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Abstract: In this paper, a geometrically intrinsic observer for Euler-Lagrange systems is
defined and analysed. This observer is an generalization of the observer recently proposed
by Aghannan and Rouchon. Their contractivity result is reproduced and complemented
by a proof that the region of contractivity is infinitely thin. However, assuming a
priori bounds on the velocities, convergence of the observer is shown by means of
Lyapunov’s direct method in the case of configuration manifolds with constant curvature.
The convergence properties of the observer are illustrated by an example where the
configuration manifold is the three-dimensional sphere, S3. Copyright(©)2005 IFAC
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1. INTRODUCTION

For a dynamical system, an observer is another dy-
namical system whose task is to reconstruct missing
state information, while only using available measure-
ments.

Consider the nonlinear dynamical system

B ':f(a)
Z'{Zzh(zz,;)

with state z € Z , control u € U/ and outputy € ).
Here, Z,U and Y are smooth manifolds. All mappings
in this paper, are assumed to be smooth.

Definition 1. (Observer). A dynamical system with
state manifold W, input manifold ), together with
a mapping F : (W x Y) - TW s an observer
for the system X, if there exists a smooth mapping
¥ : Z — W, such that the diagram shown in Figure 1
(the dashed arrow excluded), commutes. The observer
gives a full state reconstruction if there is a mapping

Z : (W x Y) — Z such that the full diagram in
Figure 1 is commutative ( cf. (Van der Schaft, 1985)
and (Thau, 1973)).
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Fig. 1. Commutative diagram defining an observer.

In diagram 1, ¥, denotes the tangent mapping, = is
projection upon a cartesian factor, while 7 denotes the
projection of the tangent bundle.

According to definition 1, the objective when design-
ing a general observer, is to track ¥(z), rather than
z itself. The special case when ¥ equals the identity
mapping and W = Z, is often referred to as an



identity observer. Also, note that the same observer
dynamics, F, may allow several different full observer
mappings, Z, and that in general, a full state observer

g [ =Flwy)
2= Z(w,y)
may not be put in the form z = 2(2, y).
As a consequence of this definition, an observer has
the following property:

Property 1. w(to) = U(z(to)) at some time instance
to, yields w(t) = ¥(z(t)) for all t > to.

It is also reasonable to require the stronger property:

Property 2. As time proceeds, the trajectories w(t)
and ¥(z(t)) should converge® for every input.

This second property, i.e. the convergence properties
of the observer, may be demonstrated in different
ways. If G is a Riemannian metric on W, whose Lie
derivative along the vector field F, is negative for
every input, y, (LG < 0), then the Riemannian
distance between any two trajectories tends to zero
(c.f. (Lohmiller and Slotine, 1998)). This is a property
of the control system W alone. In conjunction with
property 1, this implies property 2. More precisely, we
have that

d / / dz dz
— ds = L;G ds,
dt <I’}__P0 <1>;:_po 2 ( )( dS dS )

soif LG <0, then
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Fig. 2. The length of the geodesic curve p;, between
two trajectories decreases if (£ G < 0).

However, the assumption that the observer dynamics
is contractive, is very restrictive and in most cases,
property 2 has to be shown by means of a common
Lyapunov function for (Z x W x U).

In this paper, we study the observer design problem
for a class of nonlinear systems, viz. Euler-Lagrange
systems, where we assume that the output of the sys-
tem is the generalized position and force, and that we

1 “Convergence” in some metric sense, or — for relatively compact
trajectories — in a purely topological sense.

want to reconstruct the generalized velocities.

The Euler-Lagrange equations are intrinsic and may
be written in a coordinate-free way (Hamberg, 2000).
It is natural to keep this coordinate independence in
the observer design as well. The Riemannian geomet-
ric point of view has influenced part of control theory,
e.g. optimal control and control design. However, the
impact on observer design, have been modest.

In (Aghannan and Rouchon, 2003), the authors suc-
cessfully adopt the formerly mentioned contraction
analysis approach to address convergence of an intrin-
sic observer for Euler-Lagrange systems with position
measurements. These results have been specialized to
the case of left invariant systems on Lie groups in
(Maithripala et al., 2004). In the present paper, we
extend the results of (Aghannan and Rouchon, 2003)
by using Lyapunov theory to show convergence in
the constant curvature case, whenever we have a pri-
ori given bounds on the state variables. In the case
of physical (mechanical or electrical) Euler-Lagrange
systems, this assumption is a realistic one.

