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Abstract. In road vehicles, wheel locking can be prevented by means of closed-
loop Anti-lock Braking Systems (ABS). Two output measured variables are 
usually considered for regulation: wheel- deceleration and wheel longitudinal 
slip. The traditional controlled variable used in ABS is the wheel deceleration, 
since it can be easily measured with a simple wheel encoder; however, it can be 
dynamically critical if the road-surface rapidly changes. On the other hand, the 
regulation of the longitudinal slip is much robust from the dynamical point of 
view, but the slip measurement is critical, since it requires the estimation of the 
longitudinal vehicle speed. In this work a control strategy is proposed, where the 
regulated variable is a combination of wheel deceleration and longitudinal slip.  
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1. INTRODUCTION 
Most of the modern road vehicles are equipped with 
electronic Anti-lock Braking Systems (ABS). ABS 
can greatly improve the safety of a vehicle in extreme 
circumstances, since it can maximize the longitudinal 
tire-road friction, while preventing lateral forces from 
going to zero (Drakunov et al., 1995, Gissinger et al., 
2003, Johansen et al., 2003, Layne et al., 1993, 
Solyom et al., 2004, Wellstead and Petit, 1997). ABS 
is a closed-loop control system, where two output 
measured variables are used: the wheel deceleration 
and the wheel slip. 
The traditional controlled variable used in ABS is the 
wheel deceleration, since it can be easily measured; 
however, a regulation loop closed on the wheel 
deceleration may be critical if the road-surface 
rapidly changes. Henceforth, deceleration-based 
control strategies require the on-line estimation of 

road-tire friction characteristics (Gustafsson, 1997, 
Ono et al., 2003). The regulation of the wheel 
longitudinal slip is simpler from the dynamical point 
of view, and the slip set-point does not require on-
line adaptation. However, the main drawback of slip-
control is that the accurate measurement of the 
longitudinal slip is critical.  
The current trend is to move from deceleration-
control to slip-control, which is very attractive since 
it can be straightforwardly extended from ABS 
applications to more sophisticated Electronic 
Stability Control (ESC) systems (Kiencke and 
Nielsen, 2000). The challenge for slip-control is, 
henceforth, to alleviate its sensitivity to poor slip 
measurements. In this work a new control strategy is 
proposed. The basic idea of this control approach is 
very simple: the regulated variable is a convex 
combination of the wheel slip and deceleration. This 



 

                                                                                            

strategy turns out to be very powerful and flexible: it 
can reduce the obnoxious effects of poor slip 
measurements, while avoiding the poor dynamical 
behavior of deceleration control. This control 
approach is named “Mixed Slip-Deceleration” 
(MSD). 
 

2. SYSTEM DESCRIPTION 
For the design and testing of braking control 
algorithms, a simple but effective quarter-car model 
is typically used. The model is given by the 
following equations (Fig.1): 
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In (1), ω  is the angular speed of the wheel; v  is the 
longitudinal speed of the vehicle; bT  is the braking 
torque; xF  is the longitudinal road-tire contact force; 
J, m and r are the momentum of inertia of the wheel, 
the quarter-car mass, and the wheel radius, 
respectively. 
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Fig.1. Quarter-car model. 

 

Throughout the paper, the normalized linear wheel 
deceleration gr /ωη &−=  will be used. Observe that 
η  is the linear deceleration (expressed in [m/s2]) of 
the contact point of the tire, normalized with respect 
to the gravitational acceleration g. It is particularly 
useful since it can be easily compared with the 
vehicle deceleration. The dynamic behavior of the 
system is hidden in the expression of xF , which 
depends on the state variables v and ω . The most 
general expression of xF  is quite complicated, since 

xF  depends on a huge number of features of the 
road, tire, and suspension; however, it can be well-
approximated as follows: 

);,( rtzx FF θβλµ= .                                               (2) 
In (2) zF  is the vertical force at the tire-road contact 
point; λ  is the longitudinal slip; tβ is the side-slip 
angle of the wheel; rθ  is a set of parameters which 
characterize the shape of )(⋅µ . 
Expression (2) can be further elaborated. The vertical 
load can be simply described as mgFz = , while  the 
longitudinal slip is given by 
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In the rest of the paper it is assumed that the braking 
maneuver is performed along a straight line. 
Accordingly, the dependence of  xF  on tβ  will be 
omitted: 
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A simple and widely-used model  for )(⋅µ  is: 
( ) 321 )exp(1);( rrrr λθλθθθλµ −−−= .           (5) 

By changing the values of these parameters, many 
different road conditions can be modeled (Fig.2). 
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Fig.2. Shapes of  )(λµ  in different road conditions. 

