrange’s functional according 
to the conjugate variables. The results are given in 
Fig.2. 
 
  

5.OPTIMAL START-UP OF CONTINUOUS 
FERMENTATION PROCESS 

 
The problem for minimizing start-up time of 
continuous fermentation process is considered ( 
Tzoneva and Patarinska, 1995). Dynamic behaviour 
of these processes is nonlinear one with time delays in 
states. The process for growth of  Saccharomyces 
cerevisiae is taken under study. 
 
Mathematically, discrete minimum time control 
problem for the continuous fermentation processes is: 
- find the control trajectory D k k K( ), ,= −0 1, which 
in minimum time 

tKJ ∆=                                                           (32) 
leads the system 
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from the initial state 
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                  (35)  
to the optimal steady state  
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while satisfying constraints of the type (4) for the 
state and control variables and a constrains for the 
sampling interval 
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µm D s Dk D s k k D− − − + , (37)  
determined on the basis of stability of the discrete 
time model behaviour. In the above problem 
x s x s, , ,0 0  are the biomass, the limiting substrate, 
the inlet biomass and the inlet substrate 
concentrations [g/l], D is the dilution rate ][ 1−h , µm 

is the maximum growth rate ][ 1−h ,Y is the yield 
coefficient [g/g], sk  is the Michaelis-Menten 
parameter [g/l], τ is the time delay [h], Dk  is the 

dead constant ][ 1−h , 00 ,sx  are the initial 

concentrations [g/l], x s,  are the steady state values 

[g/l], Dsx ,,max,min, =ννν , are the bound values of 
variables. The dilution rate is the control signal, the 
biomass and the limiting substrate are the process 
states.  
 
The minimum time problem is solved when the 
number of the steps in the optimization horizon is 
known. The  minimum time problem is transformed 
into a problem for minimizing the value of the 
sampling interval in the limits (37) and it is solved 
using the following augmented functional of 
Lagrange: 
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The coordinating variables are  
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The coordinating sub-problem for ρλ ,  is given by 
the equations (11)-(14), but with a positive step of the 
gradient procedure,  where 
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 and  for t∆ is given by the analytical solution  of the 
necessary condition for optimality of  (38) according 
to   t∆             
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The sub-problems on the first level are calculated by 
gradient procedures 
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where l is an index of the procedures and the 
gradients are 
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1,0 −= Kk , and α is the gradient procedure step. The 
optimal trajectories are given in Fig.3. The minimum 
time is 8.065h. 
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Fig.3. Optimal biomass (a), substrate (b) and control 
(c) trajectories of the continuous fermentation process  

 
 

6.  CONCLUSION 
 
A decomposition method is proposed to solve an 
optimal control problem for processes with high 
dimension, time delays, nonlinearities and singular 
control. The method is based on the augmented 

Lagrange’s functional and on a new coordinating 
vector for its decomposition in time domain.  
 
This method overcomes the difficulties encountered 
in solving the nonlinear two point boundary value 
problem with state and control delays and reduces the 
number of calculations. It is not necessary to 
calculate a singular kind of control trajectory by 
means of boundary layers, because an augmented 
Lagrange’s functional is used. At the same time the 
new coordinating vector allows the dual optimal 
control problem to become separable and the time 
domain decomposition to be obtained based on a 
conjugate variable prediction. The method 
convexifies and transforms a non convex problem 
into one that preserves the separability of the dual 
problem which is necessary for applying the of the 
decomposition approach. In this way the applicability 
of time domain decomposition is extended to non-
convex problems. 
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