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Abstract:  This paper presents a passive robust fault detection and isolation approach 

using non-linear interval observers. In industrial complex systems there is usually 

some uncertainty on model parameters that can be bounded using intervals. A model 

with parameters bounded in interval is known as an “interval model”. Intervals 
observers propagate parameter uncertainty to the residual generating an adaptive 

threshold that allow to robust detect system faults. In order to isolate faults, a bank of 

those observers with a specified fault signature is required. Finally, this approach 

will be applied to detect and isolate some of the faults proposed in an industrial 

actuator used as an FDI benchmark in the European project DAMADICS. Copyright 

© 2005 IFAC 
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1. INTRODUCTION 
 
The problem of robustness in fault detection using 

observers has been treated basically using the active 

approach, based on decoupling the effects of the 

uncertainty from the effects of the faults on the 

residual (Chen, 1999). On the other hand, the passive 
approach is based on propagating the effect of the 

uncertainty to the residuals and then using adaptive 

thresholds (Horak, 1988)(Puig, 2002). In this paper, 

the passive approach based on adaptive thresholds 

using a model with uncertain parameters bounded in 

intervals, also known as an “interval model”, will be 

presented in the context of observer methodology, 

deriving their corresponding interval version (Puig, 

2003b). Moreover, some non-linearities present in 

the real system will be included in the structure of the 

model in order to improve the accuracy of the 

predicted behaviours. This will lead to the design of 

non-linear interval observers that have been already 

proposed for robust fault detection in Stancu (2003). 

In this paper, the integration of such algorithms with 

existent fault isolation algorithms will be presented.   

Finally, a fault isolation case study based on the 

industrial actuator used as FDI benchmark in the 

European project DAMADICS will be used to show 

the effectiveness of the fault isolation capabilities of 

the proposed approach. 
 
2. ROBUST FAULT DETECTION USING NON-

LINEAR INTERVAL OBSERVERS 

 

2.1 Adaptive thresholding 

 

The problem of adaptive threshold generation in 

discrete time-domain using non-linear interval 

observers with a Luenberger-like structure can be 



formulated mathematically as follows: at every time-

instant an interval for the predicted output 

[ ])k(ˆ),k(ˆ yy  (or alternatively, for the residual)  

should be computed subject to: 
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where: x̂ ∈ ℜnx and ŷ ∈ ℜny are estimated state and 

output vectors of dimension nx and ny respectively; g 

and h are the state space and measurement non-linear 

function ; θθθθ is the vector of uncertain parameters of 
dimension p with their values bounded by a compact 

set Θθ ∈ of box type, i.e., 

}|{
p

θθθθΘ ≤≤ℜ∈=  and K is the gain of the 

observer designed to guarantee observer stability for 

all Θθ ∈ . In case that 

 

[ ])k(ˆ),k(ˆ)k( yyy ∈   (2) 

 

holds no fault can be indicated. Otherwise, a fault 

should be indicated.   Fault detection test (2) is 

equivalent to checking if [ ] [ ]ˆ0 ( k ) ( k ) ( k )∈ = −r y y .       

 

2.2 Interval observation as an interval simulation 

 

In order to determine [ ])k(ˆ),k(ˆ yy , observer 

equation (1) can be reorganised as a system with one 

output and two inputs, according to  
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where: [ ]to )k()k()k( yuu = . Then, interval 

observation can be formulated as an interval 

simulation. Existent algorithms can be classified 

according to if they compute the output interval using 

(Puig, 2005): one step-ahead iteration based on 

previous approximations of the set of estimated states 

(region based approaches) or a set of punctual 

trajectories generated by selecting particular values 

of Θθ ∈  using heuristics or optimisation (trajectory 

based approaches).  The first approach assumes 

implicitly that the uncertain parameters are time-

varying. In this paper the second approach is 

followed since uncertain parameters are considered 

time-invariant.  

