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Abstract: Robust stability is considered for uncertain discrete-time systems with
time-varying delays from given intervals. A new construction of Lyapunov-Krasovskii
functions (LKFs), which has been recently introduced in the continuous case, is
applied: to a nominal LKF, which is appropriate to the system with nominal delays,
terms are added that correspond to the system with the perturbed delays and that
vanish when the delay perturbations approach 0. The nominal LKF is chosen in
two forms: the descriptor type and the ’exact’ one. The delay-independent result is
derived via Razumikhin approach. The advantage of the new tests is demonstrated
via illustrative examples. Copyright C 2005 IFAC

Keywords: time-varying delay, discrete systems, Lyapunov-Krasovskii method,
norm-bounded uncertainties.

1. INTRODUCTION

Stability and control of continuous-time linear sys-
tems with delays have been studied by many au-
thors (see e.g. Li & de Souza (1997), Kolmanovskii
& Richard (1999), Niculescu (2001), Fridman
(2001), Fridman & Shaked (2002) and the refer-
ences therein). Delay-independent and, less con-
servative, delay-dependent sufficient stability con-
ditions in terms of Riccati or linear matrix inequal-
ities (LMIs) have been derived by using Lyapunov-
Krasovskii functionals or Lyapunov-Razumikhin
functions. Delay-dependent conditions are based
on different model transformations. The most re-
cent one, a descriptor representation of the system

Fridman (2001), minimizes the overdesign that
stems from the model transformation used. The
conservatism that stems from the bounding of
the cross-terms in the derivation of the derivative
of the Lyapunov-Krasovskii functional has also
been significantly reduced in the past few years.
An important result that improves the standard
bounding technique has been proposed in (Moon
et al., 2001).

Less attention has been drawn to the correspond-
ing results for discrete-time delay systems (Verri-
est & Ivanov, 1995), (Kapila & Haddad, 1998),
(Song et al., 1999), (Mahmoud, 2000), (Lee &
Kwon, 2002), (Chen, Guan & Lu, 2003). This is



mainly due to the fact that such systems can be
transformed into augmented systems without de-
lay. This augmentation of the system is, however,
inappropriate for systems with unknown delays or
systems with time-varying delays (such systems
appear e.g. in the field of communication net-
works).

For the case of ’small’ delay from [0, µ] the delay-
dependent conditions were derived in (Lee &
Kwon, 2002) and (Chen et al., 2003) by apply-
ing the discrete counterparts of the methods de-
veloped in (Moon et al., 2001) and Fridman &
Shaked, 2002) correspondingly. The case of un-
certain ’non-small’ time-varying delay, where the
nominal delay value is non-zero and constant,
has been recently considered in (Xu & Chen,
2004). A Lyapunov function has been used there
with a ’nominal’ part that corresponds to delay-
independent stability of the nominal system (with
a nominal value of the delay). Thus, the nec-
essary condition for the feasibility of the LMIs
derived in (Xu & Chen, 2004) for stability is the
delay-independent stability of the nominal system,
which is very restrictive.

For continuous systems with uncertain non-small
delay a new construction of the LKF has been
introduced recently (Fridman, 2004): to a nominal
LKF, which is appropriate to the nominal system
(with nominal delays), the terms are added which
correspond to the perturbed system and which
vanish when the delay perturbations approach 0.
In the present paper we apply such construction of
LKF to the discrete case. We consider both, the
descriptor type and the exact nominal LKF and
derive LMI conditions for robust stability.

The delay-independent conditions are derived via
Razumikhin approach. Examples are given that
show that our conditions are less conservative than
those that have appeared in the literature.

2. ROBUST STABILITY

We consider the following unforced discrete-time
state-delayed system

x(k + 1) = (A+H∆(k)E)x(k)
+(A1+H∆(k)E1)x(k − τ(k)),
x(k) = φ(k), −h− µ2 ≤ k ≤ 0

(1)

where x(k) ∈ Rn is the state vector, τ(k) is a
positive number representing the delay τ(k) =
h + η(k) with the nominal constant value h > 0
and a time-varying perturbation η(k) ∈ [−µ1, µ2],
h ≥ µ1 ≥ 0, µ2 ≥ 0. Matrices A, A1, H, E and
E1 are constant and ∆(k) ∈ Rr1×r2 is a time-
varying uncertain matrix satisfying the following
inequality:

∆(k)T ∆(k) ≤ I. (2)

2.1 Lyapunov-Krasovskii method for discrete systems
with delays

Denoting

y(k) = x(k + 1)− x(k) (3)

and taking into account that

x(k − τ(k))=x(k − h)−
k−h−1∑

j=k−h−η(k)

y(j)

we represent (1) in the following descriptor form:

x(k + 1) = y(k)+x(k),
0 = −y(k)+(A + H∆E − I)x(k)
+(A1 + H∆E1)x(k − h)

−
k−h−1∑

j=k−h−η(k)

(A1 + H∆E1)y(k),

(4)

x(0) = φ(0),
y(0) = (A + H∆E − I)φ(0)
+(A1 + H∆E1)φ(−τ(0)),
y(k) = φ(k + 1)− φ(k), k = −h− µ2, ...,−1.

