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Abstract: This paper introduces a new technique to design applicable one-point feedback 
controllers for distributed parameter systems (DPS) with uncertainty. The technique is an 
extension of the Quantitative Feedback Theory (QFT) to DPS, considering spatial 
distribution as another parameter of uncertainty. Working on the classical frequency 
domain, the technique avoids complex double Laplace transforms, partial differential 
equations, etc., but still represents spatial distributed configurations. The paper extends 
the classical QFT performance specifications used in lumped systems by introducing a set 
of inequalities for DPS. An example compares former approaches to the proposed one. 
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1.  INTRODUCTION 
 
Traditionally Automatic Control Theory has dealt 
with ordinary, lumped differential or difference 
equations to model physical systems to be controlled. 
In the last century we witnessed the consolidation, 
successful implementation and validation of diverse 
control methodologies for lumped model systems. In 
fact nowadays most industrial control applications 
have been or were designed using the lumped 
approach. 
 
However we cannot forget that many physical 
systems have an intrinsically distributed nature. 
Large flexible space structures, chemical processes, 
drainage and sewage water networks, etc. are all 
examples of systems involving complex DPS control 
problems. The most significant characteristic of such 
DPS is the fact that the main variables depend on 
both spatial and time variations. As a consequence 
these systems usually have to be modelled by PDEs. 
 
In the last few decades there has been considerable 
progress in understanding the modelling and 
stabilisation of distributed parameter systems. One 
may consult the editorial of the IEEE Trans. Autom. 
Control, Levis ��	 �
! (1987), for a summary. 

Different approaches to the DPS control problem 
appear in Lions (1988), Chen ��	 �
!(1987) and in 
Curtain and Zwart (1995). This last book together 
with the one by Luo ��	 �
! (1999) are excellent 
tutorials of identification and Hinf control of DPS. 
 
Meanwhile, related to the robust control theory QFT 
(Quantitative Control Theory), Horowitz ��	�
! (1989) 
studied both the frequency domain properties of 
discrete control loops for uncertain plants and the 
one-point feedback approach to linear distributed 
systems also studied under the name of boundary 
control since early 1990’s; Chait ��	�
! (1989) showed 
a Nyquist graphical stability criterion for DPS. 
 
Unfortunately, the reported practical applications of 
DPS control theories are but a few. In some way this 
is due to the intrinsic complexity introduced by the 
PDE methodology. In this context, a new technique 
is proposed to design applicable one-point feedback 
controllers for DPS with uncertainty. Working on the 
classical frequency domain, the technique avoids 
double Laplace transforms, PDE, etc., but still 
represents spatial distributed configurations with 
uncertainty. The new technique is an extension of 



QFT to DPS, introducing spatial distribution as 
another parameter of uncertainty.  
 
The paper begins with the problem formulation in 
Kelemen ��	 �
! (1989), stating that the lumped 
problem is a particular case of the distributed one. 
Section three introduces an equivalent general 
homogeneous Pi model for DPS. Section four 
presents a robust QFT control technique for such 
systems. Section five applies the new methodology 
to control an example and compares its results with 
the ones achieved with former approaches (Kelemen 
��	�
., 1989). Finally the last section summarises the 
most relevant ideas of the paper. 
 
 

2.  PROBLEM FORMULATION 
 
Consider a MISO DPS described by linear PDE with 
constant coefficients and the time variable t > 0, 
where Px2x1 is the transfer function between the input 
x1 and the output x2. The DPS and the feedback loop, 
shown in Fig. 1, present a general distribution where 
the sensor, the actuator, the disturbances and the 
control objective are located at different points xs, xa, 
xd and xo respectively.  
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Fig. 1. DPS and Control System	
 
The equations that explain the dynamics of the DPS 
and the control system are, 
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where capital letters denote Laplace Transforms (we 
omit the s variable for simplicity) and 0, /, �, ���, 
��� represent the inputs: reference signal, reference 
disturbances, sensor noise, external disturbances and 
actuator signals respectively. 
 
