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Abstract: This paper is concerned with the adaptive sliding-mode control of a class
of nonlinear systems with model uncertainties. A direct adaptive sliding-mode
control scheme is presented. A network of Gaussian radial basis functions with
variable weights was used to compensate the model uncertainties. A new growing
scheme of this network is proposed. It starts with a loose structure in order to
reduce the computational effort. More nodes are added to the network progressively
in order to improve the transient behaviour. The adaptive law developed using the
Lyapunov synthesis approach guarantee the stability of the overall control scheme,
even in the presence of modelling error. The performance of the control scheme is
illustrated by simulation studies with convincing results. Copyright c©2005 IFAC
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1. INTRODUCTION

The robustness in the face of model uncertainties
in a control system with a sliding-mode controller
(SMC) is due to the high-frequency switching
term of the control, which in practice equals to a
continuous high-gain control (Utkin et al., 1999).
The switching gain has to be higher than the
known norm of the uncertainties. When the un-
certainties grow beyond this bound, the switching
controller is no longer capable of maintaining the
sliding mode, and the system loses robustness to
uncertainties and disturbances. A more conserv-
ative estimation of the uncertainties may help to
maintain the stability but leads to a higher control
gain and more control effort. Furthermore, this
may also lead to problems with parasitic dynamics
of the system (Young and Kokotovic, 1982). It
is then necessary to extend the standard SMC
to an adaptive one (Slotine and Coetsee, 1986).
However, classical parameter estimation methods

and adaptive control schemes require that the
system model be linearly parameterised and that
the nonlinearities are exactly known. In general,
this is not always the case.

In this paper, a direct adaptive SMC scheme is
proposed based on a network of Gaussian radial
basis functions (GRBF) for control of nonlin-
ear systems with model uncertainties and distur-
bances. The reason of choosing a GRBF network
is that its outputs are linear combinations of the
neurons outputs, such that the stability of the
overall system can be easier achieved. The prop-
erties of a GRBF arranged on a regular lattice
for approximation of nonlinear functions are well
studied in (Sanner and Slotine, 1992) and (Lewis
et al., 1999). Given an estimation of the upper
bound of the function to be approximated, the
error bound can be calculated analytically.



The main drawback of such networks is that the
neurons are located on a fixed lattice. Therefore,
the quality of the function approximation depends
on the density of the lattice. However, a high
density of the lattice as well as a large operating
range leads to a network of very large size, and
this causes a high computational effort. In order
to reduce the network size, some improvements
have been proposed by neglecting the neurons,
which are located far from the system trajectory
and, thus, have little influence on the function ap-
proximation (Fabri and Kadirkamanathan, 1996).
However this neglect leads to a new source of
disturbance that is very difficult to model.

In this paper, a new network growing scheme is
proposed, where the network starts with a very
loose regular grid, so that the approximation error
bound can be estimated. New nodes based on
subgrids of higher density are inserted into the
network according to the control error. The idea
of subgrids was first proposed by (Liu et al., 1999),
but no quantitative description of the approxi-
mation error was given there. In this paper, a
switching control term is applied to compensate
the network approximation error. Therefore, an
excellent transient performance and a relatively
small network size can be expected. The remain-
der of this paper is organised as follows. In Section
2, the problem statement is presented for a class
of uncertain nonlinear systems where the uncer-
tainties fulfil the matching condition. In Section
3, the adaptive SMC scheme based on a growing
GRBF network is developed. The stability of the
overall system is analysed. The performance of
the presented control scheme is demonstrated in
section 4 by simulation studies of the tracking
control of a two-link robot manipulator.

2. PROBLEM STATEMENT

Consider the following multivariable time-varying
system described in nonlinear phase-variable canon-
ical form (NPVCF) as defined by (Sommer, 1980)

ẋ(t) = f(x, t) + B(x, t) u(t) . (1)

x ∈ R
n is the state vector, defined as

x(t) =
[

x1 . . . x
(n1−1)
1 . . . xm . . . x(nm−1)

m

]T

,

n = n1 + . . .+ nm (2)

and u(x, t) ∈ R
m is the control vector. The

vector f(x, t) ∈ R
n and the input matrix

B(x, t) ∈ R
n×m are nonlinear functions and are

assumed to be differentiable with respect to x and
t. Both functions

f(x, t) =











f 1(x, t)
f 2(x, t)

...
fm(x, t)











, B(x, t) =











B1(x, t)
B2(x, t)

...
Bm(x, t)











are composed of m subvectors and submatrices,
respectively,

f j(x, t) =















ẋj(t)
ẍj(t)

...

x
(nj−1)
j (t)

fj(x, t)















, Bj(x, t) =

[

0

bT
j (x, t)

]

for j = 1, 2, . . . , m.

bT
j (x, t) =

[

0 . . . 0 bj,j(x, t) . . . bj,m(x, t)
]

is the
last row of matrix Bj(x, t), where bj,j(x, t) 6= 0
must be satisfied to be controllable. If the system
is not given in NPVCF, one has to find a trans-
formation to transform it into the canonical form.
However, this is not always possible. Conditions
for that are given in (Sommer, 1980) and a more
detailed analysis with respect to the controllabil-
ity can be found in (Isidori, 1995).