(5)

Thus, if x(k) is a solution of (1), then {x(k), y(k)},
where y(k) is defined by (3), is a solution of (4),
(5) and vise versa.

Lemma 1. If there exist positive numbers α, β

and a continuous functional

V (k) = V (x(k−h), ..., x(k), y(k−h−µ2), ..., y(k−1))

such that

0 ≤ V (k) ≤ β max{ max
j∈[k−h−µ2,k]

|x(j)|2,

max
j∈[k−h−µ2,k−1]

|y(j)|2},

∆V (k) ∆= V (k + 1)− V (k) ≤ −α|x(k)|2,

(6)

for x(k) and y(k) satisfying (4), then (1) is asymp-
totically stable.



We suggest to construct the LKF for (4) in the
form of

V (k) = Vn(k) + Va(k), (7)

where

Va(k) =
µ1−1∑

m=−µ2

k−1∑
j=k+m−h

y(j)T Ray(j),

0 < Ra.

(8)

Similarly to the continuous-time case, we intend
to construct the nominal Lyapunov function Vn

which corresponds to (4), where η(k) = 0 in two
forms: 1) the form of ’descriptor type’ as consid-
ered in (Chen et al., 2003), 2) the form of the exact
(the discrete counterpart of the ’complete’ LKF)
Lyapunov function. Unlike the continuous-time
case (see Kharitonov & Zhabko, 2003), (Fridman,
2004b) and references therein), the exact Lya-
punov function may be easily found by represent-
ing the nominal system (4) (with η(k) ≡ 0) in the
form of an augmented non-delay descriptor sys-
tem. However, this may lead to high-dimensional
LMIs. To derive a reduced-order LMIs we will
consider the descriptor type Vn.

2.2 The case of descriptor type nominal LKF

The nominal LKF (which corresponds to (4) with
η(k) = 0, H = 0) is given by (see e.g. Chen et al.
(2003)):

Vn(k) = xT (k)P1x(k)

+
−1∑

m=−h

k−1∑
j=k+m

y(j)T Ry(j)

+
k−1∑

j=k−h

x(j)T Sx(j), P1 > 0, R > 0, S > 0.

(9)

The nominal system is asymptotically stable if
there exist n×n matrices 0 < P1, P2, P3, S, Y,

Z1, Z2, Z3, R such that the following LMIs are
feasible

Γn =

 Ψn+hZ PT

[
0

A1

]
− Y T

∗ −S

 < 0,[
R Y

∗ Z

]
≥0,

(10)

where

P =
[

P1 0
P2 P3

]
,

Y = [Y1 Y2], Z =
[

Z1 Z2

∗ Z3

]
, i = 1, 2,

Ψn =PT

[
0 I

A− I −I

]
+

[
0 I

A− I −I

]T

P

+
[
S 0
0 hR + P1

]
+

[
Y

0

]
+

[
Y

0

]T

,

(11)

We obtain:

Lemma 2. Eq. (1) with ∆ ≡ 0 is asymptotically
stable for 0 ≤ h−µ1 ≤ τ(k) ≤ h+µ2 if there exist
n×n matrices 0 < P1, P2, P3, S, Y1, Y2, R and
Ra > 0 that satisfy the following LMI:

Γ1 =

 Ψ P
T

[
0

A1

]
− Y

T
µP

T

[
0

A1

]
hY

T

∗ −S 0 0
∗ ∗ −µRa 0
∗ ∗ ∗ −hR

<0, (12)

where µ = max{µ1, µ2}, Y and Ψn are given by
(11) and

Ψ = Ψn +
[

0 0
0 (µ1 + µ2)Ra

]
. (13)

Proof. We find when ∆V (k) is strictly negative.
The difference ∆Vn(k) along the trajectories of the
nominal system satisfies the following inequality
(Chen et al., 2003):

∆Vn(k) ≤ ξT (k)Γnξ(k), (14)

where Γn is given by (10a) and

ξ(k) = col{x(k), y(k), x(k − h)}, (15)

provided (10b) is satisfied. Note that along the
trajectories of (4)

xT (k + 1)P1x(k + 1)− xT (k)P1x(k)
= 2xT (k)P1y(k) + yT (k)P1y(k)

= 2x̄T (k)PT

[
y(k)

0

]
+ yT (k)P1y(k)

= 2x̄T (k)PT×

×
[

y(k)
−y(k) + (A− I)x(k) + A1x(k − h)

]
+yT (k)P1y(k) + δ(k),

(16)

where x̄(k) = col{x(k), y(k)},

δ(k) = −2x̄T (k)PT
k−h−1∑

j=k−h−η(k)

[
0

A1

]
y(j),

while along the trajectories of the nominal system
with τ(k) ≡ h gives (16) with δ(k) ≡ 0.



