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Abstract: A new crane design, labeled ”SpiderCrane”, is proposed to handle
fast load displacements. Its main particularity is the absence of heavy mobile
components. The system beeing underactuated, its control is challenging. Hence,
as a step towards easier and more efficient control, this paper proposes a
dynamic model and investigates the two control-relevant properties of flatness
and observability. SpiderCrane is shown to be flat with respect to certain outputs
and observable from the motors positions. Copyright c© 2005 IFAC
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1. INTRODUCTION

The stabilization of loads that are carried by
cranes is tedious, and the lack of truly efficient
strategies implies a large economical loss due to
the additional time involved in the process. In
various industries such as construction or naval
transport, the crane drivers move the load in a
quasi-static way, i.e. by keeping the cable vertical
in order not to induce oscillations. To improve the
work rate, it is necessary to abandon the quasi-
static approach and introduce a control law that
can cope with the dynamic couplings. The prob-
lem of classical cranes is the large inertia of the
boom, which limits the crane dynamics. Hence,
this paper proposes a new crane design, labeled
SpiderCrane, that is devoid of heavy mobile com-
ponents. As a result, SpiderCrane can work at
considerably higher speeds.

From a control theoretical point of view, cranes,
and in particular SpiderCrane, are underactu-
ated mechanical systems, which gives rise to chal-
lenging control issues (Gustafsson, 1996). For in-
stance, the control of these systems tend to gener-
ate non-asymptotically-stable internal dynamics.
This is the case when dynamic inversion tech-
niques are used with poorly chosen outputs. For
instance, if all motors are rigidly blocked, the load,

together with its cable, will move freely around
the blocked position. Hence, a control strategy
that inverts the dynamics using the position of
the motors as outputs will fail due to the pres-
ence of non-asymptotically-stable zero dynamics
corresponding to this oscillatory behavior. How-
ever, the flatness formalism (Fliess et al., 1999)
is ideally suited to handle the motion planning
problem: Trajectory generation and input com-
putation are performed without integrating dif-
ferential equations. Auspiciously, part of the flat
outputs corresponds to the three coordinates of
the load, the position of which is to be steered.

Although it is straightforward and reliable to mea-
sure the cable position with the winching mo-
tors, acquiring usefull information about the main
cable angles (unactuated coordinates) is much
more difficult, especially in certain hostile environ-
ments, where bad weather conditions and obscu-
rity renders sophisticated and delicate optical de-
vices obsolete. Thus, it is of great avail to be able
to reconstruct the missing positions on the basis
of a dynamic model. Hence, the importance of
establishing the observability of all variables based
on measurements obtained from the winches.

The main point of view adopted in this study,
i.e. using the position of the load for feedforward



computations and the position of the motors for
feedback purposes, is not new in the context of
crane control. For instance, a simple output feed-
back strategy (without observer) was proposed
in (Kiss et al., 2000) and developed further in
(Fang et al., 2001) for equilibrium stabilization.
The general crane modeling approach proposed
in (Kiss et al., 1999) provided considerable insight
for designing SpiderCrane.

The paper is organized as follows. Section 2 and 3
describe the system and the model, respectively.
Section 4 and 5 discuss the control-relevant flat-
ness and observability properties. Simulations are
shown in Section 6, and conclusions and future
work are addressed in Section 7.

2. SPIDERCRANE DESIGN

SpiderCrane is made of three fixed pylons and
a fixed gibbet. A pulley is mounted at the top
of each pylon, allowing the sliding of a cable.
These three cables are attached to a ring, and by
varying their length, the ring can be moved in the
surrounding space. The end of the gibbet is above
the plane formed by the three pulleys and at the
centre of the triangle formed by the pylons. At
the end of the gibbet, another pulley is mounted,
allowing the passage of the main cable. This cable
goes through the centre of the ring and is attached
to the load. The positioning of the load in space is
done by adjusting both the positioning of the ring
and the length of the main cable. All the cables
are controlled by means of DC motors equipped
with encoders, making it possible to measure the
length as well as the speed of the cables.

L1

L2

L3

L4 − L0

Load : (x1, x2, x3)

Ring : (x01, x02, x03)

Fig. 1. SpiderCrane

3. MODELING

3.1 Notation

The position of the load of mass m is given
by (x1, x2, x3), that of the ring of mass m0 by
(x01, x02, x03). The position of the main motor
is (x41, x42, x43) and its equivalent inertia m4.

