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Abstract: In this paper, a robust adaptive fuzzy control algorithm based on the generalized
fuzzy hyperbolic model (GFHM) for nonlinear system with uncertainties is proposed. The
proposed control is a smooth control with no chattering phenomena, which consists of two
control terms. One is the certainty equivalent control and the other is the compensated
control, which is obtained by bounded estimation in the on-line approximation of the
uncertainty. The main advantage of the proposed control law is that the human knowledge
about the plant under control is be used to design the controller and only one parameter
vector in the adaptive mechanism is on-line adjusted. Copyright c© 2005 IFAC
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1. INTRODUCTION

For many real systems there are highly nonlinear and
with uncertainties, it is generally difficult to develop
accurate mathematical models for them i.e., there
are inevitable uncertainties in the constructed models.
Therefore, the design of a robust controller that can
deal with model uncertainties is very important.

Fuzzy system has been successfully applied to many
control problems because it needs no accurate math-
ematical models of the system under control and it
can cooperate with human experts’ knowledge. There
exists voluminous literature on the subject of making
use of various fuzzy control techniques for nonlinear
systems, from adaptive control based fuzzy basis func-
tions (L.-X.Wang, 1993; L.-X.Wang, 1996), to model
reference fuzzy control (C.-S. Chen, et al., 1996;
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J.R. Layen, 1993), neural-fuzzy control (J.T. Spooner,
et al., 1996), sliding model control (B. Yoo, W.
Ham, 1998), and fuzzy adaptive control ( H.-J. Kang,
et al., 1998; S.C.,Tong, 2000; Yansheng Yang, et al.,
2002; Parka J.H., et al., 2003). However, when the
dimensions of system states or the number of fuzzy
rules for the description of the unknown function in-
crease, the number of on-line adjusting parameters in
the controller increases rapidly and the computing-
load becomes very heavy. Meanwhile, since the fuzzy
descriptions are imprecise and may be insufficient to
achieve the desired accuracy, the approximation error
introduced into the feedback loop makes it difficult
to guarantee the stability of the closed-loop control
system (L.-X.Wang, 1996). This problem was solved
in (C.-S. Chen, et al., 1996; J.T. Spooner,et al., 1996)
by sliding mode-like estimation of the reconstruction
error bound, but nonsmooth control input is gener-
ated. In general, such discontinuous adaptive control
schemes are avoided since it is well known that they



not only create problems of existence and unique-
ness of solutions (M.M. Polycarpou, et al., 1993)
but are also known to display chattering phenomena
and to excite high-frequency unmodeled dynamics (J.-
J.E. Slotine, et al., 1991). Another problem in (L.-
X.Wang, 1996; C.-S. Chen, et al., 1996; J.T. Spooner,
et al, 1996) is that bounds on the unknown plant
dynamics must be known. Generally, this calculation
may require an exact model of the plant, which defeats
the purpose of using a model-free technique.

Recently, Zhang et al. proposed a class of fuzzy
model, i.e., the fuzzy hyperbolic model(FHM) and the
generalized fuzzy hyperbolic model(GFHM) (H.G.
Zhang, et al., 2001; H.G. Zhang, et al., 2003; H.G.
Zhang, et al., 2004). It is proved that the generalized
fuzzy hyperbolic model is an universal approxima-
tor and can be used to establish the model for the
nonlinear dynamic systems. There are several good
examples using this class of fuzzy model (H.G.Zhang,
et al., 2001; H.G. Zhang, et al., 2003). The purpose of
this paper is to develop a robust adaptive control algo-
rithm using the GFHM for single-input single-output
(SISO) nonlinear dynamical systems with uncertain-
ties. We proposed a smooth control with no chatter-
ing phenomena. The overall control system guarantees
that the tracking error converges in the small neigh-
borhood of zero and that all signals involved are uni-
formly bounded. The main advantage of the proposed
control law is that the human knowledge about the
plant under control is to be used to design the con-
troller and only one parameter vector in the adaptive
mechanism is on-line adjusted.

