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Abstract: The robust control of networked predictive control systems with random network 
delay in the feedback channel is studied in this paper.  The stabilisation of systems with 
constant time-delay is discussed by converting the corresponding Lyapunov inequality to a 
non-linear inequality. To obtain the maximum domain of uncertainties, the non-linear 
inequality is evolved as a non-linear optimisation control problem. After the optimisation 
problem is solved, it yields a controller that can stabilise the system and the domain of 
uncertainties.  Furthermore, for the case of random network induced time-delay, robust 
stabilisation problem can be formulated as a set of inequalities, which are related to the 
corresponding constant time-delay, respectively. This result is verified by a numerical 
example. Copyright©2005 IFAC 
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1. INTRODUCTION 
 
Using a network in control systems produces many 
benefits in practical engineering practice: reducing 
system wiring, ease of system diagnosis and 
maintenance, and increasing system agility. But it 
also brings some new: the network-induced delay 
(sensor-to-controller delay and controller-to-actuator 
delay), occurrence of packet dropout resulting in 
control signal break-off, etc. Time-delay is one of the 
main problems of networked control systems (NCS). 
With the development of NCS research, some 
methods have been developed to address this 
problem. Halevi and Ray (1988) proposed an 
augmented deterministic discrete-time model method 
to control a linear plant over a periodic delay 
network. Luck and Ray (1990, 1994) utilized the 
deterministic or probabilistic information of an NCS 
and developed queuing method. Nilsson (1998) 
proposed the optimal stochastic control method 
which treats the effects of random network delays in 
an NCS as a LQG problem. Walsh, et al. (1999a, 
1999b) used non-linear and perturbation theory to 

formulate the network delay effects in an NCS as the 
vanishing perturbation of a continuous-time system 
under the assumption that there is no observation 
noise. Hai Lin, et al. (2003) formulated NCS as 
discrete-time switched system and proposed a way to 
study stability and disturbance attenuation issues for 
a class of NCS under uncertain access delay.  
 
Although much research has been done in networked 
control systems, most work has ignored a very 
important feature of networked control systems that 
communication networks transmit a packet of data at 
the same time, which is not done in traditional 
control systems. Just making use of this network 
feature, Liu et al. (2004) proposed a new networked 
control scheme—networked predictive control, 
which can overcome the effects caused by network 
delay. The paper considered the precise model of 
NCS with network induced time-delay in the forward 
channel and didn’t discuss the case of feedback 
channel time-delay and model uncertainties. This 
paper addresses these cases by considering NCS with 
structured uncertainties and network induced time-



 
 

 
 

delay in the feedback channel. The method of 
networked predictive control is used to handle the 
network-induced time-delay.  Robust stabilization of 
NCS with constant network induced time-delay is 
formulated as a constrained non-linear optimisation 
problem. Both the related control law and boundary 
of uncertainty can be obtained by solving a non-
linear optimisation problem. A NCS with random 
network induced time-delay can be handled by 
solving a non-linear optimisation problem that 
contains a set of non-linear inequalities as constraints 
corresponding to specific time-delay values. This 
method shows that in a definite bound, if there exist a 
controller and an observer which stabilises the 
augmented system for all constant time-delays, then 
the control law can robustly stabilise the NCS for 
random time-delay. In addition, this method is 
validated by a numerical example.  
 
This paper is organized as follows: Section 2 presents 
the main results of networked predictive control 
systems with constant time-delay in the feedback 
channel; Section 3 discusses robustness analysis of 
networked predictive control systems with random 
time-delay in the feedback channel; This method is 
validated by a numerical example in section 4; 
Section 5 gives the conclusion. 
 
 

  2. ROBUSTNESS ANALYSIS OF NPCS WITH 
CONSTANT TIME-DELAY 

 
To overcome the unknown network transmission 
delay, Liu et al. (2004) proposed a networked 
predictive control scheme which mainly consists of a 
control prediction generator and a network delay 
compensator. The control prediction generator is 
designed to generate a set of future control 
predictions. The network delay compensator is used 
to compensate the unknown random network delay. 
This networked predictive control system (NPCS) 
structure is shown in Fig. 1. Only the transmission 
delay in the feedback channel is considered in this 
paper.  
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Figure 1.  The networked predictive control system 
 
In this section, the case with constant time-delay is 
discussed. The networked predictive control system 
with uncertainties can be described as follows 
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analysis, the reference input of the system is assumed 
to be zero. 
 
Assumption1:  The pair( )BA,  is completely 

controllable, and the pair ( )CA,  is completely 
observable.  
Assumption2: The number of consecutive data 
dropouts must be less than m( m  is a non-negative 
integer). The upper bound of the network induced 
time-delay is not greater thanN . 
 
Remark:  Because the control data are transmitted as 
packages through networks, especially internet, it is 
reasonable to assume that the network induced time-
delays are integer times of sampling period.    
Assumption 2 indicates that the network will not 
continuously drop out data packages unlimitedly 
meanwhile guarantee that the NCS is a closed-loop 
system. Obviously, mN ≥ . In addition, for our 
control scheme, the data dropouts are converted to 
corresponding time-delay according the used package 
protocols and sampling period.  
 