 

3. NON-LINEAR INTERVAL OBSERVATION 

ALGORITHM 
 

In order to preserve uncertain parameter time-

invariance, a functional relation between states and 

parameters at any time instant k that will relate initial 

and present state is derived. This is possible through 

formulating an optimisation problem that considers 

all the transitions from the initial to the present state 

as it is usually done in formulating an optimal control 

problem. Using this idea the following algorithm is 

proposed (Stancu, 2003): 

 

Algorithm 1. Let )}1k(),...2(),1(),0({ −= yyyyy  

be a measurement trajectory of system (1) and 

assuming that the uncertainty on the initial state is 

such that 0)0( Xx ∈ . At each time step compute 

□ )k(X̂ [ ])k(ˆ),k(ˆ xx= , solving the following 

optimisation problem to determine )k(x̂ : 
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where: )),k(),k(ˆ( 00 θuxg  is the state space 

observer function and [ ]to )k()k()k( yuu = is the 

observer input 
 
And solving again the previous optimisation problem 

substituting min by max to determine )k(x̂ . 

 

The wrapping effect is avoided since uncertainty is 

not propagated from step to step but instead always 

from the initial state. This approach yields the 

accurate time-invariant interval observation without 

any conservatism, assuming that the previous 
optimisation problems could be solved with infinite 

precision and the global optimum could be 

determined (Puig, 2003b). However, in practice it 

only could be solved with a given precision. On the 

other hand, one of the main drawbacks of this 

approach is the high computational complexity of the 

optimisation algorithm since at every iteration an 

additional restriction is added. So, the amount of 

computation needed is increasing with time being 

impossible to operate over a large time interval. The 

length increase problem in the previous approach can 
be solved if the observer is asymptotically stable, as 

it is presented in Stancu (2003). In this case, any 

transients in the observer settle to negligible values in 

a finite-time. Therefore, for any time k, it is possible 
to approximate (6) using a sliding window, starting at 

time k-L and ending at k, where L is the length of this 
window. Of course, the parameter time-invariance is 

only guaranteed inside the sliding window. This is 

why this approach is referred as almost time-

invariant.  Finally, if the observer satisfies the 

isotony property (Gouzé, 2002), the solution of the 



optimisation problems is located in the vertices of the 

uncertain initial state and parameter space  

 

4. FAULT ISOLATION USING A BANK OF 

INTERVAL OBSERVERS 

 

While a single interval observer (residual) is 

sufficient to detect faults, a bank (or a vector) of 

interval observers (residuals) are required for fault 

isolation. Given a set of residuals 

[ ])k(r,),k(r)k( n1 ⋯=r , the theoretical fault 

signature matrix, FSM, can be defined binary 

codifying the presence or not of a variable in every 

residual. This matrix has as many rows as residuals 

and as many columns as variables appearing in the 

residuals. The element ijFSM  of this matrix is equal 

to 1 if its jth variable appears in the expression of the 
ith residual, otherwise is equal to 0. This matrix 

provides the theoretical influence of faults on the 

residuals in the following way: the jth column can be 

associated to fault in the jth variable. If multiple faults 

are considered then number of columns of signature 

fault matrix has to be expanded up to all possible 

combinations that are considered. For each residual 

derived from the corresponding model, a decision 

procedure should be implemented in order to check 

the mismatch between the corresponding model and 

the real observations, using the fault detection 
procedure described in Section 2. The result of these 
tests applied to the whole set of models will be the 

experimental or actual fault signature of the system: 

[ ])k(s,),k(s)k( n1 ⋯=s . Then, fault isolation will 

consist in looking for the theoretical fault signature in 

fault signature matrix that matches with the 

experimental signature. However, in practice to make 
more robust this fault selecting the theoretical fault 

signature with the least distance from the actual fault 

signature refines isolation process. This fault vector 

will indicate the actual fault signature distance to 

every theoretical fault signature allowing to isolate 

faults (Fig. 1). 
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Fig. 1. Fault detection and isolation using a bank of 

interval observers 

5. THE DAMADICS BENCHMARK ISOLATION 

CASE STUDY 

The application example to test the interval observer 

approach to robust fault isolation, deals with an 

industrial smart actuator consisting of a flow servo-

valve driven by a smart positioner, proposed as an 

FDI benchmark in the European DAMADICS 

project. The smart actuator consists of a control 

valve, a pneumatic servomotor and a smart positioner 

(Bartys, 2003). The DAMADICS smart actuator can 

be decoupled in seven components, described by 

their corresponding elementary relations, listed in 

Table 1. 
 