The positions of the three secondary motors are
(x11, x12, x13), (x21, x22, x23) and (x31, x32, x33),
respectively, and their equivalent inertias with
respect to the cables m1, m2 and m3. The length
of the cable connecting the main motor to the
load is L4, with the portion going from the motor
to the ring being L0. The lengths of the cables
connecting the secondary motors to the ring are
given by L1, L2 and L3, respectively. The four
motors are torque-controlled and thus provide
directly the forces T1, T2, T3 and T4.

3.2 Dynamics

Tools of analytical mechanics are used to obtain
the dynamic equations of SpiderCrane. First, we
define a set q of coordinates, more numerous than
the minimal set of generalized coordinates:

q = (x1, x2, x3, x01, x02, x03, L0, L1, L2, L3, L4)

This set of coordinates is constrained by a set of
holonomic constraints

C1 =

3∑

i=1

(xi − x0i)
2 − (L4 − L0)

2 = 0 (1)

Cj =

3∑

i=1

(x0i − xji)
2 − L2

j = 0 j = 2...4 (2)

C5 =

3∑

i=1

(x0i − x4i)
2 − L2

0 = 0 (3)

which describe the geometric relationship between
the position of the crane components and the
length of the cables.
The external forces acting in the directions de-
scribed by q are given by the motors

Fext = (0, 0, 0, 0, 0, 0, 0, T1, T2, T3, T4)

Classical Lagrange method cannot be used to
obtain the dynamic equations because the set of
coordinates is not a set of generalized coordinates.
Thus, a Lagrange formalism with constraints is
used as in the case of non-holonomic constraints
(Greenwood, 1977). It applies directly to Spider-
Crane:

d

dt
(
∂L

∂q̇i

) −
∂L

∂qi

=
5∑

j=1

λj

∂Cj

∂qi

+ Fext−i

i = 1, ..., 11 (4)

where λj are the Lagrange multipliers and L is
the Lagrangian, i.e. the difference between kinetic
and potential energy:

L = Wkin − Wpot (5)

For SpiderCrane, the kinetic energy is given by:



Wkin =
1

2
(

3∑

i=1

(mẋi
2 + m0ẋ

2
0i) +

4∑

i=1

miL̇i

2
(6)

and the potential energy by:

Wpot = mgx3 + m0gx03 (7)

Introducing (5), (1), (2) and (3) into (4), gives

mẍ1 = (x1 − x01)λ1, (8)

mẍ2 = (x2 − x02)λ2, (9)

mẍ3 = (x3 − x03)λ3 − gm, (10)

m0ẍ01 = (x01 − x1)λ1 + (x01 − x11)λ2 +

(x01 − x21)λ3 + (x01 − x31)λ4 +

(x01 − x41)λ5, (11)

m0ẍ02 = (x02 − x2)λ1 + (x02 − x12)λ2 +

(x02 − x22)λ3 + (x02 − x32)λ4

+(x02 − x42)λ5, (12)

m0ẍ03 = (x03 − x3)λ1 + (x03 − x13)λ2 +

(x03 − x23)λ3 + (x03 − x33)λ4

+(x03 − x43)λ5 − gm0, (13)

0 = (L4 − L0)λ1 − L0λ5, (14)

m1L̈1 = T1 − L1λ2 − L0 (15)

m2L̈2 = T2 − L2λ3 − L0 (16)

m3L̈3 = T3 − L3λ4 − L0 (17)

m4L̈4 = T4 + (L0 − L4)λ1 (18)

These equations, together with (1)- (3), result in
a set of differential algebraic equations (DAE)
describing the process. Standard integration tech-
niques can be used (Gear and Petzold, 1984).
Here, however, it is sufficient to express the La-
grange multipliers with the help of the holonomic
constraints: differentiating the constraints twice
and introducing the dynamic equations, one can
solve for the Lagrange multipliers. The constraints
remain satisfied throughout the simulation if the
initial conditions satisfy them.

4. FLATNESS

It is shown in (Kiss et al., 1999) that any object
belonging to the crane class verifies the flatness
property. The SpiderCrane belonging to this class,
it should be no exception. However the demon-
stration given therein is somewhat not trivial and
examples presented quite succint. Therefore the
exposition will be given in full breadth herafter.

