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Abstract: In this paper the development of a model for Mamdani type fuzzy rule-based systems 
using the new concept of granular computing (GrC) is presented. In this study a GrC algorithm is 
used to capture the required information in the form of data granules within a high dimensional 
complex database. The initial collection of information granules is used as a rule-base for a 
fuzzy inference system (FIS) which is optimised by utilising an Adaptive Genetic Algorithm 
(AGA). The proposed methodology is applied to real data relating to the heat treatment of alloy 
steels. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Fuzzy models have been used in many applications 
where system simplicity and transparency are 
required. There have been many approaches to fuzzy 
modelling, including: linguistic fuzzy modelling 
(Sugeno and Yasukawa, 1991), data-based relational 
modelling (Wang and Mendel, 1992), Tagaki-
Sugeno – TSK – type  fuzzy systems (Takagi and 
Sugeno, 1985), neural-networks based approaches 
(Harris, et. al., 2002) and evolutionary computing 
based approaches (Bastian, 2000). Most fuzzy 
modelling efforts concentrate on improving 
modelling performance while maintaining system 
transparency. Depending on the particular 
application one can drive the model towards 
performance (Neurofuzzy, Evolutionary Computing 
approach) or towards transparency (TSK, Mamdani). 
This paper takes advantage of the recent 
developments in Granular Computing- GrC 
(Bargiela and Pedrycz, 2003) to be used as a method 
for discovering knowledge within a database. This 
knowledge is used in the form of a rule-base of a 
Mamdani type fuzzy system, the simplest and most 

transparent type of fuzzy systems. Finally, a 
parametric optimisation of the fuzzy inference 
engine is performed by the use of an adaptive genetic 
algorithm. This paper is organised as follows: The 
concept of capturing knowledge within complex high 
dimensional databases is presented in Section 2.  The 
translation of the GrC information granules into a 
Mamdani fuzzy rule base is shown in Section 3. In 
Section 4 the optimisation of the resulting fuzzy 
structure using an adaptive genetic algorithm is 
discussed. Finally, Section 5 includes a modelling 
paradigm based on real heat treatment data of alloy 
steels, and Section 6 includes concluding remarks on 
the proposed modelling methodology. 
 
 

2. KNOWLEDGE DISCOVERY USING 
GRANULAR COMPUTING 

 
Data clustering techniques offer a simple way of 
finding relationships between data sets and grouping 
data together. Fuzzy C-Means (FCM), the Mountain 
method and probabilistic measures in fuzzy 
clustering are among the many clustering techniques 



that have been used for data clustering in fuzzy 
systems. The main drawback of these methods is that 
the quality of the solutions (partitions) depends on 
the initial values (initial cluster centres - FCM), on 
estimating the number and location of initial 
clusters’ centres (mountain method) and on several 
other statistical considerations (such as:  probabilistic 
measures for fuzzy clustering). 
 
Conversely, one of the advantages of GrC lies in the 
fact that granules are grown-evolved (not created 
neither estimated) from the actual data and therefore 
there is a strong link between the final data 
granulation result and the initial data set. The 
transparency of the granules (or hyper-boxes in the 
case of more than two dimensions) inspires the 
possibility of combining GrC with Fuzzy Systems. 
The control of the level of information abstraction, 
geometrical measures, similarity and cardinality 
measures are also amongst the criteria of information 
granulation using GrC. 
 
In this paper a modified version of the data 
granulation algorithm, as presented in (Bargiela and 
Pedrycz, 2003), is used. This recursive algorithm 
includes the following steps: 
 
• Find the two most compatible information 

granules and merge them together as a new 
information granule containing both original 
granules. 

• Repeat the process of finding the two most 
compatible granules until a satisfactory data 
abstraction level is achieved. 

 
The most important concept of the above process is 
the definition of the compatibility measure. This can 
be purely geometrical (distance between granules, 
size of granules, volume of granules), density driven 
(ratio of cardinality versus granule volume) or 
similarity driven. In this case the compatibility 
measure is a function of the distance between the 
granules and a function  of the information density of 
the newly formed granule. 
 