Substituting Eq. (2) in (3), and the result in Eq. (1), 
the variation of the output -�� due to the inputs is, 
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where the transfer functions depend on the 
controllers 1 and +, the sensor dynamics ., the 
spatial distribution and the distances between the 
sensor, the actuator, the disturbances and the control 

objective through the four transfer functions ���� ��, 
������, ������ and ������. 
 
Remark 1: This model, which represents the 
distributed parameters system, totally agrees with the 
lumped model defined in classical automatic control. 
The case ,�	2	,�	�	,�	2		,� (������ = 	������; ������ = ����

��; ������	=	������) matches the classical lumped system 
with disturbances at plant input. And the case where 
,�	=	,�	=	,�	≠	,� (������ = 1;   ������ = 1; ������ = ������)	
matches the classical lumped system with 
disturbances at plant output. 
 
 

3. GENERAL HOMOGENEOUS DPS MODEL 
 
Generally speaking, the set of differential equations 
describing the dynamic performance of a distributed 
physical system can be formulated in terms of 
3'���$'	4�����
�� ( ) and ������	4�����
�� (�) –see 
for example Takahashi ��	�
. (1970), Dorf and Bishop 
(2000). The 3'���$'	 4�����
�   can represent an 
electrical current, a mechanical force or torque, a 
heat flow rate, etc. The ������	 4�����
�	 4 can 
represent an electrical voltage difference, a 
mechanical linear or angular velocity difference, a 
temperature difference, etc. 
 
When a linear, lumped approximation is used for a 
distributed element, it can be of algebraic type [������
�], or integrated 3'���$'	 4�����
� type 
[ ( )∫= ������ ] or integrated ������	 4�����
� type 

[ ( ) ������� /= ].  
 
In this context, consider the general homogeneous 
case with different locations of both the outputs and 
the inputs points (,�<,� and ,�<,�). ��� and ���  
represent the voltage sources and 51, 52 and 53 
represent the distance between the left end and the 
objective, the objective and the sensor and the sensor 
and the right end. (See Fig. 2). The “impedance per 
meter” [������	 4�����
� / (3'���$'	 4�����
� * 
��������)] is: 
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Fig. 2. DPS and Control System. Pi General Case. 

 
The solution of the configuration of Fig. 2 is obtained 
by applying a well-known electro-technical method -
Bruce Carlson (2000)-,   
 

(4) 
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where, -��, -��  are ������	4�����
�� and ���, ��� are 
the 3'���$'	 4�����
�� respectively. From Eq. (6), 
the four transfer functions of the homogenous Pi 
system are, 
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where, 
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The particular equations describing the effects of the 
inputs over the control objective can be computed 
substituting Eqs. (7) through (10) in Eq. (4).  
 
Remark 2: The closed loop transfer functions have 
the same denominator and depend on the controller 
�, the impedances per meter �1 and �2 and the 
location of the points of the DPS. 
 
Remark 3: Anderson and Parks (1985) present a 
general study which concludes that the lumped 
approximation of a DPS is adequate if the number of 
lumped systems is large enough. In addition, the 
higher the frequency to be considered in the model, 
the larger the number of lumped systems. Once the 
previous conditions are satisfied, the classical control 
theory (stability, controllability, etc) can be applied 
to the equivalent lumped model.  
 
Remark 4: In accordance with the Anderson and 
Parks conditions (1985) the proposed Pi General 
Case introduced in this paper may include more than 
one Pi-element between the relevant points of the 
spatial configuration (xo-xd, xo-xs or xs-xa) depending 
on the dimension of the original DPS problem. 
 
 
4.  ONE-POINT FEEDBACK ROBUST CONTROL 

OF DPS 
 
��������	
���
���
 
The first technique that introduced a quantitative 
synthesis and took into account quantitative bounds 
on the plant uncertainty and quantitative tolerances 
on the closed-loop system response specifications 
was presented by Professor Horowitz (1972) in the 
early seventies: “The Quantitative Feedback Theory” 
(Houpis ������, 2005).  
 