Table 1. List of components of DAMADICS servo-

actuator 

 

Component Elementary Relation 

Pneumatic 

Servomotor 
)F,P(eX vcs1=  

)T,P,P,X(eF 1212vc =  

Control Valve  )T,P,P,X(eF 1213v =  

Position Controller )PV,SP(eCVP 4=  

Electro-Pneumatic 

Transducer 
)P,CVP,X(eP z5s =  

Positioner Transducer )X(ePV 6=  

Chamber Pressure 

Transducer 
)P(eP s7sm =  

Flow Transducer )F(eF v8vm =  

 

Considering the following measured variables:  rod 
displacement (X), servomotor chamber pressure (Ps), 
inlet valve pressure (P1), outlet valve pressure (P2), 
fluid flow controlled by the valve (Fv) and controller 
output (CVP) and using structural analysis 

(Staroswiecki, 2001) four analytical redundancy 

relations can be obtained: 
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The parameters and their intervals of uncertainty of 

such relations are obtained using a set-membership 

parameter estimation approach similar to that 

proposed by Ploix (1999), that guarantees that data 

from free fault scenarios are covered by the interval 

model.   

 
5.1 Dynamic redundancy relations: bank of interval 
observers  
 

Analytical redundancy relations r1 and r2 are dynamic 

relations that will be evaluated through two reduced 

observers: one for the rod displacement and the other 

for the servomotor chamber pressure, that correct 

partially (through observer gain) the estimation using 

measurements. This implies that estimation will also 

be affected by the fault.  



5.1.1 Analytical redundancy relation r1 
 

Analytical redundancy relation r1 is derived using a 
reduced observer for the rod displacement and can be 

formulated as 
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where:  Xx1 =  (the rod displacement), 2

dX
x

dt
=  

(the rod velocity), xK  is the displacement observer 

gain, xm is the rod displacement measurement and 

t∆ is the sampling time being equal to 1 s. 

 

5.1.2 Analytical redundancy relation r2 
 

Analytical redundancy relation r2 is derived a reduced 
observer for the chamber pressure can be formulated 

as 
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where:  s3 Px =  (the pressure in the servomotor’s 

chamber) and a4 mx =  (the air mass) PsK  is the 

observer gain and Psm is the chamber pressure 

measurement coming from the sensors.  

 

5.2 Static analytical interval redundancy relations 
 

Two additional static residuals (r3 and r4) can be 
generated from fluid mass flow and controller output 

equations. 
 

5.2.1 Analytical redundancy relation r3 
 

Analytical redundancy relation r3 is derived using -  
fluid mass flow: 

2
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where: P1m is the measurement of the inlet pressure, 

P2m is the measurement of the outlet pressure and Fvm 

is the measurement of the fluid mass flow 

 

5.2.2 Analytical redundancy relation r4 
 

Analytical redundancy relation r4 is derived using 

controller output: 
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where: CVP is the measurement of the output of the 

controller, SP is the set-point and xm is the 

measurement of the rod displacement. 

 

5.4 Theoretical fault signature matrix 

 

Considering residuals generated by interval observers 
(6) and (7), and by the static analytical redundancy 

relations (8) and (9) the theoretical fault signature 

matrix presented in Table 2 considering the 19 faults 

defined in the benchmark can be deduced. Looking at 

Table 2, it can be noticed that with the considered 

models and measurements not all fault could be 

isolated or even detected. For example, f7, f18, f12 and 

f19 will not be detected and f2 can not be isolated from 

f3, among other. 