The organisation of this paper is as follows. Section 2
is devoted to introducing some preliminary concepts
of tangent bundle geometry (Section 2.1) and Euler-
Lagrange systems (Section 2.2). The design of the
observer is the subject of Section 3, while Section 4
is devoted to the convergence properties of it. Finally,
these properties are illustrated in Section 5, where we
present some simulation results.

2. PRELIMINARIES
2.1 Tangent Bundle Geometry

This paper assumes a previous knowledge of classical
tensor analysis as well as familiarity with coordinate-
free concepts like tangent bundle, Lie derivatives and
affine connections (consult e.g. (Lovelock and Rund,
1989) or (Abraham and Marsden, 1978) ). Throughout
the paper, Einstein summation convention is used,
partial derivatives are indicated with a comma, U ;

a U while covariant derivatives are indicated W|th a
bar, F; = F*; + T}, F*. If g;; are the components
of a Riemannian metric, g% denotes the components
of the dual (“inverse™) metric, and the components of
the Levi-Civita connections (the Christoffel symbols)
are given by T, (z) = 39" (gijk + grtj — gjk,1)-
By grad U, we mean the vector field g“/U ;2. The
curvature tensor, R, is defined by

R(X,Y)Z = (VxVy — VyVx — Vix,y])Z.
With the index ordering conventions from (Lovelock
and Rund, 1989), R has components R.*;, 9
R(%&+,2+)%5 so that

szk - ij,k: F;nk ,J + Fz kr Flnjrfnk7
and the Ricci identity,
Y =Y e = BV @



holds. (It holds whenever the connection is torsion-
free.)

We now review some less well-known constructions,
namely lifting geometrical structures on a manifold X’
to geometrical structures on its tangent bundle, TX
( c.f. (Yano and Ishihara, 1973)). Let z be local co-
ordinates on X’ and (z,v) the corresponding induced
coordinateson T X.

The vertical lift of a vector field Y = Y"% on X, is
the vector field on TX givenby YV = V4.

The horizontal lift of Y depends on the choice of a
connection and is the vector field on TX" given by

i( 0 o]
YR =Yi(§ - Tl =) . ]
The geodesic spray is a vector field Z on TX,
uniquely constructed from a connection V on X" as

v
— 8 _Ti ,G.kd
Z=v'gx I‘jkv v Zor

If ¢ is a differential form on X', 7*¢ denotes its pull-
backto T'X. A differential 1-form ¢ on X, also defines
a scalar function I(¢) on T'X given by I(dz?) = v¢
(This notation is not standard. The letter I stands for
identification, since a covector ¢, in a sense, already is
a function on the tangent vectors). The T construction
extends to higher order tensors.

The vertical and horizontal lifts, as well as the
geodesic spray are in fact characterized by their ac-
tions on special functions on T X

O] _©7 [ 1@pH

XE | (X ()| 1(Vxdf)
x| o [rEw)
z | 1df) | 1(vdf)

(here I(Vdf) = f;;v"v?). Expressions for the
bracket between the vector fields are listed in Table 1.

v

['a ] \ YV 4
X2 X YE | (Vx| I((R(,X) - VX))V
xV | —[YH XV 0 X _(vx)V

v v v

4 —[YHE, 7] -V, z] 0

Table 1. Brackets of the lifted vector fields.

Given a Riemannian metric, g, on X, there is a family
of natural metrics on T' X’ given by

GXE+YVXxH4yY)=
™ (ag(X, X) + bg(Y,Y) + 2¢c9(X,Y)),

where a, b and c are constants, or in general, functions
of g;;v'v?. Thecase a = b = 1 and ¢ = 0, was studied
in (Sasaki, 1958). The generalized Sasaki metric reads

. .T .
dz* ac dz’
o= w500 [50]
where Dv? = dv’ 4 T, v/ dz*. Here, [dz?, Dv'] is the
o Hp V

zi 7 Ozt ]

coframe dual to the frame [

At the origin of a geodesic normal coordinate system,
the Lie derivatives of the coframe, equal

Tdzi] [ 0 ]0] rda?
Ly | D' | Yi;[0 [DUJ'_ @)
fdef] [ Y 0] [dmj]
Lyu il = - ;
_D’U ] Rkljl ,Uk: Yl 0 Dv
o [det] [0 [8i] [da
% _D’Ui_ - Rkijl ’Uk vl 0 D’Uj
[da® ]
Liren)Y | pyi | =
_ 0 | 0 [dxj]
(B a¥"))5 0 vm‘(Rj’kl—}-Rkijl)Ylvk D[