The QFT method uses the well-known Nichols Chart 
(NC) to synthesize (loop-shape) the controller law, to 
reach the desired performance specifications for the 
whole set of plants with uncertainty. It presents a 
two-degree of freedom (2DOF) structure, with a loop 
controller � and a pre-filter � in cascade with the 
feedback loop, as can be seen in Fig. 3 and Eqs. (11) 
through (13).  
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Fig. 3. 2DOF QFT feedback structure. 
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The stability and performance specifications are 
defined in terms of inequalities in the frequency 
domain. They relate the magnitude of the transfer 
functions ��(�ω�) of Eqs. (11) through (13) to some 
expressions δ�(ω�), so that {|��(�ω�)| ≤ δ�(ω�), �ω�∈ Ω�, 
� = 1,2..., ��= 1,2…}. 
 
The plant model is defined taking into account the 
parameter uncertainty of the process for every 
frequency of interest (ω�), that is to say the plant 
uncertainty templates: ℑ �(�ω�)={�(�ω�), ω�∈ Ω�}. For 
a nominal plant �� ∈  ℑ �(�ω�), the QFT methodology 
converts system specifications and model plant 
uncertainty to a set of bounds (Horowitz-Sidi 
Bounds) for every frequency of interest (ω�), which 
have to be fulfilled by the nominal open-loop transfer 
function �� = ��� �. Such a great integration of 
information in a set of simple curves (the bounds) 
allows one to design the controller using only a 
single plant, the nominal plant ��, and shaping the 
resulting open loop function ��. Chait and Yaniv 
(1993) developed an algorithm to compute the 
bounds based on quadratic inequalities (see Table 1), 
simplifying much of the work on traditional manual 
bound computation. 
 
The ωi plant template, ℑ �(�ωi) = {�(�ωi)}, is 
approximated by a finite set of boundary plants 
{�r(�ωi), r = 1,...,m}. Each plant can be expressed in 
its polar form as �r(�ωi) = 
(ωi) ejθ(ωi) = 
∠ θ. 
Likewise the controller polar form is �(jωi) = �(ωi) 
e�φ = �∠ φ. The controller phase φ varies from -2π to 
0. Therefore, for every frequency ωi, the feedback 
specifications {|�k(�ωi)| ≤ δk(ωi), k = 1,...,5} in Table 

(12) 

(11) 

(13) 



1 –Eqs. (14) through (19)- are translated into 
quadratic inequalities: � �2 + � � + � ≥ 0, where �, �, 
� depend on 
, θ, φ and δk. Taking these inequalities 
into account, it is possible to compute the bounds at 
the NC –see Chait and Yaniv algorithm (1993)-, and 
to loop shape the controller afterwards. 
 

Table 1. Lumped systems. H=1. Eqs. (14) to (19) 
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Consider now the MISO DPS described in Fig.1. 
Similarly to Eqs. (11) through (13), the expressions 
that explain the block diagram of Fig. 1 are: 
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2DOF controller � and �; the sensor dynamics � 
and the spatial situation of the sensor, the actuator, 
the disturbances and the control objective 
 

Likewise to Table 1, each feedback distributed 
problem calculated from Eqs. (20) through (23) turns 
into a quadratic inequality problem |�k(jω)| ≤ δk(ω), 
now shown in Table 2. 
 
As in the previous section, the feedback 
specifications {|�k(�ωi)|≤δk(ωi), k=1,...,8} in Table 2 
are translated into quadratic inequalities: ���2 + ��� + 
� ≥ 0. The main difference between classical lumped 
QFT and the proposed distributed QFT is that now 
the sets � not only include parametrical and non-
parametrical uncertainties but also distributed 
uncertainty, in the form of the distance between 
inputs, the distance between outputs and the distance 
between outputs and the boundaries of the lumped 
system. 
 
From these new inequalities it is now easy to 
compute the bounds at the NC as in the previous 
section, and afterwards to loop shape the controller 
for the distributed parameter system. 