 

 By plugging (4) into (1), we finally obtain the 
following expression of the quarter-car model: 
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As already remarked, in (6a) the state variables are 
ω  and v . Since ω , v  and λ  are linked by the 
algebraic relationship (3), it is possible to replace the 
state variable ω  with λ . This can be obtained by 
plugging the following two relationships 
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into the first equation of (6a), so obtaining: 
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3. ANALYSIS OF THE LINEARIZED MODEL 

The first step of our analysis is the computation and 
discussion of the equilibrium points for (6). 
First notice that, by setting in (6) 0=v&  and  0=ω& , 
the corresponding equilibrium is given by 0=µ  and 

0=bT . This equilibrium condition is meaningless 
for the design of a braking regulation loop. The 
equilibrium points we are interested in are 
characterized by 0=λ&  and  ηη = . Starting from 



 

                                                                                            

these conditions, it is possible to find the set of 
admissible equilibrium points. Consider the 
expression (3) of λ . By setting  0=λ&  we obtain  

vv /ωω && = . By replacing )1(/ λω −= rv , 
( )λµmgvm −=& , and gr /ωη &−=   into this 

expression, we obtain the analytic expression of the 
set of admissible equilibrium points in the ( )ηλ,  
plane: 

( ) ( )λµλη −= 1 .                                          (7) 
In Fig.3 the equilibrium manifold (7) is displayed.  
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Fig.3. Equilibrium manifold ( )λη   (dry asphalt). 

 

In order to linearize the model (6) around an 
equilibrium point (Guardabassi and Savaresi, 2001), 
it is assumed that the longitudinal dynamics of the 
vehicle are much slower than the rotational dynamics 
of the wheel. Henceforth, v  is considered as a 
slowly-varying parameter. Under this assumption the 
second equation of (6) is neglected, and the model 
reduces to a simple 1st order model of the wheel 
dynamics. Consider now the variables bbb TTT −=δ ,  

λλδλ −= ,  ωωωδ &&& −= ,  ηηδη −= , defined 
around an equilibrium point. Consider also the 
following definition: 

λλλλµλµ
=

∂∂= /)()(1 .           

Using the above variables and the definition of  
)(1 λµ , the first equation of (6b) can be linearized; 

the following linear dynamic equation  is obtained: 
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The transfer function )(sGλ  from bTδ  to δλ  is 
given by: 
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The transfer function )(sGη  from bTδ  to δη  can be 

obtained by linearizing the first equation of (6a): 
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The analysis of )(sGλ  and )(sGη  explains the 
behavior of the open-loop braking dynamics.  
The pole of  )(sGλ  and )(sGη  is given by: 
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By studying the pole and the zero locations, the 
stability and minimum-phase properties of the system 
around a steady-state condition can be analyzed.  
The stability condition for )(sGλ  and )(sGη  is: 
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However, note that, since Jmr /)1( 2<<− λ  and 

0)/()( 2 ≈mrJ λµ , it can be reduced to 0)(1 >λµ . 
This means that )(sGλ  and )(sGη  are unstable if the 

equilibrium point λ  is beyond the peak of )(λµ .  
The minimum-phase condition for )(sGη  is: 
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This analysis has shown that the equilibrium 
condition λ  strongly affects the stability and 
minimum-phase properties of  )(sGλ  and )(sGη . It 
also shows that the open-loop wheel dynamics can be 
unstable. This instability can hardly be handled by 
non-professional drivers, and represents the main 
motivation for the design of electronic Anti-lock 
Braking Systems. 
 

4. CONTROL STRATEGIES 
The general structure of the proposed Mixed Slip-
Deceleration (MSD) control scheme is outlined in 
Fig.4. The basic idea is to define an output controlled 
variable ε , which is the convex combination of the 
two measured variables η  and λ , namely: 

ηααλε )1( −+=  ,  [ ]1,0∈α ,                       (10) 
and to regulate this variable to a set-point constant 
value ε . Also ε  can be interpreted as 

ηαλαε )1( −+= .  
The control variable bTδ is assumed to be driven by 
the regulation error through a proportional controller, 
namely δεδ KTb =  (where εεδε −= ). Note that 
the choice of a proportional controller has been made 
to keep the overall control scheme as simple as 



 

                                                                                            

possible, in order to easily gain some insight in the 
behavior of the control system. The proportional 
controller can be upgraded with more sophisticated 
SISO controllers. 
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Fig.4. General scheme of the MSD controller. 
 