The paper is organized as follows. In Section 2, pre-
liminaries about the GFHM are reviewed. In Section 3,
the GFHM is used to descript nonlinear systems with
uncertainty. In Section 4, a robust adaptive control
algorithm is proposed. In Section 5, simulation exam-
ples are provided to demonstrate the design procedure
for robust adaptive controller. Finally, in Section 6, the
conclusion is given.

2. PRELIMINARIES

In this section we review some necessary preliminar-
ies for the GFHM.

In (H.G. Zhang, et al., 2001), the membership function
of the GFHM, Px and Nx, is defined as:

µPx(xz) = e−
1
2 (xz − kz)

2
,

µNx(xz) = e−
1
2 (xz + kz)

2
,

(1)

where kz > 0. We can see that only two fuzzy sets
are used to represent the input variable, and that the
fuzzy sets cannot cover the whole input space. Thus,
we transform the input variable xz as follows:

x̄ j = xz −dz j (2)

where j = 1, · · · ,w (w is a positive integer) and dz j is
a constant. We can see that after the linear transforma-
tion of xz, the fuzzy sets may cover the whole input
space if w is large enough.

Definition 1. (H.G. Zhang, et al., 2004) Given a plant
with n input variables x = (x1(t), ...,xn(t))T (where x
is any state variable or input variable), and n output
variable ẋ = (ẋ1, · · · ẋn)T , define the generalized input
variables as follows:

x̄1 = x1 −d11,

· · ·
x̄w1 = x1 −d1w1 ,

x̄w1+1 = x2 −d21,

. . .

x̄w1+w2 = x2 −d2w2 ,

. . .

x̄m = xn −dnwn ,

where m = ∑n
i=1 wi are the numbers of generalized

input variables, wz(z = 1, . . . ,n) are the numbers to be
transformed about xz, dz j(z = 1, . . . ,n, j = 1, . . . ,wz)
are the constants where xz is transformed. If the fuzzy
rule base satisfies the following conditions, we call it
a type of generalized fuzzy hyperbolic rule base:

(1) For each output variable ẋl , l = 1, . . . ,n, the corre-
sponding group of fuzzy rules has the following form:

Rl : IF (x1 −d11) is Fx11 and . . . and (x1 −d1w1) is Fx1w1

and (x2 − d21) is Fx21 and . . . and (x2 − d2w2) is Fx2w2

and . . . and (xn −dnwn) is Fxnwn

THEN ẋl = cF11 + · · ·+ cF1w1
+ cF21 + · · ·+ cFnwn ,(3)

where Fxz j are fuzzy sets of xz −dz j, which include Px

(Positive) and Nx (Negative) subsets. cFz j are constants
corresponding to Fxz j .

(2) The constants cFz j (z = 1, . . . ,n, j = 1, . . . ,wz) in
the “THEN” part correspond to Fxz j in the “IF” part;
that is, if there is Fxz j in the “IF” part, cFz j must appear
in the “THEN” part. Otherwise, cFz j does not appear
in the “THEN” part.

(3) There are 2m fuzzy rules in the rule base, where
m = ∑n

i=1 wi; that is, all the possible Px and Nx combi-
nations of input variables in the “IF” part and all the
linear combinations of constants in the “THEN” part.

Lemma 1. (H.G. Zhang, et al.,2004) For a multi-input
dynamic system, x = (x1(t), · · · ,xn(t))T is the state
variable vector, u = (u1, · · · ,up) is the input variable
vector. If we define a generalized fuzzy hyperbolic
rule base and generalized input variables as definition
1, define the membership function of the generalized
input variables Px and Nx as (1), then we can derive the
following model:



ẋl =
m

∑
i=1

cPxi
ekxi x̄i + cNxi

e−kxi x̄i

ekxi x̄i + e−kxi x̄i

+
q

∑
j=1

cPu j
eku j ū j + cNu j

e−ku j ū j

eku j ū j + e−ku j ū j

=
m

∑
i=1

pi +
m

∑
i=1

ai
ekxi x̄i − e−kxi x̄i

ekxi x̄i + e−kxi x̄i
+

q

∑
j=1

q j

+
q

∑
j=1

b j
eku j ū j − e−ku j ū j

eku j ū j + e−ku j ū j

= A0 +A1 tanh(Kxx̄)+B tanh(Kuū)