Applying the standard bounding of δ and Schur
complements, we find

∆V (k) ≤ ξ1(k)T (Γ1

+diag{hZ, 0, 0, 0})ξ1(k),
(17)

where ξ1(k) = col{ξ(k), y(k), 0}. From (10b) it
follows that Z ≥ Y T R−1Y . Replacing therefore
Z in (17) by Y T R−1Y it is obtained that (12)
implies ∆V (k) < 0 and the asymptotic stability
of (1). 2

We have thus proved the following:

Theorem 3. Consider (1), where 0 ≤ h − µ1 ≤
τ(k) ≤ h+µ2. This system is asymptotically stable
if there exist n×n matrices 0 < P1, P2, P3, S,

Y1, Y2, R, Ra and a scalar ρ0 that satisfy
Γ1


P

T
2 H

P
T
3 H
0
0
0

 ρ0


E

T

0

E
T
1

µE
T
1

0


∗ −ρ0I 0
∗ ∗ −ρ0I

 < 0, (18)

where µ = max{µ1, µ2}.

2.3 Augmentation and descriptor nominal LKF

In the case when the non-delayed system is not
asymptotically stable or h − µ1 is not large, we
represent (1) in the form of the augmented system

ζ(k + 1) = (A+H∆(k)E)ζ(k)
+(A1 +H∆(k)E1)ζ(k − µ1 − η(k)),

(19)

where

ζ(k) =


x(k −h +µ1)
x(k−h +µ1−1)
...

x(k)

 , H =


0
...

0
H

 ,

A =


0 In ... 0
... ... ... ...

0 0 ... In

0 0 ... A

 , A1 =


0 0 ... 0
... ... ... ...

0 0 ... 0
A1 0 ... 0

 ,

E = [0 0 ... 0 E], E1 = [E1 0 ... 0].

(20)

Note that for µ1 = 0, the nominal system (19),
where η(k) ≡ 0 and ∆ ≡ 0, has no delay and
the nominal exact Lyapunov function Vn(k) =
ζT (k)P1ζ(k) should be used. This is different from
the continuous case, where the exact (complete)
LKF has a complicated form and leads to compli-
cated robust stability conditions (Kharitonov and
Zhabko, 2003).

In the general case of µ1 ≥ 0 we apply Theorem 1
to (19), where h = µ1, and obtain the following:

Theorem 4. Consider (1), where 0 ≤ h − µ1 ≤
τ(k) ≤ h + µ2. This system is asymptotically
stable if there exist (h − µ1 + 1)n× (h − µ1 +
1)n matrices 0 < P1, P2, P3, S, Y1, Y2, R, Ra

and scalars ρi > 0, i = 0, 1 that satisfy (18)
with µ = max{µ1, µ2} and h = µ1, where A,A1,
E,E1 and H should be changed correspondingly
to A,A1, E , E1 and H.

2.4 Augmentation and discrete descriptor Lyapunov
function

We consider µ1 = 0 and ∆ = 0. To reduce the size
and the number of the decision variables by the
previous augmented method, we consider h ≥ 1
and the state vector ζ = [ζ1 ...ζh+1]T given by (20).
Defining y(k) = x(k + 1− h)− x(k− h) = ζ2(k)−
ζ1(k) and representing (1) in the form

x(k + 1) = Ax(k) + A1x(k − h)

−A1

k−1∑
j=k−η(k)

y(j), (21)

we obtain the following descriptor form:

Eζ̄(k + 1) = Adζ̄(k) +A1

k−1∑
j=k−η(k)

y(j),

E = diag{I(h+1)n, 0n×n}, ζ̄(k) =
[

ζ(k)
y(k)

]
,

Ad =



In 0 0 ... 0 In

0 0 In ... 0 0
... ... ... ... ... ...

0 0 0 ... In 0
A1 0 0 ... A 0
−In In 0 ... 0 −In


,

A1 = −
[
0 0 ... 0 AT

1 0
]T

.

(22)

We construct the LKF for (4) in the form of
V (k) = Vn(k) + Va(k), where

Va(k) = µ2

−1∑
m=−µ2

k−1∑
j=k+m

y(j)T Ray(j), 0 < Ra(23)

and Vn is a nominal Lyapunov function which
corresponds to (22a), with η(k) = 0:

Vn = ζ̄T (k)EPEζ̄(k), P = PT , EPE ≥ 0.(24)

Lemma 5. Consider (1), where ∆ ≡ 0, 1 ≤ h ≤
τ(k) ≤ h+µ2. This system is asymptotically stable



if there exist a (h+2)n× (h+2)n matrix P = PT ,
such that [I(h+1)n 0]P [I(h+1)n 0]T > 0, and a n×n

matrix Ra that lead to[
Ψ AT

d PA1

∗ −Ra +AT
1 PA1

]
< 0,

Ψ = AT
d PAd − EPE +

[
0 0
0 µ2

2Ra

]
,

(25)

where Ad and A1 are given by (22d) and (22e),
correspondingly.