Similar to Liu et al (2004), the proposed control 
scheme is stated as follows. If time-delay is assumed 
to be i ( },1{ Ni L∈ ), then only the signal of the 

it −  instant can be used to construct control signal.  
The following observer and state estimation are 
designed to predict a series of system states 
prediction values. 
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where lnL ×ℜ∈ is the systems observing matrix and 
n

itkitx ℜ∈−+− |ˆ ( ik L,1= ) and m
kitu ℜ∈+− are the k -

step ahead state prediction and the input of the 
observer the matrix at time it − , respectively. It 
means that if the designed tolerable time-delay isi , 
then at any time instant, the predictor generates the 
state prediction of i -step ahead. The state-feedback 
controller for the case without network delay is 
designed by a modern control method, for example, 
LQG, eigenstructure assignment etc., and for the case 
with network delay, the controller is of the following 
form:  
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where the state feedback matrix nmK ×ℜ∈ . 
As itit Cxy −− = , (2) can be written as  
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for .,,,, ki L321=  
  
Thus, the output of the networked predictive control 
at time t  is determined by 
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 Therefore, the corresponding closed-loop system can 
be written as  
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The formula (3), (4), (5) can be described by the 
following augmented system: 
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The system described in (6) can be expressed in the 
form 

( ) tiiiit xEFHAx +=+1                                             (7) 
where  
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Before the result is presented, the definition of 
robustly quadratically stable is given below. 
 
Definition 1: System (1) is robustly quadratically 
stable if there exists a positive definite matrix P such 
that for any time instantt , Lyapunov function 

t
T

tt PxxxV =)( has the following property: 
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Theorem 1: The corresponding closed-loop system of 
system (1) with any constant time delay is robustly 
quadratically stable if and only if there exists a 

matrices 0>= TPP  and K  such that: 
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where 21 γν /=  and constant 0≥τ . Furthermore, if 

(8) holds, then the maximum γ  is defined by ν1  

where ν  is determined by the optimisation problem: 
νmin                                                               

subject to 0>= TPP  and (8).  
 
Before this theorem is proved, two lemmas are given. 
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exists a positive definite matrix P such that for any 
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Now (11) is proved to be right for 0>P if and only if 
(8) holds. 
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Let ετ 1= and 21 γν = ,  then Eq. (8) holds. 
 
Sufficiency: Suppose that there exists a constant 

0>τ such that (8) has a solution 0>P . Then there 
exists a constant 0>ε  such that (11) is feasible. 
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Substituting the above equation into (14) yields 
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Therefore, it shows that (11) holds. 
 
To obtain the maximum value of the uncertainty 
bound, (15) can be written as a nonlinear 
optimisation problem described as in the theorem. 
The minimum value of ν  leads to maximumγ .  
The proof is completed.                                             ◊ 
  
NPCS without time-delay is a special case of 
constant time-delay. Theorem 1 still works well but 
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3. ROBUSTNESS ANALYSIS OF NPCS WITH 
RANDOM TIME-DELAY 

 
In practical networked control systems, the network 
induced time-delay size is usually random as network 
load changes.  Based on the assumptions set in 
section 2, the time-delay is assumed to vary 
randomly in a set{ }NL,,, 210 .  For this case, a 
similar result is derived as for the case of a constant 
time-delay. 
 

Theorem 2: The corresponding closed-loop system of 
system (1) with random time delay (in { N,1,0 L }) is 
robustly quadratically stable if and only if there exist 

a common matrix 0>= TPP  and a controller matrix 
K  satisfying all the following inequalities: 
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Nifor L,,, 210=  

where 21 γν /=  and constant 0≥τ . Furthermore, if 
all the inequalities in (16) holds, then the maximum 
γ  is defined by ν1 ; where ν  is determined by the 
optimisation problem: 
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Proof:  To robustly stabilise Eq. (1) with random 
network induced time-delay in the feedback channel, 
the following cases should be considered:  
Case 1: At any time instantt , augmented closed-loop 
system of (7) is robustly quadratically stable for 
constant time-delayi .  
Case 2: For time instants t  to 1+t , augmented 
closed-loop system (7) is still robustly quadratically 
stable when time-delay varies from i  to j (Without 

loss of any generality, it assumes thatji ≠ ).  

 
For the case of constant time-delay, theorem 1 has 
been proved Case 1, i.e. if the inequalities in (16) are 
feasible, then the corresponding  augmented closed-
loop system of (1) is robustly stable at any time 
instant t  for any constant time-delay )( Nii ≤≤0 .  