= F(x), (4)

where pi = (cPxi
+ cNxi

)/2, ai = (cPxi
− cNxi

)/2, q j =
(cPu j

+ cNu j
)/2, b j = (cPu j

− cNu j
)/2, A0 = (∑m

i=1 pi +

∑q
j=1 q j) ∈ R1×1, A1 = [a1, · · · ,am] ∈ Rm×1, B = [b1,

· · · , bq] ∈ Rq×1, x̄i(i = 1, · · · ,m;m = ∑n
i=1 wi) is the

generalized state variable after the linear transforma-
tion of xz(z = 1, · · · ,n), ū j( j = 1, · · · ,q;q = ∑p

l=1 rl) is
the generalized input variable after the linear transfor-
mation of ul(l = 1, · · · , p), tanh(Kxx̄) and tanh(Kuū)
are defined by tanh(Kxx̄)= [tanh(k1x̄1),· · ·,tanh(kmx̄m)]T

and tanh(Kuū) =
[
tanh(ku1 ū1), · · · , tanh(kuq ūq)

]T
, re-

spectively; Kx = diag[kx1 , . . . ,kxm ], Ku = diag[ku1 , . . .
,kuq ]. We call (4) the generalized fuzzy hyperbolic
model (GFHM).

Let Y be the space composed of all the functions in
the form of the right-hand side of (4). We then have
the following conclusion.

Lemma 2. (H.G. Zhang, et al., 2004) For any given
real continuous g(x) on the compact set U ⊂ Rn and
any arbitrary ε > 0, there exists an F(x) ∈ Y such that

sup
x∈U

|g(x)−F(x)| < ε.

Remark 1. There are some distinguishing characteris-
tics in the GFHM:

1) The GFHM is nonlinear model in nature. Unlike the
T-S fuzzy model, which is the combination of local
linear models, the GFHM is a global nonlinear model.

2) The GFHM can be proved to be an universal ap-
proximator.

3) The GFHM is a fuzzy model that can easily be
derived from known linguistic information.

4) The GFHM is equivalent to a series expansion
of fuzzy hyperbolic basis functions, [1, tanh(kx1 x̄1),
· · · , tanh(kxm x̄m), tanh(ku1 ū1), · · · , tanh(kuq ūq)]T . This
basis function expansion is linear in its adjustable
parameters; therefore, we can use the least squares
algorithm to determine the parameters.

In this paper, we will design a robust adaptive fuzzy
controller based on the GFHM in the form of (4).

3. DESCRIPTION OF NONLINEAR SYSTEMS
WITH UNCERTAINTIES

Consider a class of SISO nonlinear systems with un-
certainties in the following form:

x(n) = f (x, ẋ, · · · ,x(n−1))+g(x, ẋ, · · · ,x(n−1))u+d,
y = x,

(5)
where f ,g are unknown nonlinear functions, and
u(k) ∈ R, y(k) ∈ R are the input and output variable
of the system, respectively, x = (x, ẋ, · · ·x(n−1))T =
(x1, · · · ,xn)T ∈ Rn is the state variable vector, where
x is assumed to be available for measurement. d ∈ R is
a bounded uncertainty including external disturbance,
unmodeled dynamic and measurement noise.

Next, we derive the fuzzy model in the form of (4)
from partial knowledge about the system. If we define
the generalized fuzzy hyperbolic rule base and the
generalized input variables as definition 1, then we can
derive the following model:

x(n) = A0 +A1 tanh(Kxx̄)+B tanh(Kuū)+ ε +d, (6)

where A0 ∈ R1×1, A1 ∈ Rm×1, B ∈ Rq×1, tanh(Kxx̄) =
[tanh(k1x̄1), · · · , tanh(kmx̄m)]T , where x̄ =(x̄1, · · · , x̄m)T

is the generalized state variables , x̄i(i = 1, . . . ,m,m =
∑n

i=1 wi) is the generalized state variable after the lin-
ear transformation of xz(z = 1, . . . ,n), tanh(Kuū) =[
tanh(ku1 ū1), · · · , tanh(kuq ūq)

]T
, where ū j = u − du j

( j = 1, . . . ,q) is the generalized input variable after
the linear transformation of u, ε is the model error.