If measurements of the state vector x are avail-
able, the control objective is, to find a control
u(x, t) such that the state x(t) tracks the desired
trajectories

xd(t) =
[

xd1
. . . x

(n1−1)
d1

. . . xdm
. . . x

(nm−1)
dm

]T

,

which are known functions of time and have
bounded derivatives. In terms of the tracking error

e(t) = x(t) − xd(t) (3)

the control task is, to find a proper u(x, t) such
that e → 0 as t→ ∞.

Consider model uncertainties in the system and
rewrite equation (1) by dropping all arguments as

ẋ = (f0 + ∆f) + (B0 + ∆B)u , (4)

where f 0 ∈ R
n and B0 ∈ R

n×m are the
nominal parts of f and B, respectively. ∆f ∈ R

n

and ∆B ∈ R
n×m represent the uncertainties

in the system model. B0 must have full rank.
Assume that the system uncertainties fulfil the
matching conditions (Drazenović, 1969), namely
the uncertain dynamics can be lumped together
into one vector, the system can be described as

ẋ = f0 + B0u + B0h , (5)

where h ∈ R
m represents the unknown dynamics

of the system. In order to have a metric for
describing the tracking error dynamics, a time-
varying sliding surface

s(t) = Ge(t) (6)

with s ∈ R
m and G ∈ R

(m×n) is introduced. The
constant gain matrix G must have full rank and be
chosen such that when s → 0, the tracking error
e also tends to zero. The motion of the system
on the sliding surface depends only on the design
of G, which can be chosen by classical methods
(Slotine and Coetsee, 1986).



3. ADAPTIVE SLIDING-MODE CONTROL

3.1 The controller

For the unknown h from equation (5) an estima-
tion

ĥ = W Φ(x) (7)

is used, which is approximated by a GRBF net-
work. The network has n inputs, m outputs and
L hidden-layer neurons

Φ(x) =
[

φ1(‖x − ξ1‖) . . . φL(‖x − ξL‖)
]T
. (8)

W ∈ R
m×L is the matrix of the output weights

and

φi(‖x − ξi‖) = e
− 1

2 σ2

i

(x−ξi)
T(x−ξi)

(9)

are the Gaussian functions with the node positions
ξi in the lattice. Using the network arranged on a
regular lattice (Sanner and Slotine, 1992) at the
beginning, there exists an optimal output-weight
matrix W ∗ and a positive scalar ε0 such that

h = ĥ
∗

+ ε, ‖ε‖ ≤ ε0 (10)

with

ĥ
∗

= W ∗ Φ(x) . (11)

By increasing the number of neurons in the net-
work, the upper bound of the approximation error
ε0 can be reduced to be arbitrarily small. Define
W as the estimation of W ∗, and W̃ = W ∗ −
W , the adaptive SMC with a GRBF network is
described by the following theorem:

Theorem 1. For a dynamical system described by
equation (5), the tracking error converges asymp-
totically to zero with the control

u = ueq + usmc, (12)

with

ueq = − [GB0]
−1

G(f 0 − ẋd) − ĥ (13)

and

usmc = −ρ
(GB0)

Ts

‖(GB0)Ts‖
, ρ > ε0 . (14)

Proof: Consider the Lyapunov function candidate

V =
1

2
sTs +

1

2
γ tr(W̃ W̃

T
) , (15)

it follows that

V̇ = sTṡ + γ tr(W̃ ˙̃
W T) . (16)

The first term sTṡ of the above equation with the
definition of the control u from equation (12) and
the system equation (5) can be rewritten as

sTṡ = sTG(ẋ − ẋd)

= sTG(f0 + B0u + B0h) − sTGẋd

= sTGB0(h − ĥ − ρ
(GB0)

Ts

‖(GB0)Ts‖
)

= sTGB0(W
∗Φ + ε − WΦ − ρ

(GB0)
Ts

‖(GB0)Ts‖
)

= sTGB0(W̃Φ + ε − ρ
(GB0)

Ts

‖(GB0)Ts‖
) . (17)

Choosing the adaptation law for the network
weights as

Ẇ = − ˙̃
W =

1

γ
(ΦsTGB0)