Even though this process can be accidentally 
identified as hierarchical clustering there is a major 
difference; each granule consists of the same objects 
(sub-granules). In hierarchical clustering new objects 
are created and the boundaries of the new clusters 
can be in an area where no data are present. The 
growth of clusters allows strong linkage between the 
original data set (transparency) and it allows visual 
monitoring methods for terminating granulation. 
 
Figure 1 shows an example of two-dimensional (k=2) 
data granulation at various levels of information 
granulation. The top plot consists of the raw two-
dimensional data and the subsequent plots show how 
information is merged to finally form a set of 
information granules. 
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Fig. 1. Snapshot of various levels of data abstraction   

during an iterative information granulation 
process. 

 By considering the merging of each set of granules 
as some loss of information, it is possible to link the 
geometrical distance (lost during merging) to the 
information loss. Information loss can be monitored 
during the granulation process and this information 
can be used on-line to decide on a termination point 
or can also be used off-line in order to determine the 
granulation performance for various compatibility 
parameters. 
 
 

3. GRANULAR COMPUTING DATA AS A 
FUZZY RULE BASE 

 
Consider the granulation of a database provided by a 
multi-input single-output (MISO) system. By 
granulating across each input dimension individually 
and at the same time across the whole input space it 
is possible to identify relational information (rules) 
similar to a Mamdani FIS rule-base: 
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Where ,  ,  ,Oi i iA B L  are information granules 
discovered during the GrC process and i: is the 
number of granules. 
 
The information captured using GrC defines the 
initial structure of the fuzzy rule-base but the fuzzy 
system parameters and the inference engine itself is 
not yet optimised. An evolutionary computing 
algorithm, such as a Genetic Algorithm, can be used 
to optimise the system’s parameters.  



Even though it is untimely to consider the modelling 
performance of the FIS at this stage, it is possible to 
run modelling tests of the raw granules (rule-base) in 
order to obtain a performance indication, which can 
be useful during the modelling process. This will be 
shown in Section 5 using a numerical example. 
 
 

4. OPTIMISING THE FUZZY INFERENCE 
SYSTEM USING AN ADAPTIVE GENETIC 

ALGORITHM 
 
Due to the search behaviour and ability of genetic 
algorithms, they have been used extensively in the 
past to optimise fuzzy inference systems. In this 
paper an adaptive genetic algorithm  (Srinivas and 
Patnaik, 1994) will be used to perform parametric 
optimisation of the FIS, which was obtained using 
the concept of GrC. 
 
 
4.1 The AGA Structure 
 
The population of this particular GA consists of 100 
chromosomes each representing a single FIS (a single 
model candidate). Each chromosome contains sub-
chromosomes consisting individual granular rules as 
presented in Section 3. Each granule is represented 
by a Gaussian membership function of centre c and 
standard deviation σ ; these parameters will in turn 
be optimised during the AGA process. 
 
4.2 Fitness Function 
 
The fitness function will assess the performance of 
each individual in the population, and based on 
Goldberg’s linear scaling (Goldberg, 1989), the 
fittest individuals will evolve. An RMSE fitness 
function has been selected as follows: 
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Where n: number of training data points, D(i): model 
prediction output value for a given i-th input data set, 
S(i): original output value for a given i-th data set. 
 
 
4.3 Crossover and mutation 
 
A single point crossover operation has been selected 
and the probabilities of crossover and mutation were 
varied according to the adaptation mechanism. In this 
particular application (see Section 5 for application 
details: modelling of properties of alloy steels) the 
adaptation mechanism has proven to give a superior 
performance as compared to a simple GA. 
 