We assume that the control u is bounded. Since the
variables of real physical systems are always bounded,
it seems reasonable. After linearization (6) in ū we get
the following form:

x(n) = A0 +A1 tanh(Kxx̄)+BKu(u−du)+∆+ ε +d

= Ā0 +A1 tanh(Kxx̄)+bu+ds, (7)

where Ā0 = A0−BKudu, b = BKu, ∆ is the linearizated
error, ds = ∆+ε +d is a combining uncertainty. Since
the control u is bounded, the error ∆ is also bounded,
ds is a bounded uncertainty.

Let Ā = [ĀT
0,A

T
1 ]T, f̄ (x) = [1, tanh(kx1x̄, · · · , tanh(kxmx̄m)]T,

then (7) is rewritten in the following form

x(n) = Ā f̄ (x)+bu+ds. (8)

From the above derive; we can easily obtain the fuzzy
model from priori knowledge about the plant such
that we can incorporate priori information into later
controller design.

4. DESIGN OF ROBUST ADAPTIVE FUZZY
CONTROLLER

For a class of SISO nonlinear systems with uncer-
tainties in the form of (8), the control objective is to



force the output y(t) = x to track a given bounded
reference signal ym(t), under the constraint that all
signals involved must be bounded.

Let e = ym − y = ym − x, e = [e, ė, · · · ,e(n−1)]T and
k = [kn, · · · ,k1]T ∈ Rn be such that all roots of the
polynomial h(s) = sn + k1sn−1 + · · ·+ kn are in the
open left-half complex plane, and choose the control
law as

u = ui −us/b, (9)

where ui is the so-called certainty equivalent controller
given by

ui =
1
b
(−Ā f̄ (x)+ y(n)

m +kT e), (10)

and us is an additional robust control term which is
mainly used to compensate the effect of uncertainty
in the system. The design approach for us is given as
follows.

Substituting (9) (10) into (8), we obtain the closed-
loop dynamics of the fuzzy control system as

ė = Λce+Bcus −Bcds, (11)

where Λc =




0 1 0 · · ·
0 0 1 · · ·

· · ·
−kn −kn−1 · · ·

0
0

−k1


, Bc =




0
0
...
1


.

For the system (11), the uncertainty ds is a bounded
function in the control engineering. In order to design
robust control law, a GFHM is employed to approx-
imate the uncertain function ds. From lemma 2, we
may conclude that there exists a fuzzy system (4) that
can be used to approximate the uncertain function ds

in (11). Hence, we can obtain the following bounded
function:

|ds| ≤ σT |ξ (x)|+ εd , (12)

where ξ (x) = [1,ξ1(x), · · · ,ξk(x)]T =[1, tanh(kd1x̄1),
· · · , tanh(kdkx̄k)]T is the known fuzzy base function,
σ = [σ0,σ1, · · · ,σk]T is the weight parameters of
fuzzy system. εd is a parameter for respecting approx-
imating accuracy. Suppose σ and εd are unknown,
the above bound function ds can be rewritten in the
following form:

|ds| ≤ θ T ψ(x), (13)

where ψ(x) = [1,1, |ξ1(x)| , · · · , |ξk(x)|]T is a known
vector and θ = [εd , |σ0| , · · · , |σk|]T .

For the uncertain system (11) with bound as (13),
a following robust adaptive fuzzy control law is de-
signed:

us =−θ̂ψ(x) tanh(θ̂ψ(x)BT
c Pe/εd), (14)

˙̂θ =−λ θ̂ + rψ(x)
∥∥BT

c Pe
∥∥ , (15)

where λ ∈ (0,∞), r = diag[r1,r2, · · · ,rl ], ri ∈ (0,∞), l
is the dimension of θ , θ̂ = θ + θ̃ , θ̂ is an estimate of
θ . λ ,ri,εd are parameters determined by the designer.

P is a positive definite solution P = PT ≥ 0 of the
Lyapunov equation:

ΛT
c P+PΛc +Q = 0, (16)

where Q = QT ≥ 0 is chosen by the designer.