Definition 1. A system ẋ = f(x, u) with u ∈ R
m

and x ∈ R
n is said to be flat if there exists an

output y ∈ R
n such that:

- the components of y are independent;

- x and u can be expressed as functions of y and
its derivatives up to the r-th order

x = F(y, ..., y(r−1)) u = P(y, ..., y(r)) r ∈ N

with F and P satisfying identically Ḟ = f(F ,P)

In the case of SpiderCrane, one has:

x = (x1, x2, x3, x01, x02, x03, L0, L1, L2, L3, L4

ẋ1, ẋ2, ẋ3, ˙x01, ˙x02, ˙x03
˙, L0, L̇1, L̇2, L̇3, L̇4)

y = (x1, x2, x3, x03)

u = (T1, T2, T3, T4)

Using (8), (9) and (10), x01, x02 and λ1 can be
expressed as:

x01 = x1 −
mẍ1

λ1

=F1(x1, ẍ1) (19)

x02 = x2 −
mẍ2

λ2

=F2(x2, ẍ2) (20)

λ1 =
mẍ3 + gm

x3 − x03

=F3(x3, x03, ẍ3) (21)

Differentiating (19) and (20) gives:

ẋ01 =F4(x1, ẋ1, ..., x
(3)
1 ) (22)

ẋ02 =F5(x2, ẋ2, ..., x
(3)
3 ) (23)

Solving the constraint equations (1)-(3) for Lj

with j = 0, ..., 4 and using (19) and (20) leads
to

Lj = F6+j(x1, ẍ1, x2, ẍ2, x3, ẍ3, x03)

j = 0, ..., 4 (24)

Time differentiation of (24) gives:

L̇j = F11+j (x1, ..., x
(3)
1 , x2, ..., x

(3)
2 , x3, ..., x

(3)
3 ,

x03, ẋ03) j = 0, ..., 4. (25)

Equations (19)-(25) establish that the states can
be expressed as functions of the chosen outputs
and their derivatives.
Now, it remains to express the inputs as functions
of the outputs and their derivatives and, for this
purpose, (22), (23) and (25) need to be differenti-
ated:

ẍ01 =F16(x1, ẋ1, ..., x
(4)
1 ) (26)

ẍ02 =F17(x2, ẋ2, ..., x
(4)
2 ) (27)

L̈j =F17+j(x1, ..., x
(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3

, x03, ..., ẍ03) j = 0, ..., 4 (28)



Solving (11)-(14) for λ2, λ3, λ4 and λ5, and using
(19), (20), (21), (24), (26) and (27), gives:

λ1+i = Pi (x1, ..., x
(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ,

x03, ..., ẍ03) i = 1, ..., 4 (29)

Finally, solving (15)-(18) for T1, T2, T3 and T4,
and using (21), (24), (25), (28) and (29), results
in:

Ti = P4+i (x1, ..., x
(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ,

x03, ..., ẍ03) i = 1, ..., 4 (30)

The condition expressing the inputs as functions
of only the outputs and their derivatives is then
satisfied. Hence, SpiderCrane is a flat system.

Remark 1. Expressions (30) allow computing in
a simple manner the inputs to be applied to
SpiderCrane in order to move the load along a
prescribed trajectory.

5. OBSERVABILITY

In the nonlinear definition of observability ac-
cording to Hermann and Krener (1977), a certain
output function is given as a function of time
t → y(t, 0, x(o), u). A state x1 is called indistin-
guishable from x2, if y(t, 0, x1, u) = y(t, 0, x2, u)
for every admissible input u. The system is observ-
able if x1 beeing indistinguishable from x2 implies
x1 = x2. This definition has a drawback when one
seeks to go beyond the local, inasmuch as a long
time could possibly be needed so as to distinguish
x1 from x2. Additionaly the classical extension
of the algebraic test existing for linear system
ascertains observability only in a local sense. In
the following definition, it is admitted that the
output function y is known together with all its
derivatives up to a certain fixed order. Then if the
state can be determined instanteneously based on
the knowledge of the aforementioned quantities,
the system will be called observable.

Definition 2. A system ẋ = f(x, u), y = h(x) is
observable if there exists a function ℑ such that
x = ℑ(ymes, ..., y

(r)
mes, u, ..., u(p)) and ℑ̇ = f(ℑ, u),

where x are the states, ymes the measured outputs
and u the inputs, r, p ∈ N.