2.2 Euler-Lagrange Systems

An Euler-Lagrange system is a dynamical system with
state space Z = T'X, the tangent bundle of a configu-
ration manifold, X'. The dynamics is given by

d (8L) oL
At ovi) oz T4
where L(z,v) = Lg;;j(z)viv? — U(z), is the La-
grangian. Here, g;; is a Riemannian metric on X and
the external forces may be interpreted as the input. We
further assume that we have direct measurements on
the position variables and forces. Combining this with
the expression for the Lagrangian, the system can be
written, in local coordinates, as

it =, i=1,...,n
Yo:4 0 = —F;-k(x)vjvk —g7U; + F*
y = h(z,v,F) = (z, F).

j:z — ,Uz EJ

7

In terms of the absolute time-derivative, D, vt = jT”i +

. . k - -
Lpv? jti, system X4 can equivalently be written as

it = ot
¥ :{ D' = —g¥U; + F
Yy = (:U,F)

Using the introduced lifting operations, the dynamics
of system X, is given by the vector field

‘7—" =7 —(gradU)" + FV‘

3. OBSERVER DESIGN

For the class of systems, 3, described in Section 2.2,
we now introduce a full state identity observer, X.

Referring to Figure 3, we let (£,7) denote the state
of the observer, S(z,¢) = 3dist(z,€)*, S = &5
and R* = I(R(-,gradS))* = R, n°S7n", where
R,® ., is the curvature tensor. In addition, ®* denotes



the parallel transport of F'* along the geodesic curve,
p, from z to £ The parallel transport operator, K¢,
has the following properties, which are easily verified
in Fermi coordinates:

K} 3S° =0. (3)
K.5%=-§' 4)
K K}g™ =g 5)

Fig. 3. The system- and observer variables, are de-
noted by latin and greek letters respectively.

Upon introducing this notation, the following observer
dynamics is suggested for X:

£ =0 — Ag™’ S,
Din® = —Bg*?Ss — g*PU s + CR* + 3>, (6)

a=1,...,n

where A, B and C are observer gains, possibly de-
pending on S and |n|,. Note that when §{ = =, then
Sg=0and Ki =g (the Kronecker delta), hence (6)
satisfies the diagram property of definition 1.

As observer output mapping, Z, we may for instance
use Z1 = (£%,n%), or Zo = (x*, Kin®). Choosing the
latter approach, the velocities, v?, are estimated as

ot = Kyn® ()

Thus, putting (6) and (7) together, the following ob-
server, ¥, is suggested for 3

£ = — Ag*’Sy
$:4 D* = —BgaBSB—gaBU,B-FCRa-F(I)a

A7 1,
U_Kan

Using the introduced lifting operators, the dynamics
of the observer is governed by the vector field

F = 7 —A(grad S)¥ — B(grad 5)"
—(gradU)¥ + CR + @V

where R=R*2_ =[(grad S)", ] +I(V(grad S)%)Y,
in accordance W|th Table 1. In the case of flat metric,
¥ reduces to the well-known Luenberger observer.

The observer %, is essentially the same as the one in-
troduced in (Aghannan and Rouchon, 2003), see also
(Maithripala et al., 2004). We here allow the observer

gains to vary and have a choice of moving force terms
between U and F', which are treated differently in
our observer. This latter freedom will however not
be exploited in the present paper. In Section 4.3, we
follow (Aghannan and Rouchon, 2003), by choosing
C =1 and the output mapping Z1, while in Section 4.4
we use a general C and Zs.

4. CONVERGENCE ANALYSIS

In this section, convergence issues are treated by
means of contraction analysis (Section 4.3) and, in the
case of constant curvature, by means of a conventional
Lyapunov method (Section 4.4). To this end however,
we devote Section 4.1 and 4.2 to deriving expressions
for the variation of some quantities along a geodesic.