Therefore, there exists a matrix 0>= T
PP such that 

the following inequality holds  
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Assume that at any time instantt , network induced 
time-delay is i  and at time instant 1+t  , it is j (Here 

],,[, Nji L0∈  are any integer in the interval).  Then 
system (1) is robustly stabilised when network 
induced time-delay varies from i  to j  , if there exists 

a matrix 0>= T
PP such that the following 

inequality holds: 
0)()()()()()( 1122 <−+−=− ++++ tttttt xVxVxVxVxVxV

            (18) 
For any time instant t  
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From (19), it follows that (18) holds. Therefore, it 
can be concluded that for random network induced 
time delay, systems (7) is robustly quadratically 
stabilised if and only if there exist a common matrix 

0>= TPP  and matrices K  and L satisfying all the 
inequalities given in (16). 
 
As the proof of Theorem 1, Eq. (16) can be further 
converted to an optimisation control problem (17) but 
the corresponding matrix must satisfy all the 
inequalities in (16). The proof is completed.        ◊ 
 
 

4. NUMERICAL EXAMPLES 
 
In this part, a numerical example is constructed to 
demonstrated the proposed method dealing with the 
robust control problem of NPCS.  An open-loop 
unstable discrete uncertain system in the form of (1) 
is described with following matrices: 
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H , 







−
−= 150150150

150150150
1 ...

...E , 






−
−−= 7080

6080
2 ..

..E . 

 
Here, the time-delay is assumed to be no greater than 

3=N  and assume time-delay varies in the set 
{ }3210 ,,,  randomly. Solving the combined 

optimisation problem 210 ∏∏∏ ,,  and 3∏ on the 

condition of 0>= TPP , the corresponding matrices 
of the closed-loop system is obtained as follows: 






=
0.0056   0.0267    0.2347 
0.0333-  0.0849-  0.1003-

K , 












=

0.0558   0.0367  
0.3776   0.5282- 
0.0368-  0.2731- 

L  

and the optimisation specification 4.004=ν . Then 
the domain of uncertainties is a super circle with a 

radius 0.49981 == νγ . This illustrates the 
validation of the method developed in this paper.  
 

5. CONCLUSIONS 
 
The NCS with structured uncertainties has been 
studied in this paper. The idea of networked 
predictive control is used to handle the network 
induced time-delay of NCS with uncertainties. The 
definition of robustly quadratically stability is given 
first, and the problem of robust stabilisation (i.e. the 
corresponding closed-loop systems is robustly 
quadratically stable) of NCS with constant network 
induced time-delay is formulated as a constrained 
non-linear optimisation problem. The question of 
finding the related control law and bound of 

uncertainty is integrated into the non-linear 
optimisation problem. The problem of NCS with 
random network induced time-delay is formulated as 
a non-linear optimisation problem constrained by a 
set of non-linear inequalities with a common 
Lyapunov matrix. This method is validated by a 
numerical example.  
 
REFERENCES 
 
Göktas, F. (2000). Distributed control of systems 

over communication networks. Ph.D. dissertation, 
University of Pennsylvania. 

Halevi, Y., and Ray, A. (1988). Integrated 
communication and control systems: Part I—
analysis. Journal of Dynamic Systems, 
Measurement and Control, 110, 367–373. 

Lin Hai, Zhai Guisheng, Antsaklis Panos J. (2003). 
Robust Stability and Disturbance Attenuation 
Analysis of a Class of Networked Control 
Systems, Proceedings of the 42nd IEEE 
Conference on Decision and Control, Maui, 
Hawaii USA, December 2003 

Liou, L.-W., & Ray, A. (1990). Integrated 
communication and control systems: Part III—
nonidentical sensor and controller sampling. 
Journal of Dynamic Systems, Measurement, and 
Control, 112, 357–364. 

Liu, G. P., Mu, J.X. and Rees, D. (2004). Networked 
predictive control of systems with random 
communication delays, Proceedings of the 
UKACC International Conference on Control, 
Bath,  ID-015, 2004. 

Luck, R., & Ray, A. (1990). An observer-based 
compensator for distributed delays. Automatica, 
26(4), 903–908. 

Nilsson, J.( 1998). Real-time control systems with 
delays. Ph.D. dissertation, Lund Institute of 
Technology. 

Petersen I.R., and Hollot C.V.(1986.), A Riccati 
equation approach to the stabilization of uncertain 
linear system. Automatica, 22, pp.397-411.  

Walsh, G.C., Beldiman, O., & Bushnell, L. (1999a). 
Asymptotic behavior of networked control 
systems. Proceedings of the 1999 IEEE 
international conference on control applications, 
2, pp. 1448–1453. Kohala Coast, HI. 

Walsh, G.C., Ye, H., & Bushnell, L. (1999b). 
Stability analysis of networked control systems. 
Proceedings of the 1999 American control 
conference,4 , pp. 2876–2880. San Diego, CA. 

Xie, L., Souza C.E. de (1992).  Robust ∞H  control 
for linear systems with norm-bounded time-
varying uncertainty. IEEE Transactions on 
Automatic and Control, AC-37, 1188-1191. 

Zhou  Kemin and Doyle John (1996). Essentials of 
robust control, Prentice Hall, Englewood Cliffs, 
New Jersey. 

 