For the following states, outputs and inputs, it
will be shown that SpiderCrane is observable
according to Definition 2:

x = (x1, x2, x3, x01, x02, x03, L0, L1, L2, L3, L4

ẋ1, ẋ2, ẋ3, ˙x01, ˙x02, ˙x03
˙, L0, L̇1, L̇2, L̇3, L4)

ymes = (L1, L2, L3, L4)

u = (T1, T2, T3, T4)

Using the constraints (2), we try to determine the
ring position as a function of the lengths L1, L2

and L3. This problem is equivalent to finding the
intersection of 3 spheres centered on the secondary
pulleys 1, 2 and 3 and with radius L1, L2 and L3.
This intersection is given by the two points 1 and 2
in Fig. 2, which is a well-known result in analytical
geometry (Gabriel-Marie, 1996).

1

2

Fig. 2. The constraints give the ring position

Position 2 can be eliminated by inspection since,
in this case, the cables need to push the ring
load, which is an infeasible scenario. Hence, it is
straightforward to express the ring position as a
function of L1, L2 and L3:

x0i =ℑ1(L1, L2, L3) i = 1, ..., 3 (31)

Combining (3) with (31) gives:

L0 = ℑ4(L1, L2, L3, L4) (32)

Remark 2. The solution of Constraint (3) pro-
vides two values for L0, including a negative one.
Since the length of the cable cannot be negative,
only the positive solution will be considered.

Then, simple successive differentiations of (31)
and (32) give:

ẋ0i =ℑ4+i(L1, L̇1, L2, L̇2, L3, L̇3)

i = 1, ..., 3 (33)

L̇0 =ℑ8(L1, L̇1, L2, L̇2, L3, L̇3, L4, L̇4)

ẍ0i =ℑ8+i(L1, ..., L̈1, L̈2, ..., L̈2, L3, ..., L̈3)

i = 1, ..., 3 (34)

L̈0 =ℑ12(L1, ..., L̈1, L2, ..., L̈2, L3, ..., L̈3,

L4, ..., L̈4) (35)



Injecting (32) into (14)-(18), and upon simple
algebraic manipulations, the Lagrange multipliers
can be expressed as:

λ1 =
m4L̈4 − T4

ℑ4 − L4

=ℑ13(L1, L2, L3, L4, L̈4, T4) (36)

λ2 =−
m1L̈1 − T1 + ℑ4

L1

=ℑ14(L1, L2, L3, L4, L̈1, T1) (37)

λ3 =−
m2L̈2 − T2 + ℑ4

L2

=ℑ15(L1, L2, L3, L4, L̈2, T2) (38)

λ4 =−
m3L̈3 − T3 + ℑ4

L3

=ℑ16(L1, L2, L3, L4, L̈3, T3) (39)

λ5 =
m4L̈4 − T4

ℑ4

=ℑ17(L1, L2, L3, L4, L̈4, T4) (40)

Remark 3. The Lagrange multipliers are not de-
fined when the length of the corresponding cable
tends towards zero. Physically, this means that
singularities appear when: (i) the load position is
identical to the ring position, (ii) the ring is at one
of the secondary pulleys, or (iii) the load is at the
main pulley.

From (11)-(13) and considering (31)-(34), the load
position can be determined:

x1 =
−m0ℑ9 + (ℑ1 − x11)ℑ14 + (ℑ1 − x21)ℑ15

ℑ13

+
(ℑ1 − x31)ℑ16 + (ℑ1 − x41)ℑ17

ℑ13
−ℑ1,(41)

x2 =
−m0ℑ10 + (ℑ2 − x12)ℑ14 + (ℑ2 − x22)ℑ15

ℑ13

+
(ℑ2 − x32)ℑ16 + (ℑ2 − x42)ℑ17

ℑ13
−ℑ2,(42)

x3 =
−m0ℑ11 + (ℑ3 − x13)ℑ14 + (ℑ3 − x23)ℑ15

ℑ13

+
(ℑ3 − x33)ℑ16 + (ℑ3 − x43)ℑ17

ℑ13

−
gm0

ℑ13
−ℑ3. (43)

Remark 4. Expressions (41)-(43) become singular
when ℑ13 tends towards zero. It follows from

(36), i.e. ℑ13 = λ1 = m4L̈4−T4

ℑ4−L4

, that m4L̈4 −

T4 6= 0 is necessary to avoid singularity. In order
to interpret this condition physically, we rewrite
(18) as m4L̈4 − T4 = (L0 − L4)λ1. Since (L0 −

L4)λ1 represents the tension in the main cable,
the load position is unspecified when this tension
is zero. This occurs either when the mass of the

load vanishes or when the inertial force m4L̈4

compensates exactly the motor force T4, a very
rare situation.