4.1 Transport Equations

Letting S = g*% S5, the Hamilton-Jacobi equation
01a0ig9* =1, for o = /23, implies

SaS* —25=0, (8)
Taking the covariant derivative of (8), utilizing the fact

that the connection is torsion-free (S, )3 = Szq) and
raising the first index, we have

sﬁ‘asa - S8 =0. (9)
Then, combining (4), (3), (8) and (9), it follows that
5487 =5 =0. (10)

By taking the covariant derivative of (9) and utilizing
Ricci’s identity (1), we get?2

B o B L @ ﬁ (e}
S maS = S - R, MS S* -8 ‘aS Iy (11)
In a similar fashlon we obtain
K;3|’Y|QS Rﬁ MKQS"‘ + K}a‘aSah. (12)

It should be possible to derive Gronwall-like estimates
of S and K’| from (11) and (12). In the present
paper, %owever we focus on spaces of constant curva-
ture.

4.2 Constant Curvature

In the case when X’ has constant curvature, i.e. when
RL/BQ"’/ = H‘((S’egba - 659&7)5 (13)
equation (11) may be explicitly solved for S”_ by
means of the Ansatz 3
SP., = T1(8)62 + Y2(5)SS,. (14)

2 Equation (11) is equivalent to “the radial curvature equation” in
(Petersen, 1998).
3 This form also follows from a symmetry argument.



Equation (9) then immediately yields that YT, +
257, = 1. Substituting this back into (11), it reads

(28T} + 25K+ Y7 — T1)(6F — 1 g8 ) =

25
from which we obtain
V2kS cot V2kS ifk >0
T.(S)=<1 ifk=0

V2|k|S coth \/2||S if kK < 0.

The formulas when k < 0, are the analytical continu-
ation of the formula when k > 0. In the sequel, only
the k > 0 form is given.

Considering the parallel transport operator, we make
the Ansatz (c.f. footnote 3)

= T3(S)Si|a + Y4(89)S!S,. (15)
From (4), (10) and (15), we obtain T3+25Y, = 1.
Substituting this back in (15) and utiIizing (3), we get

ngsﬂ (28T5+ 03— T371) (S, — ﬁS’S o) = 0.

Solving for Y5(.S), we arrive at the final expression

Ki _sin \/ZASS,- 3 V2kS — sin ZASSiS
a7 VoS e (V2kS)3 “

We differentiate this expression w.r.t. €2, and by using
the earlier expressions (14) and (15), we obtain

Kl = T(S)(lsigaﬁ + KjSa),
V2 16
Y(S) = A g V2ES (16)
V2kS
By manipulating (16), with the roles of z

versed, we also obtain
KKy =K K =1(S)(Sgkm — 6,55).
17)

and ¢ re-

4.3 Contraction Theory

Let A, B and C be constants. Then the computations,
when examining whether £ G is negative definite or
not, can be done component-wise, that is

L:]:-G = E%G — A‘C(gradS)WG — B‘C(gradS)VG — ...
Using the formulas (2), we arrive at
L:G = [dfa] ®M[d§ ] (18)
Dn 77
where the matrix
_f[(ac Mag Naﬁ Mga Pﬁa a c
M_<C b)( Pogp Qa6)+(N3a Qpa )\ cb)’

has components given by

Map=—AS, 5
Naﬁ =9gap
Qop = C(Rpay. + Ryap)S'n"

Paﬁ = Yaﬁ'yLn’ynL + AR'yaBLn’YSL - Bsa\ﬁ
—UVa|8 + gmnFng\B,

with Ya,B'yL = (RryaﬁL - C(R'yaeuse)\ﬁ)'
In the case when we set C' = 1 and S = 0, we have,
Salp = 9ap, S* =0and K7, 5 = 0, and M becomes

—2(aA + cB)gap — 2¢Uss Dag

M= Dup 2cgap

where Dog = (a — bB — cA)gop — bUy . From
this it is possible to derive conditions for contractivity.
When U = 04, the observer dynamics is contractive
for suitable a, b and ¢. This is in accordance with the
results in (Aghannan and Rouchon, 2003). However,
whenever S > 0 and Y,g,,n7"n* # 0 for some 5, then

2a b
M= [bao] Yagy'n* + O(),

so, for n large enough, £ ;G is indefinite since the
matrix preceding Y,5,,m7n" is. Hence, the contracting
neighborhood of the set S = 0 shown in (Aghannan
and Rouchon, 2003), is infinitely thin as |n|, — oco.

4.4 Lyapunov Approach

We now investigate the convergence of 3, in the case
of constant curvature. We also put U = 0 and let B be
a constant. For the Lyapunov function candidate

1 , ,
V(Z’,’U,g,ﬁ) = EgijAlevJ + BS(.Z’,f),

where Av? = (v — %), the total derivative becomes

V =gi;Av (D! — Dyi?) + BSii' + BSa£%,

along the system dynamics of ¥ and . Here,

Dtﬁszjlkvkna + Kiwéﬂna + Kg;Dtna

=K] v+ K, 871+ BSI+ FI+ CK}R".