 

5.5 Isolation results 
 

Four fault scenarios are considered: a servomotor's 

diaphragm perforation (f10), unexpected pressure 

change across valve (f17), pressure sensor fault (f14) 

and positioner supply pressure drop (f16). Looking at 

Table 2, fault f10 and f14 present the same fault 

signature f1 and f4 . So, in practice they could not be 

isolated. Fault f16 presents the same fault signature 

with the considered residuals than f9. And, finally, 

fault f17 can be isolated since it presents a unique 

fault signature. In the following fault scenarios only 

those residuals that are affected by the corresponding 
fault will be presented because of the lack of space.  

 

5.5.1 Fault f10 (servomotor's diaphragm perforation) 

 

From theoretical fault signature matrix presented in 

Table 2, fault f10 should only affect residual r1 and r2. 

Fault f10 is introduced at time instant 150 s.  From 

Figure 2 and 3, it can be observed that this fault is 

detected by residuals r1 and r2. However, residual r1 

is not as persistent as residual r2 since it only 

indicates the fault presence between 150 and 170 s.  
So, fault f10 only could be isolated in this time 

interval.  

 



 
Fig.2 Residual r1 evaluation under fault f10 
 

 
Fig. 3 Residual r2 evaluation under fault f10 
 

5.5.2 Fault f17 (unexpected pressure change across 

valve) 

 

Fault f17 should only affect residuals r1, r2 and r3 

according to theoretical fault signature matrix 
presented in Table 2.  It is introduced at time instant 

150 s.  From Figure 4, 5 and 6, it can be observed 

that this fault is detected by residuals r1,  r2 and r3. 

However, residual r2 is not as persistent as residuals 

r2 and r3 since it only indicate the fault presence 

between 150 and 180 s.  Therefore, fault f17 only 

could be isolated in this time interval.  

 

 
Fig.4 Residual r1 evaluation under fault f17 
 

 
Fig.5 Residual r2 evaluation under fault f17 
 

 
Fig.6 Residual r3 evaluation under fault f17 
 
5.5.3 Fault f14 (pressure sensor fault) 

 

Fault f14 should only affect residuals r1 and r2 

according to theoretical fault signature matrix 

presented in Table 2. Fault f14 is introduced at time 

instant 150 s.  From Figure 7 and 8, it can be 

observed that this fault is clearly detected by 

residuals r1 and r2. As conclusion, fault f14 only could 

be isolated. 

 
Fig.7 Residual r1 evaluation under fault f14 

 

5.5.4 Fault f16 (Positioner supply pressure drop) 

 

Finally, fault f16 should affect only residuals r2 

according to theoretical fault signature matrix 

presented in Table 2. Residuals r1, r3 and r4 do not 

detect the fault and for the lack of space are not 

included. Fault f16 is introduced at time instant 150 s.  

From Figure 9, it can be observed that is detected by 

residual r2. So fault f16 only could be isolated. 



 
Fig.8 Residual r2 evaluation under fault f14 

 

 
Fig.9 Residual r2 evaluation under fault f16 

 

6. CONCLUSIONS 

 

In this paper, non-linear interval observers have been 

presented as an approach to passive robust fault 

detection and isolation when the monitored process is 

modelled using a non-linear interval model. Interval 

observation has been translated to a couple of 

optimisation problem that provide the interval for the 

observed output (one for the maximum and another 
one for the minimum). Then, the detection test 

consists in checking if the measured output is or not 

inside this interval. A bank of such of observers is 

necessary with a given fault signature matrix in order 

to isolate faults. Interval observers have been applied 

to detect and isolate some of the faults proposed in 

the DAMADICS benchmark providing good results. 
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Table 2. Fault signature matrix 

 
 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

r1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 

r2 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 

r3 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

r4 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 

 