 
 
 

The flow diagram of the whole GrC and AGA 
modelling process is shown in figure 2. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. EXPERIMENTAL STUDIES 
 
The prediction of properties of heat-treated steel is 
based on chemical composition and heat treatment 
data. This is a multiple-input single-output (MISO) 
process that is difficult to model due to the following 
reasons: a) non-linear behaviour of the process,       
b) high interaction between the multi-variable input 
space, c) uncertainty of the experimental data and d) 
high complexity of the optimisation space.  Black 
box modelling techniques (such as neural-networks - 
Tenner, 1999) are usually employed to tackle this 
problem with an acceptable level of performance but 
fail to make use of experts’ (metallurgists) 
knowledge that will prove to be very valuable. The 
technique presented in this paper offers a good 
performance level while maintaining the high 
transparency of the system during the modelling 
process. System transparency is often desirable in 
these kinds of systems as a better understanding of 
the physical process can be achieved and experts’ 
knowledge can be used along with the model or 
embedded into the model (incremental learning). 
 
A highly dimensional data set taken from the steel 
industry is used for modelling purposes. Each set of 
points represents 15 input variables and 1 output 
variable. The input variables include both: a) the 
chemical composition of steel (i.e. % content of C, 
Mn, Cr, Ni etc.) and b) the heat treatment data 
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Fig. 2. The Modelling Process Flow Chart. 
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(Tempering temperature, Cooling medium etc.). The 
output variable (the steel property to be modelled – 
predicted) is the Tensile Strength (TS). The TS data 
set consists of 3760 data points representing steels of 
various grades. The large TS data set will be used to 
challenge the ability of GrC to extract and capture 
information within large and complex databases. A 
visualisation of the data density in three out of the 
sixteen possible dimensions is presented in figure 3. 
 

 
Fig. 3.  TS Data density histogram. 

The data distribution and density is complex and not 
homogenous which represents a difficult task for the 
GrC algorithm to capture knowledge effectively 
within the sixteen dimensional space. 
 
 
5.1 Performance evaluation of information 

granulation 
 
Modelling the non-optimised FIS can assess the 
initial performance of the information granulation 
process. Using the same system structure as 
presented in Section 3 a number of FISs are formed 
using various levels of information granulation data 
(various number of rules-information granules). In 
this case the TS data set is used for the modelling 
process; 75% of the data are used for the training 
(information granulation) and the rest is used for the 
validation of the extracted information granulation 
model. 
 
The following table presents the performance (Root 
Mean Square Error - RMSE) of the non-optimised 
FIS-GrC models, for various levels (number of rules) 
of information granulation. 
 
 

Table 1 – Performance of non-optimised FIS-GrC 
using various levels of granulation, TS Data 

No. of rules-
Information 

granules 

RMSE 
Training 

RMSE 
Validation 

25 104 120 
50 83 105 
100 58 92 
150 37 82 

 
As expected (from the theory) the higher the number 
of information granules the better the performance of 
the system. The drawback is that the transparency 
level and maintainability of the FIS-GrC system is 
reduced as the number of granules is increased. The 
imbalance between the training and validation 
performance, which can be seen in Table 1, was 
expected because the fuzzy structure is not yet 
optimised. The performance of the validation 
(generalisation ability) will be dramatically improved 
by optimising the fuzzy inference engine, as will be 
shown in the next section. 
 
 
5.2 Post-Optimisation results of FIS-GrC model 
 
Using past experience on the paradigms relating to 
the Mamdani FIS, it has been decided that 50 rules 
(information granules) can achieve a good accuracy 
level while preserving the high transparency and 
maintainability of the system. Therefore, the 
objective of the optimisation algorithm is to maintain 
the training performance previously seen with 150 
granules (Table 1) while reducing the number of 
granules to 50 and improving the validation 
performance. The optimisation structure discussed in 
Section 4 is used. 
 
Figure 4 shows the progress of the objective function 
within the AGA optimisation. The performance of 
the best individual is shown in table 2. 
 

 
Fig. 4. AGA Objective Function. 

 
 



Table 2 - Performance of optimised FIS-GrC, TS 
data 

No. of 
rules-Inf. 
granules 

RMSE 
Training 

RMSE 
Validation 

RMSE 
Combined 

50 41.34 53.96 48.07 
 
 
A plot of the modelling results, measured versus 
predicted values (TS), are presented  in figure 5. 