By inspection of (41)-(43), we can conclude that
the load position depends only on the cable
lengths, their derivatives and the inputs T1, T2,
T3 and T4:

xi =ℑ17+i(L1, ..., L̈1, L2, ..., L̈2, L3, ..., L̈3,

L4, ..., L̈4, T1, T2, T3, T4)

i = 1, ..., 3 (44)

Finally, differentiating (41) and (43) gives:

ẋi =ℑ20+i(L1, ..., L
(3)
1 , L2, ..., L

(3)
2 , L3, ..., L

(3)
3 ,

L4, ..., L
(3)
4 , T1, Ṫ1, T2, Ṫ2, T3, Ṫ3, T4, Ṫ4)

i = 1, ..., 3 (45)

Expressions (31)-(34), and (44)-(45) show that
x1, x2, x3, x01, x02, x03, L0, L1, L2, L3, L4,
ẋ1, ẋ2, ẋ3, ẋ01, ẋ02, ẋ03, L̇0, L̇1, L̇2, L̇3, L̇4 can
be reconstructed from L1, L2, L3, L4, their time
derivatives, the inputs T1, T2, T3, T4 and their
time derivatives. This confirms observability as
per Definition 2.

6. SIMULATION

In order to illustrate the flatness property pre-
sented above, the behavior of SpiderCrane is eval-
uated in simulation for a displacement from an
equilibrium point A to an equilibrium point B.
Reference trajectories for the flat outputs are
chosen constant for x2, x3, x03 and as a poly-
nomial for x1 (Fig. 3). To calculate the inputs,
the flat outputs and their derivatives up to the
4th order are needed according to (30). Thus,
in order to construct the polynomial trajectory,
not only the initial and final positions must be
specified, but also all derivatives up to 4th order.
Hence, 10 conditions are enforced on the trajec-
tory (5 initial conditions and 5 terminal condi-
tions), thus making the minimal polynomial of
order 9: x(0)2Ref = 0.8, ẋ(0)1Ref = ẍ(0)1Ref =

x(0)
(3)
1Ref = x(0)

(4)
1Ref = 0, x(Tf = 1)1Ref = 0.2,

ẋ(1)1Ref = ẍ(0)1Ref = x(1)
(3)
1Ref = x(1)

(4)
1Ref = 0.

Fig.4.i represents a slow quasi-static displacement
that takes 10 sec. Fig.4.ii illustrates the same
displacement in a much faster mode (1 sec) using
the inputs T1, T2, T3 and T4 calculated from (30).
A comparison of the two figures indicates that it
is necessary to use the ring dynamics in a more
efficient way to improve the speed of displacement.
On the one hand, when a quasi-static displace-
ment is performed, the ring position is almost
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Fig. 3. Reference trajectories for the flat outputs
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Fig. 4. Displacement from point A to B. (i) In a
quasi-static manner (10 sec).(ii) In a highly
dynamic way (1 sec)

vertical at the load’s position (x1
∼= x01, x2

∼=
x02). Hence the control law is just given by the
geometric constraints. On the other hand, for a
fast load displacement, the control law needs to
manage the strong inherent dynamical couplings.
This results in a complex displacement of the
ring. For instance, Fig.5 gives the system states
and inputs for a fast displacement. The reference
trajectories are perfectly tracked by SpiderCrane.
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Fig. 5. States and inputs for a fast displacement.

7. CONCLUSION

SpiderCrane is a new crane design allowing fast
displacements of the load. Its flatness and ob-
servability properties provide several advantages.
First, thanks to flatness, motion planning (i.e.
trajectory generation and computation of the cor-
responding inputs) is achieved with ease. Sec-
ondly, observability gives the possibility to con-
struct monitoring tools directly from the motor
sensors, i.e. without having to rely on a position
measurement using, for example, a camera.
Several research alleys can be envisioned from this
initial work such as the possibility of rejecting a
disturbance (e.g. a strong gale) by synchronizing
the load on a reference trajectory. Furthermore,
the construction of a laboratory-scale model of
SpiderCrane could be useful in ascertaining the
research done so far and exploring new paths.
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