The following theorem shows that the above control
scheme (14)(15) is a robust adaptive fuzzy control law.

Theorem 1. Suppose the uncertainty in the system
(11) satisfies (12) and parameters θ are unknown, then
the robust adaptive tracking design described by the
control scheme (9)(14) and the bounding parameter
adaptive law (15) guarantees that

(a) all the signals and parameter estimates in the
on-line approximation based control scheme are uni-
formly bounded;

(b) given any ρ >
√

ε̄
µ , there exists T (ρ) such that

for all t > T , |e(t)| ≤ ρ , where µ = 1
2 min{ λmin(Q)

λmax(P) ,λ},

ε̄ = κεd + λ
2rmin

‖θ‖, rmin = min{r1, · · · ,rp}.

proof : Choosing the following Lyapunov function
candidate:

V = eT Pe+
1
r

θ̃ T θ̃ = zT P̄z = V̄ (z, t), (17)

where z = [eT , θ̃ T ]T and P̄ =

[
P 0

0
1
r

]
.

The adaptive laws in (15) can be modified as

˙̃θ = −λ (θ̃ +θ)+ rψ(x)
∥∥BT

c Pe
∥∥ . (18)

The derivative of V along the trajectory of the system
is given by

˙̄V = V̇ = −eT Qe+2eT PBcus −2eT PBcds +
2
r

θ̃ T ˙̃θ .

(19)
For the second and third term at the right-hand side of
(19), the following equation and inequality hold:

2eT PBcus =−2θ̂ψ(x)BT
c Pe tanh(θ̂ψ(x)BT

c Pe/εd),

(20)

−2eT PBcds ≤ 2‖ds‖
∥∥BT

c Pe
∥∥ ≤ 2θψ(x)

∥∥BT
c Pe

∥∥ .

(21)

Substituting (20) and (21) into (19), we get

V̇ ≤−eT Qe+2[θ T ψ(x)
∥∥BT

c Pe
∥∥− θ̂ψ(x)BT

c Pe ·
tanh(θ̂ψ(x)BT

c Pe/εd)]+
2
r

θ̃ T ˙̃θ

=−eT Qe+2[θ̂ T ψ(x)
∥∥BT

c Pe
∥∥− θ̂ψ(x)BT

c Pe ·
tanh(θ̂ψ(x)BT

c Pe/εd)] +θ̃ T [
2
r

˙̃θ−2ψ(x)
∥∥BT

c Pe
∥∥].

(22)



It can be shown that the following inequality holds for
any ε > 0 and for any η ∈ R

0 ≤ |η |−η tanh(
η
ε

) ≤ κε , (23)

where κ is a constant that satisfies κ = exp(−(κ +1)),
i.e., κ = 0.2785 (Yansheng Yang, et al., 2002).

Setting η = θ̂ T ψ(x)BT
c Pe, applying (23) and substi-

tuting (15) into (22), we have

V̇ ≤−eT Qe+2κεd −2
λ
r

θ̃ T (θ̃ +θ). (24)

Owing to

1
2
(θ̃ +θ)(θ̃ +θ) ≥ 0,

it can be obtained as

θ̃ T θ̃ + θ̃ T θ ≥ 1
2
(θ̃ T θ̃ −θ T θ).

Therefore, we get

V̇ ≤−eT Qe− λ
r

θ̃ T θ̃ +
λ
r

θ T θ +2κεd . (25)

Furthermore, let

Q̄ =

[
Q 0

0
λ
r

]
,

then (25) is given as

˙̄V ≤−zT Q̄z+2ε̄.

Substituting the parameters given in theorem 1 into
above expression, we get

˙̄V ≤−2µV̄ +2ε̄ = −2µ(V̄ − ε̄
µ

). (26)

Now, if we let ε̄
µ > 0, then (26) satisfies

0 ≤V (t) ≤ ε̄
µ

+(V (0)− ε̄
µ

)exp(−2µt). (27)

Therefore, x,θ are uniformly bounded. Furthermore,

using (17) and (27) we obtain that given any ρ >
√

ε̄
µ ,

there exists T (ρ) such that for all t ≥ T satisfies
|e(t)| ≤ ρ .