T , (18)

it follows that

γ tr(W̃ ˙̃
W T) = −tr(W̃ΦsTGB0)

= −sTGB0W̃Φ, (19)

and equation (16) will be

V̇ = sTGB0ε − ρsTGB0
(GB0)

Ts

‖(GB0)Ts‖

= sTGB0ε − ρ
∥

∥sTGB0

∥

∥

≤
∥

∥sTGB0

∥

∥ (‖ε‖ − ρ) . (20)

If ‖ε‖ ≤ ε0 and ρ > ε0, then V̇ < 0 for
‖s‖ 6= 0. It follows that s and W̃ converge to
zero asymptotically and, thus, the tracking error
e converges to zero. �

The overall control scheme is shown in Figure 1.
ueq is the component of the manipulated variable
that is responsible to preserve the sliding mode
with the condition ṡ = 0. As it depends on the
unknown h its estimate ĥ is used. usmc is the
switching component of the SMC.
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+
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.
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[GB0]
-1G(f0 - xd)

Fig. 1. Block diagram of the adaptive sliding-mode
tracking control with a GRBF network

3.2 The GRBF network

The network starts with very few neurons. The
approximation error ε from equation (10) is upper
bounded by ε0, which can be calculated given a
conservative upper estimation of the uncertain-
ties (Sanner and Slotine, 1992). New neurons are



progressively added according to the novelty of
the system states. Considering the computational
effort, the idea of a growing network with several
subgrids (Liu et al., 1999) was adopted. The cen-
tres of the neurons are arranged on regular lattices
and the widths are determined by heuristic meth-
ods. The adaptation of the network is performed
only by the determination of the output weights.
Therefore, it remains linear in the parameters.
Then one can expect a fast convergence of the
adaptation. The crossings of the subgrids provide
only potential positions for the new neurons. Here,
a popular idea has been adopted, where the neu-
rons whose centres are included in a hypersphere
of the actual inputs will be activated. In practice,
for approximation of a nonlinear function defined
on a compact set, as shown in Figure 2 for a
two-dimensional case, the network starts with a
very loose 2 × 2 base grid, where only 4 neurons
are arranged on the edges. The arabian num-
bers denote the grids. Hyperspheres in the two-
dimensional case are circles of different radii. Fig-
ure 2 also shows that for the current system state
”∗” only those neurons from different subgrids
are activated which lie within the corresponding
hyperspheres.
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Fig. 2. Phase-plane portrait with an example of
active neurons at the current system state for
a lattice with three subgrids

It is very difficult to determine analytically a
proper amount of necessary neurons. A popular
idea is to add new neurons according to the track-
ing error (Fabri and Kadirkamanathan, 1996).
This leads to the problem that unnecessary neu-
rons might be included. When the initial con-
dition of the system lies far from the desired
trajectory and the transient period is relatively
long, one would get a very large network. Though
the network size can be reduced by including a

pruning strategy (Liu et al., 1999) (Li et al., 2001)
to delete superfluous neurons, the computational
effort might be intermittently very large.

In this paper, a time-varying measure of the
reasonable error bound is defined as

∆(t) =

{

η1e
−η2t for ‖s‖ > ε
ε for ‖s‖ ≤ ε

, (21)

where ε is the required accuracy, η1 and η2 are
design parameters to be chosen. ∆(t) seeks to rep-
resent the available tracking accuracy during the
transient period. This is based on the requirement
that the tracking error should converge faster than
some exponential function. New neurons are only
inserted into the network when the sliding vari-
able s(t) is larger than the current error bound
∆(t). For the design, the factor η1 can be chosen
as ‖s(0)‖. The exponent η2 decides about the
amount of neurons added to the network.

The introduction of new, denser ”higher-order”
subgrids has to satisfy the condition that the
tracking error is larger than the current error
bound ∆(t). Furthermore, the time period be-
tween adding of subgrids must be long enough. In
(Liu et al., 1999), 11 subgrids were used to control
a SISO system. In this paper, much less subgrids
are required. This is due to the use of a sliding-
mode control term for the compensation of the ap-
proximation error. The neurons of ”lower-order”
subgrids, especially those of the base grid, can be
treated as ”global” approximators, which try to
provide general information about the unknown
function on the entire compact set. The neurons of
the ”higher-order” subgrids can then be treated as
local approximators, which provide more details
about the unknown function in a certain region.