 
Fig. 5. GrC-FIS, Training, Validation, Combined 

Performance, of the TS data set. 

 
Training and validation performance is comparable 
to NN, NF-Mamdani and NF-TSK performance 
levels. The introduction of ‘noise’ during validation 
is expected as dome unseen data points are not 
included in the rules’ structure. 
 
A visualisation of two of the optimised Mamdani 
fuzzy rules is shown in figure 6. Each variable is 
shown individually (only 6 out o 16 are shown and 
only two rules instead of fifty for simplicity). The 
rule structure presented is the one described by 
equation 4. 
 

 
Fig. 6. Mamdani type fuzzy rules of the optimised   

(GA)  system. 

 
As can be seen from figure 7, the input variables 
include chemical compositions as well we heat 
treatment data coded into fuzzy sets. Heat treatment 
data include test depth and size of the sample taken, 
test site were the alloy was produced, hardening and 
tempering temperature and cooling medium. The 
transparency of the system can be verified by the 
linguistic interpretability of the rules, i.e. using figure 
7: Rule1: “High T.Temp  low TS”  and by 
observing Rule 2: “Lowering T.Temp  TS is 
increased”. This modelled behaviour is also 
confirmed by theory and expert’s (metallurgist) 
knowledge. 
 
 
5.3 Performance comparison 
 
By comparing the FIS-GrC modelling technique to 
current black-box modelling techniques (NN, NF) it 
is possible to see the similarity in performance level 
between all methodologies for the given paradigm. 
 
For instance, a NN approach has also been 
investigated for the paradigm presented in this 
section. An unseen data set, consisting of twelve new 
data points has been used for comparison. The 
performance of the two methodologies can be seen in 
Table 3 and Figure 7. 
 
 
 



Table 3 - Performance of FIS-GrC as compared with 
a NN approach, new TS data (12 data points) 

Measured 
TS 

NN 
Predicted 

TS 

GrC-FIS 
Predicted 

TS 
1319 1268 1302 
1354 1271 1336 
970 985 1015 

1038 982 1005 
908 1002 948 
894 945 905 
918 929 942 
909 930 949 
956 930 949 
740 734 852 
737 734 776 
689 698 756 

 RMSE: 
46.23 

RMSE: 
46.73 

 
 

 
Fig. 7. NN, GrC-FIS fit of new unseen data (12 data 

points). 

 
The FIS-GrC technique has a comparable 
performance but not superior as compared to black-
box modelling techniques (based on tests on the same 
application), as it was expected due to the 
transparency-performance contradictory nature of the 
objectives.  
 
On the other hand the combination of GrC with a 
Mamdani FIS offers transparency levels that are by 
far superior as compared to black-box or grey-box 
modelling methodologies.  
 
 

6. CONCLUSION 
 
Fuzzy modelling and knowledge discovery, within 
databases containing complex relationships, using 
Granular Computing is discussed in this paper. By 
taking advantage of the ability of GrC to capture 
knowledge in a transparent way and combining this 
knowledge with a Mamdani fuzzy inference engine it 
is possible to build a very transparent system capable 
of modelling various complex processes. As shown 
in the previous sections the system needed to be 
optimised via an adaptive genetic algorithm. 
 

The proposed modelling methodology has 
comparable performance with black-box modelling 
techniques (Neural Networks, Neural-Fuzzy) but 
offers very high transparency during the modelling 
process and the final model is also of high 
transparency. Due to the transparency of the process, 
experts’ knowledge can be used during the modelling 
process for deciding various modelling or 
optimisation parameters, which leads to improved 
performance of the final model. Additionally, the 
transparency of GrC will always help to develop in 
the area of incremental learning, and system 
adaptation via fuzzy systems. By granulating new 
data sets using GrC it is possible to explore the 
technique of combining new knowledge with the 
existing rule-base without significant loss of 
performance. 
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