The proof completes. �

In summarizing the above discussions, the design pro-
cedure is described as follows:

Step1: Construct the fuzzy plant rules in the form
of(3), and obtain the GFHM in the form of (8).

Step2: Select the feedback gain vectors K, such that
the matrices Λc = A−BKT is Hurwitz matrix.

Step3: Select Q and solve (16), obtain the matrix P.

Step4: Choose the appropriate values r,λ ,εd in (14)(15).

Step5: Construct fuzzy basis vector ψ(x) and select an
initial θ̂ .

Step6: Obtain the control law (9),(14) and the adaptive
law (15).

5. SIMULATION EXAMPLE

To illustrate the design procedure of the controller and
its performance we apply our robust adaptive fuzzy
controller to control the inverted pendulum to track
a sine wave trajectory. The dynamic equations of the
system are given by(J.-J.E. Slotine, W. Li,1991):

ẋ1 = x2,

ẋ2 = f (x1,x2)+g(x1,x2)u+d,

where

f (x1,x2) =
gsin(x1)−mlx2

2 cos(x1)sin(x1)/(mc +m)
l( 4

3 −mcos2(x1)/(mc +m))

and

g(x1,x2) =
cos(x1)/(mc +m)

l( 4
3 −mcos2(x1)/(mc +m))

,

x1 represents the angle of the pendulum, x2 represents
angular velocity, mc is the mass of cart, m is the mass
of pole, l is the half-length of pole, and u is the applied
force (control). We choose mc =1 kg, m = 0.1kg,
l = 0.5m, g = 9.8m/s2 and d = 0.1e−t sin(t). We also
choose the reference signal ym(t) = (π

/
30)sin(t) in

the following simulations.

First, we derive the GFHM in the form of (7) from the
priori knowledge about the system. By the linguistic
knowledge, we can obtain the following the fuzzy
rules:

Rl : IF x1 −d1 is Px1 and x2 −d2 is Px2 and u is Pu

THEN ẋ2 = cP1 + cP2 + cPu
,

· · · · · ·
R8: IFx1 −d1 is Nx1and x2 −d2 is Nx2and u is Nu

THEN ẋ2 = −cN1 − cN2 − cNu
,

where the membership function of the fuzzy sets is in
the form of (1), where kx1 = 0.6,kx2 = 0.2,ku = 1,d1 =
d2 = 0, and a0 = 0.0048,a1 = 26.72,a2 =−0.165,b =
1.4125. By the above fuzzy rules we derive a GFHM
as follows:

ẋ2 = a0 +a1 tanh(kx1x1)+a2 tanh(kx2x2)+b tanh(kuu).

After liberalization in ū, we get the form of (7),
where b = 1.4125. Our fuzzy controller applies to
this system. Let k1 = 2; k2 = 1(so that s2 + k1s +



k2 is stable), and Q = 5I2×2, then we have Lya-

punov equation (16) and obtain P =
[

7.5 2.5
2.5 2.5

]
.

Let λ = 0.02,εd = 0.5, r = diag[0.1,0.1,0.9,0.8],
ψ(x) = [1,1, |tanh(0.1x1)| , |tanh(0.3x2)|]T , and the
initial state is x(0) = [−0.15,0]T . The result of Sim-
ulation is illustrated in Fig. 1.
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Fig. 1. (a) system output, desired output, and tracking
error ( in the upper figure); (b) control input(in
the lower figure).

6. CONCLUSIONS

This paper developed a robust adaptive control al-
gorithm based on the GFHM for single-input single-
output (SISO) nonlinear dynamical systems with un-
certainties. The proposed control is a smooth control
with no chattering phenomena. The overall control
system guarantees that the tracking error converges in
the small neighborhood of zero and that all signals in-
volved are uniformly bounded. The main advantage of
the proposed control law is that the human knowledge
about the plant under control is to be used to design
the controller and only one parameter vector in the
adaptive mechanism is on-line adjusted. Simulation
example that the inverted pendulum to track a sine
wave trajectory is provided to illustrate the design
procedure of the proposed controller and performance.
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