4. SIMULATION RESULTS

A two-link manipulator model (Utkin et al., 1999)
is used to demonstrate the performance of the
proposed control scheme. The dynamics of the
planar manipulator can be expressed as

M(q)q̈ + C(q, q̇)q̇ + r(q̇) = τ , (22)

where q =
[

q1 q2
]T

denotes the joint angles of
the links. M(q) ∈ R

2×2 stands for the inertial
mass matrix, C(q, q̇) ∈ R

2×2 comprises Coriolis
and centripetal forces, vector r(q̇) ∈ R

2 describes
viscous friction, and τ ∈ R

2 is the vector of
torques applied to the joints. Equation (22) can
be rewritten in the state-space form as

[

q̇

q̈

]

=

[

I 0

0 −M−1C

] [

q

q̇

]

+

[

0

−M−1r

]

+

[

0

M−1

]

τ . (23)



Redefine the state vector as x =
[

q1 q̇1 q2 q̇2
]T

and u = τ , equation (23) can be easily trans-
formed by permutations into the form of equa-
tion (5). The model of the manipulator has the
following parameters:

M =

[

m11 m12

m21 m22

]

, r =

[

2.5 sgn(q̇1) + 1.5 q̇1
1.5 sgn(q̇2) + 0.7 q̇2

]

,

C =

[

−l1l2m2q̇2 sin(q2) −l1l2m2(q̇1 + q̇2) sin(q2)
l1l2m2q̇1 sin(q2) 0

]

with

m11 = l21(m1 +m2) + 2m12 −m22 ,

m12 = m21 = m22 + l1l2m2 cos(q2) and

m22 = l22m2 .

The length of the links is l1 = l2 = 1 and the
masses m1 = 10 and m2 = 1 + 0.4 sin(t). The
latter represents the variation of the payload. The
elements of M vary as

10 ≤ m11 ≤ 15.6 ,

0 ≤ m12 = m21 ≤ 2.8 and

0.6 ≤ m22 ≤ 1.4 .

The nominal values of the manipulator parame-

ters used for the SMC design are M 0 =

[

12 1.5
1.5 1

]

and C0, r0 both set to zero and from these follows

f0 =









x2

0
x4

0









, B0 =









0 0
0.1026 −0.1538

0 0
−0.1538 1.2308









.

A GRBF network with 3 grids with a maximum of
16, 65 and 544 hidden neurons, respectively, was
used during the simulation studies. The widths
σi of the corresponding Gaussian functions of the
different grids are π, π/2 and π/4, respectively.
The hyperspheres have a radius of 1 and 0.5 for
the second and the third subgrid, respectively. To
avoid infinite-frequency switching of the control
torques, a boundary layer (Slotine and Li, 1991)
with ψ = 0.02 is introduced so that when ‖s‖ <
ψ the control usmc = −(1/ψ)s is used instead
of equation (14). The adaptation of the neural
network is also blocked within the boundary layer.
Other parameters used in the simulation studies
are ε = ψ, η1 = 1, η2 = 0.45, the adaptation
rate γ−1 = 5 and ρ = 1. The latter is quite
conservative according to the approximation error
of the GRBF network, yet much lower than the
switching gain required for a classical SMC.

The desired trajectories of the joint angles are
qd1

= sin(t) and qd2
= cos(t), respectively. Fig-

ures 3 and 4 show details about the signals of the
system. The tracking errors converge to 0.05 in
less than t = 4, though errors at the start of the
simulation were quite large. Figure 5 shows that
the control effort is constrained in an acceptable
range without high-frequency switching. Figure 6

shows the norm of the sliding surface s(t) as well
as the error bound ∆(t). Only when ‖s‖ > ∆,
new neurons are added to the network. Finally,
125 neurons were activated, namely 16 neurons of
the base grid, 33 neurons of the 2nd subgrid and
76 of the 3rd one. Figure 7 shows the transient
performance of the manipulator. Compared with
a network having only the base grid, as shown in
Figure 8, the transient performance of a network
with subgrids is much better. Subgrids with more
neurons reduce obviously the tracking errors dur-
ing the transient period.

0 5 1 0 1 5 2 0
- 1 . 5

0

1 . 5

t  ( s )

 q 1 ( t )
( r a d )

d e s i r e d a c t u a l

Fig. 3. Desired and actual joint angle of link 1
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Fig. 4. Desired and actual joint angle of link 2
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Fig. 5. Torques acting on the joints
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Fig. 6. ‖s(t)‖ and the error bound ∆(t)
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Fig. 7. Tracking errors of the manipulator with a
network of 3 subgrids
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Fig. 8. Tracking errors of the manipulator with a
network of the base grid

5. CONCLUSIONS

A direct adaptive sliding-mode control scheme
with a network of Gaussian radial basis functions
for control of nonlinear systems with matched un-
certainties was proposed in this paper. A reason-
able compromise between the error performance
and the computational effort was achieved by a
new subgrid growing strategy. The stability of the
overall system is shown by the direct method of
Lyapunov. Simulation studies with a two-link ma-

nipulator has shown the feasibility of this control
scheme.
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