 
Table 2. DPS. H=1. Eqs. (24) to (32)  
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a) The controller � cannot totally control the 

dynamic of the disturbance effects at output –
Eq.(4)- when ����� has poles in RHP. 

 
b) Tracking Performance limitation. Due to the 

parameter uncertainty, the objective signal ��� 
may show an offset error. Using a pre-filter � 
the error can be attenuated -Eq. (33)-. 
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5. EXAMPLE 
 
This section explains in more detail the main ideas 
introduced in the paper using the same heat equation 
example illustrated by Kelemen ��� 	��  (1989). 
Kelemen’s PDE model approach to this topic is also 
compared to the Pi Equivalent approach proposed in 
this paper. 
 
The Heat Equation Problem: Let us consider a 
temperature-distributed plant modelled as, 
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where �(���) and υ(���) are the temperature and input 
distribution, respectively. It is assumed that the 
sensor and the actuator point match up, �� = �� = �/2, 
and a disturbance is applied at ��. The example 
shows the design of one feedback loop to meet the 
desired performance specifications at ��= �� = �/4.   
 
The desired performance specifications are: 
 
(a) Stability bounds. They are defined by the most 

restrictive expression of the Equations., 
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(b) Disturbance Rejection bounds. 
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Model calculation: The original paper written by 
Kelemen ��� ��� (1989) shows a irrational transfer 
Eq.(38) that represents the behaviour of the 
distributed parameter heat system by using Laplace 
Transforms of Eq.(34). 
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By taking the equivalent electrical model  of this 
particular heat plant, A=1; r = 1/(kA) =1; c =�CpA=1; 
and solving the resultant system of equations Eq.(6) 
for the 3, 4 and 8 Pi-elements cases, the respective 
groups of rational transfer functions ���������������������

�����, are obtained. Fig.4 shows how the equivalent 
electrical models approximate the irrational Eq.(38).  
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Fig.  4. Bode Diagram of Temperature models. 
(Similar diagrams represent ������������������)  

 
The 8 Pi-elements equivalent model fits very well the 
original DPS. According to Anderson and Parks 
(1985), the approach is valid for the ω, 

rad/s97.12)8//(2)/(2 2 ==< πω �	  , where � and 

	 are the resistance and capacitance per Pi-element 
length. 
 
Design Procedure: The templates are calculated from 
the equivalent transfer functions �������������������������� 

of the 8 Pi elements case. The robust stability and 
disturbance rejection bounds 
(��) are obtained from 
the quadratic inequalities corresponding to Eq. (24), 
(31) and (25) of Table 2.  
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Fig.5. �1 = �
�
�0 �1 , �2 = �
�
�0 �2 on the NC�
�

The nominal open-loop expression is �1 = �1 ������. 
By using a standard loop shaping QFT technique, the 
�1 controller -Eq.(39)- is designed. Fig. 5 shows on 



the NC both loop transfer functions (�1 and �2), with 
the proposed controller �1 and with the Kelemen 
controller �2 -Eq.(40)-. 
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Results: Fig. 6 compares the time responses obtained 
by using both controllers �1 and �2. The results 
show a similar performance of both approaches. 
However, the proposed methodology is simpler, 
deals with model uncertainty and is able to work 
with distributed specifications. 
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Fig. 6 (a) Disturbance ��� and output signals ��� at 
 
= 
� (b) Control signal ��� at 
�= 
�. � = 2. 

 
 

6.  CONCLUSIONS 
 
This paper introduced a new technique to design 
applicable one-point feedback controllers for DPS 
with uncertainty. The technique is an extension of 
the QFT to DPS, considering spatial distribution as 
another parameter of uncertainty. Working on the 
classical frequency domain, this technique avoids 
PDEs, etc., but still represents spatial distributed 
configurations with uncertainty. The paper extended 
the classical QFT performance specifications used in 
lumped systems by introducing a set of inequalities 
for DPS. 
 
To quote Prof. Horowitz (2003) in one of his last 
papers: ���������������������������������������������
�� ���� � !���������"�� �������#� ����� � ���� ����������
������������� ���$�����������������$��������$��������
��������� ��� ��� ����%� ����� ��� �� ����� $����$�������
������%� ���� ��������� � ��� �������� ��$�����������
������&��
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