The MSD controller displayed in Fig.4 has the 
peculiar feature of embedding the slip-controller 
( 1=α ) and the deceleration-controller ( 0=α ). 
 

4.1. α=1 (Slip control) 
By setting 1=α  in (10), the controlled variable is 
the wheel slip λ . Note that (see Fig.2), whatever λ  
is ( 10 ≤≤ λ ), this regulation scheme guarantees the 
uniqueness of the steady-state solution. In order to 
analyze the dynamic properties of the slip control 
system, it is useful to compute the open-loop transfer 
function: 
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The following stability condition can be worked out. 
Stability condition for slip-control 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−>

J
mrgg

J
Kr 2

1 )1()()( λλµλµ .         (11) 

The analysis of (11) reveals that it is always possible 
to find a value K  such that, for KK > , the closed-
loop system is stable in every condition (namely for 
every value of λ and for every road condition). 
This analysis explains why slip-control is considered 
a very attractive control approach: 
- Given a set-point λ , it guarantees the uniqueness 

of the steady-state solution. 
- The choice of λ  is not critical; as a matter of 

fact, it is easy to find a value of λ  (e.g. 
15.0=λ ) which provides very good results for 

every road condition. 
- With a fixed-controller structure, the asymptotic 

stability of the closed-loop is guaranteed for  
every value of λ and for every road condition. 

The major drawback of slip-control is that the 
measurement of λ  is difficult and unreliable. As a 
matter of fact the wheel slip computation requires the 
measurement of the vehicle longitudinal speed, and 
the vehicle speed can only be estimated by indirect 
measurements. 
 

4.2.  α=0 (Deceleration control) 

By setting 0=α  in (10), the controlled variable is 
the normalized linear wheel deceleration η . From 
Fig.2, it is clear the first major drawback of 
deceleration control: the selection of the set-point η  
is very critical, and it is impossible to find an unique 
value of η  which gives a good compromise for 
every road condition. As already remarked, note that 
(if any) the system always has two equilibrium 
points. 
In order to analyze the dynamic properties of the 
deceleration control system, it is useful to compute 
the open-loop transfer function: 
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The following stability condition can be worked out: 
Stability condition for deceleration-control 

( ) 0)()1)(()( 1

2

1 >−−+ λµλλµλµ
J
rK

J
mrg .    (12) 

Note that it is not possible to find a fixed value of K 
which provides stability for every value of λ and for 
every road condition: if K>0, the system can be made 
asymptotically stable before the friction-curve peak, 
but it becomes unstable beyond the peak. Henceforth, 
one of the two equilibrium points is always unstable. 
This analysis explains the main limits of 
deceleration-control: 
- The choice of η  is very critical; henceforth, it 

must be adapted on-line, by means of a detection 
algorithm of the road conditions. 

- With a fixed-controller structure  the asymptotic 
stability of the closed-loop system is not 
guaranteed. 

Due to these major drawbacks, deceleration-control 
has never been implemented as a classical regulation 
loop: complex rule-based algorithms based on a set 
of adjustable thresholds on  η  and its derivative have 
been traditionally implemented. These approaches 
provide acceptable results if anti-locking is the only 
objective, but can hardly be used for more 
sophisticated Electronic Stability Control systems.  
On the other hand, the wheel deceleration can be 
measured in a very reliable and straightforward 
manner: it is a low-cost measurement, the noise ηd  
affecting the measure of η  is almost stationary, and 
the variance of this noise can be easily managed by 
properly choosing the precision of the wheel encoder. 
 

4.3. 0<α<1 (Mixed Slip-Deceleration control) 
In this case, the controlled variable is 

ηααλε )1( −+= , and the set-point is 
ηαλαε )1( −+= . The graphical interpretation of 

this control strategy in the ( )ηλ,  domain is displayed 
in Fig.5. Clearly, by carefully choosing α  and ε , it 



 

                                                                                            

is possible to guarantee the existence and uniqueness 
of the steady-state condition; moreover, it is easy to 
find a fixed value of α  and ε  such that, for every 
road condition, the equilibrium point provides good 
performance.  
In this case, the open-loop transfer function is given 
by: 
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The following stability condition can be worked out. 
Stability condition for MSD-control 
If the parameter α  is chosen such that: 

1min ≤<αα , 
where 
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it is always possible to find a value K  such that, for 
KK > , the closed-loop system is stable in every 

condition (for every value of λ and for every road 
condition).  
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Fig.5. Graphical interpretation of MSD control. 
 