The condition of Lemma 3 can also be adopted to
the systems with norm-bounded uncertainties.

2.5 Delay-independent conditions

As in the continuous-time situation, this case is
treated adopting the Lyapunov-Razumikhin ap-
proach (Zhang & Chen, 1998).

Theorem 6. Consider the system (1) with ∆(k)
that satisfies (2). This system is asymptotically
stable for all delays τ(k) if there exist P = PT ∈
Rn×n, α ∈ (0, 1), q > 1 and ε > 0 that satisfy the
following LMI:
−αP + εET E εET E1 AT P 0

∗ −1− α

q
P + εET

1 E1 AT
1 P 0

∗ ∗ −P PH

∗ ∗ ∗ −εI


< 0.

2.6 Examples

Example 1: We consider the system (1) where:

A =
[
0.8 0
0 0.97

]
, A1 =

[
−0.1 0
−0.1 −0.1

]
, (26)

where H = 0. Assuming that h is constant, we
seek the maximum value of h̄ for which the asymp-
totic stability of the system is guaranteed. The
maximum value of h̄, achievable by the method
of Lee & Kwon (2002), is 12, whereas a value
of h̄ = 16 was obtained by applying Chen et al.
(2003).Using augmentation it is found that the
system considered is asymptotically stable for all
h ≤ 18. The criterion of Theorem 3 did not provide
a solution, so that no delay-independent solution
has been found.

Allowing τ to be time-varying we apply Lemma
2, where h = µ1 = 1 and µ2 = 7. We obtain
thus that asymptotic stability is guaranteed for
all 0 ≤ τ(k) ≤ 8. The same result is obtained
by Corollary 1 via discrete descriptor Lyapunov
function. Choosing h = 8, µ1 = µ2 = 3; h = 10,

µ1 = µ2 = 2 and h = 11, µ1 = 1, µ2 = 2 we
verified that conditions of Lemma 2 are feasible.
Hence the system is asymptotically stable for all
τ(k) from the following intervals: [3, 10], [5, 11],
[8, 12] and [10, 13]. Note that conditions of Xu and
Chen (2004) are not feasible even for 0 ≤ τ(k) ≤ 1.

By augmentation via the discrete descriptor Lya-
punov function we verify that the conditions of
Lemma 3 are feasible τ(k) from larger intervals:
[3, 10], [5, 11], [7, 12] and [9, 13]. The augmented
approach via descriptor LKF of Lemma 2 leads to
the same stability intervals as Lemma 3, but needs
essentially more time for computation.

Treating next the case where the system param-
eters are uncertain, with A and A1 given in (26)
and with

H =
[
0.1 0
0 0.02

]
, E = I2 and E1 = 0.5I2,

we apply Theorem 1 for h = 0, 3 and 5 and
verify that the system (1)is asymptotically stable
for all ∆(k) that satisfy (??) and for τ(k) from
the following segments: [0, 4], [3, 5] and [5, 6]. By
the augmented system approach via descriptor
LKF, we find that the conditions of Theorem 2
are feasible for h = 3, µ1 = 1, µ2 = 2 and for
h = 5, µ1 = 1, and µ2 = 1. Thus the stability
intervals, starting from non-zero values, are larger
[2, 5] and [4, 6].

Example 2 Wu & Hong (1994): We consider the
system (1) where

A =
[

0 0.5
0.5 0.2

]
, A1 =

[
−0.4 0

0 0

]
and H = 0.

In the case of constant delay, this system is delay-
independently stable by the conditions of Wu &
Hong (1994) and by Corollary 1 of the present
paper. In the case of time-varying delay, by condi-
tions of Song et al. (1999) the system is asymptot-
ically stable for 0 < τ(k) ≤ 2. By Theorem 3, it is
verified that also in the case of time-varying delay
the system is delay-independently stable. This is
achieved by taking α = 0.5 and q = 1.01.



3. CONCLUSIONS

New sufficient stability conditions have been de-
rived for discrete-time systems with uncertain de-
lay and norm-bounded uncertainties. The delay is
assumed to be time-varying either bounded or not.
In the first case the Lyapunov-Krasovskii method
is applied, while the second (delay-independent)
case is treated by Laypunov-Razumikhin tech-
nique. Illustrative examples demonstrate the ef-
ficiency of the method. The method can be effec-
tively applied to guaranteed cost control and to
H∞ control.
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