From (13) and (17) it follows that

KIR® = kXY~Y(S)K? K2oko™.

alk
With C = —2k17(S), the total derivative becomes

V =—2ABS — Y(S)(gkmSi — gjmSk)0™ Av' Av*,

where we have used (3), (8) and (17).

Theorem 1. If it is known that sup, |v(t)|y < Umax »
the injectivity radius of the manifold is greater than
p everywhere, A > V2B 1S 3|T(S)|(Vmax +
Inlg)?Inlg, B > (*max)* and C' = —2x~'Y(S), then
the observer 3 initiated at £(0) = z(0), n(0) = 0
converges.

4 It is always possible to move terms between U and F.



5. EXAMPLE

Let X be the unit 3-sphere parametrized by z1,22 €
[0,7] and z3 € [0,2x]. This is a space of constant
curvature k = 1. The metric is given by

1 0 0
g,= 10 sin? 4 0
0 O sin? T sin? To

which implicitly gives the distance function, .S, as

cosV2S = cosxy coséy +

sin z1 sin & [cos x2 cos €3 +cos(z3 —E&3) sin x2 sin &

The exterior forces, F', are given by —grad W, where
W = sinz; coszacoszs and U = 0. We define an

3 i — 148 —
observer Y by the choices A = 3m, B =3
and C = —1. Figure 4 show the convergence of the

observer when the initial data are
X1 (0) = 51 (0) =1 1)1(0) =2.25 @1 (0) =0
.’L'Q(O) = 52 (0) =0.7 1)2(0) =1.25 @2(0) =0
z3(0) = &(0) = 2 3(0) =4 3(0) = 0.

<

t

2 4 6 8 10

Fig. 4. The solid line refers to the original system,
while the dashed line represents the observer.

Similar simulation results have also been obtained in
the cases of the hyperbolic plane (constant negative
curvature) and the inverted pendulum on a cart (zero
curvature).

CONCLUDING REMARKS

The observer presented in this paper, requires the
explicit computation of the distance function, S, as
well as the parallel transport operator, K, which is
prohibitive unless the configuration manifold is ex-
tremely simple, e.g. manifolds of constant curvature,
Lie groups (c.f. (Maithripala et al., 2004)) etc. For
more general spaces, schemes of approximation are
called for (c.f. (Aghannan and Rouchon, 2003)). This
is a topic of current research.

REFERENCES

Abraham, R. and J.E. Marsden (1978). Foundations of
Mechanics. Addison-Wesley.

Aghannan, N. and P. Rouchon (2003). An intrinsic
observer for a class of Lagrangian systems. IEEE
Trans. Automat. Control 48(6), 936—945.

Hamberg, J. (2000). Controlled lagrangians, symme-
tries and conditions for strong matching. In: La-
grangian and Hamiltonian methods for nonlin-
ear control (N.E. Leonard and R. Ortega, Eds.).
pp. 62—67. Elsevier.

Lohmiller, W. and J.J.E. Slotine (1998). On contrac-
tion analysis for non-linear systems. Automatica
J. IFAC 34(6), 683—696.

Lovelock, D. and H. Rund (1989). Tensors, Differ-
ential Forms, and Variational Principles. 2 ed..
Dover Publications. New York.

Maithripala, D.H.S., J.M. Berg and W.P. Dayawansa
(2004). An intrinsic observer for a class of Sim-
ple mechanical systems on a lie group. In: Pro-
ceedings of the 2004 American Control Confer-
ence. pp. 1546-1551.

Petersen, Peter (1998). Riemannian geometry. \Vol.
171 of Graduate Texts in Mathematics. Springer-
Verlag. New York.

Sasaki, S. (1958). On the differential geometry of tan-
gent bundles of Riemannian manifolds. Téhoku
Math. J. (2) 10, 338—354.

Thau, F.E. (1973). Observing the state of non-linear
dynamic systems. International Journal of Con-
trol 17, 471-479.

Van der Schaft, A.J. (1985). On nonlinear observers.
IEEE Transactions on Automatic Control AC-
30(12), 1254-1256.

Yano, K. and S. Ishihara (1973). Tangent and cotan-
gent bundles. Pure and Applied Mathematics.
Marcel Dekker. New York.