Given the previous stability results for slip-control 
and deceleration-control, the above condition (14) 
could be somehow expected: we have seen that for 

1=α  stability can be always guaranteed, whereas 
for 0=α  it is impossible to find a unique globally-
stable proportional controller. For continuity, these 
two extremal conditions must be separated by a 
“threshold” (or lower-bound) on α , located between 
0 and 1. Expression (14) provides the analytic 
expression of this lower bound minα . 
Note that the lower bound is the worst case with 
respect to the equilibrium point ( λ ) and the road 
conditions ( rθ ). Also note that the worst condition 
occurs when );( rθλµ is big and  );(1 rθλµ  is 
negative. A rough estimation for minα  is 6.0min ≈α .  
At the end of this analysis, one can conclude that, if 

1min <<αα , the MSD control strategy essentially 
has the same appealing features of slip-control. 
However, at a first sight, MSD-control also seems to 
share the major drawback of slip-control (sensitivity 
to poor slip measurements). This issue will be 
discussed in the following subsection.  
 

4.4. Disturbance analysis 
Consider the general MSD in Fig.4. It is easy to see 
that the disturbance εd  affecting the closed-loop 
controlled variable is given by:  
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where )(sLε  is the open-loop transfer function of the 
MSD control scheme, given by (13), and 

)(),(),( sDsDsD ηλε  are the Laplace transform of 
the signals ηλε ddd ,, , respectively. 

Assume now that λd  and  ηd  are zero-mean, 
uncorrelated, band-limited white noises (they have no 
spectral content beyond Ω ). For the sake of 
simplicity, assume also that the variances of λd  and 

ηd  are the same, namely [ ] [ ] Ψ== ηλ dd varvar . 
Under these assumptions, the variance of εd  is: 
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In order to understand if the MSD approach 
outperforms the slip-control approach, we must prove 
that 

[ ] [ ] 1,)1(var)(var min <<< ααα εε dd .              (16) 
Note that (15) is the product of two terms, both 
depending on α .  The analysis of the first term 
( )22 )1( αα −+  is very simple. This function is 
maximum for 1=α  (slip control) and 0=α  
(deceleration control). MSD control (namely 

10 << α ) hence provides a noise attenuation which 
– considering this term only – can halve the noise 
variance on the controlled variable. In particular, at 

6.0min == αα , the attenuation factor given by this 
term is about 0.52. The analysis of second factor of 
(15) is more complicated since its explicit expression 
cannot be analytically computed. Note that this term 
is the integral (over the frequency interval [ ]Ω,0 ) of 
the squared magnitude of the frequency response of 
the closed-loop sensitivity function; a clear indication 
on the effect of α  on this term  hence can be drawn 
by the analysis of the sensitivity function. The 
sensitivity transfer function can be condensed in four 
basic features: Zero, Pole, Low-Frequency (LF) gain 
and High-Frequency (HF) gain.  
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From the analysis of these four features with respect 
to α  (assuming high values of K), the following 
remarks can be done:  
- The Zero is fixed, and does not depend on α . 
- The Pole shifts backwards  as α  decreases; 
- The LF gain is only weakly affected by α ; 
- The HF-gain strongly decreases as  α  decreases. 
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Fig.6. Bode-plots of (26) when 05.0=λ . 
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Fig.7. Closed-loop noise on the controlled variable. 
 

All these characteristics can be easily understood by 
means of Fig.6, where the magnitude of the 
frequency response of the sensitivity function is 
displayed for three different values of α . All the 
characteristics outlined above are clearly visible in 
this picture. Similar plots can be obtained for 
different road conditions and different longitudinal 
vehicle speeds.  

Finally, this noise-attenuation effect can be 
appreciated by the simulation results displayed in 
Fig.7, where εd  is displayed, in the case of 1=α  
and  9.0=α  (dry asphalt condition, 05.0=λ , 

smv /30= , K=10000). It is clear the advantage of 
using a MSD control strategy.  This result has been 
obtained by using the measurement errors on λ  and 
η  registered during an experiment on a real vehicle. 
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