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Abstract: One of the most common sources of performance limitation in the control of 
machine tools is associated to the resonant dynamics of the drive train, induced by the 
elasticity in some components. The design of the control system should guarantee a 
damped behavior of the load position, both in the setpoint response and in the rejection of 
the disturbances arising from the machining operation. In this paper reference is made to 
the common P/PI control scheme, and stability analysis with adimensional parameters is 
first discussed. Tuning of the controller gains is then set as a problem of minimizing the 
H∞ norm of some closed loop transfer functions, for which closed form approximations 
are also given. The methodology is finally applied to the design of the control system for 
an axis of a milling machine, whose virtual prototype developed in the Dymola 
environment is also discussed.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Virtual prototyping (Ferretti, et al., 2004) of machine 
tools and other mechanical systems consists in the 
use of detailed multi-domain mathematical models 
assembled and simulated with appropriate software 
packages. These models allow to assess the behavior 
of the components and of the overall system from the 
dynamical standpoint, addressing, for example, the 
vibration reduction problem. Significant advantages 
in terms of cost reduction and shorter development 
times are expected from the adoption of these CAD 
tools. The virtual prototype actually allows to 
simulate experiments within the software 
environment. It is therefore possible to evaluate 
alternatives in the (mechanical or electronic) design 
with limited costs compared to physical experiments. 
  
On the other hand such an approach only allows 
assessment of design choices and does not usually 
give indications on the direction to be followed. It 
would then be advisable that virtual prototyping 
environments or, more in general, that software 
packages for computer aided design, offered, as it is 

common in other contexts, guided procedures for the 
optimization of certain cost functions. 
 
A first step in this direction, in the mechatronic 
context, might consist in making reference to 
simplified (linear and lumped parameters) models of 
the mechanical dynamics in closed loop with the 
control, over which performance indices can be 
easily defined and computed. These performance 
indices can then be related to the physical and 
geometrical parameters, on one hand, and to the 
controller gains, on the other. 
  
The research in this field has not yet reached 
maturity since, apart from some preliminary results 
(Ferretti, et al., 2003), systematic tools have not yet 
been presented that duly take into account the 
different and sometimes contrasting goals that the 
design of the motion control for a servomechanism 
should achieve (from rapid positioning to efficient 
rejection of disturbances arising during machining). 
On the other hand, the lively interest of both 
industrial and academic worlds for the issues related 
to the mechatronic design of systems is witnessed by 



     

a somewhat wide body of literature (Ferretti, et al., 
2003), (Hewit, 1996), (Coelingh, et al., 2002), 
(Reinhart and Weissenberger, 1999), (Van 
Amerongen, 2003). More theoretical approaches 
have been pursued in (Goodwin et al., 2003) and 
(Middleton et al., 1999). 
 
In this paper a load behavior concerned control of 
two-mass system is discussed. The classical control 
scheme used in machine tool industry, namely a PI 
(proportional-integral) controller closed on the motor 
velocity (actually obtained through numerical 
differentiation of the motor position) and a 
proportional controller closed on the load position, is 
assumed. A study on the stability of such a  control 
scheme is first presented, making reference to all 
normalized (adimensional) parameters, which 
enhances generality of the conclusions. 
 
The performance limitations of the P/PI control 
scheme are then quantified through the H∞ norms of 
two closed loop transfer functions, from position 
setpoint to load position and from load side torque 
disturbance to load position, respectively. Simple 
expressions for these performance indices are given, 
that depend on physical parameters of the system, as 
well as on a free control design parameter (the 
nominal bandwdith of the velocity loop, 
conveniently normalized). Since mechanical and 
control parameters contribute to the performance 
index, the relation supports codesign (mechatronic 
design) of the servo system. 
 
As an application example, the case of a milling 
machine is discussed. A virtual prototype of an axis 
of the machine has been developed, paying particular 
attention to the model of the cutting forces arising at 
the contact between the tool and the piece. These 
forces play the role of disturbances on the load side 
for the motion control system. The elasticity of the 
components of the drive train (a belt stage and a ball-
screw stage) has been analyzed in detail, too, since 
flexibility of the transmission is recognized as one of 
the main limiting factors of the performance. The 
simulator has been developed in the Dymola 
environment, supporting the physical modeling 
language Modelica (Ferretti, et al., 2004).  
 
The analysis developed in the first part of the paper 
is applied to the milling machine example, for which 
the curves representing the H∞ norms of the two 
closed loop transfer functions are plotted and used in 
order to design the motion controller. Simulation 
results are also shown.  
 

2. SYSTEM MODEL 
 

The dynamic behavior of an axis of a machine tool is 
usually well represented by a two-mass model, where 
in the first and in the second masses all the inertial 
effects of the bodies rotating at the motor velocity 
and at the load velocity, respectively, are 
concentrated, while a spring and damper capture the 
elastic properties of the transmission chain. 
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Fig. 1 Two mass model. 
 
We consider thus a servo system where the motor is 
connected to the load through an elastic transmission, 
characterized by a stiffness Kel and a damping Del. In 
Fig. 1 a sketch of the system is drawn. The first 
flywheel represents the inertia (Jm) of the motor, the 
second one is associated to the load, whose inertia is 
Jl. The torque τm is applied to the rotor, and the 
motion is described by the position coordinates qm 
and ql with respect to a fixed reference. Assuming the 
current loop bandwidth sufficiently high, the torque 
τm can be directly assumed as an input to the system. 
An external torque τe might be applied on the load 
side as an input signal as well. 
 
The relevant transfer functions for the two-mass 
system under control are the following ones: 
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where µ=1/(Jm+Jlr), ωz, ζz are the natural frequency 
and damping factor of the zeros, respectively, while 
ωp, ζp are the natural frequency and damping factor 
of the poles of the system, respectively. These 
parameters are related to the physical ones by the 
following equations: 
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where ρ = Jlr/Jm  is the so called inertia (or mass) 
ratio. 
 
Notice that all the quantities defined on the load side 
have been related to their counterparts on the motor 
side, by means of convenient scaling through the 
gear ratio n. This is useful for analysis as it allows to 
work with variables and parameters that can be easily 
compared. Thus ql stands for the load position 
multiplied by the gear ratio, τe for the torque on the 
load side divided by the gear ratio, while the inertia 
moment on the load side reduces to 2nJJ llr = . 
 

3. STABILITY OF A P/PI CONTROLLER 
 
A classical control scheme used in machine tools is 
the so called P/PI controller: a PI controller is closed 
on the motor velocity (actually obtained through 
numerical differentiation of the position) while an 
outer proportional loop is closed on the load position 
(Fig. 2). A velocity feedforward is also used to speed 
up the setpoint response. Notice that in the nominal 
rigid case where the motor and load positions (qm and 
ql) do not differ, this control scheme is equivalent to 
a PID controller closed on the position error. The 
zeros of this equivalent PID controller coincide with 
the zero of the PI on the velocity and with the gain 
kpp, as it can be quite easily verified. 
 

kpp
+  kpv + 

−
 

G11(s)+ql

ql

−

s

−

kiv

s

G21(s)

G12(s)

G22(s)

qmτmτmτm

τe

s

+ +

 
Fig. 2 P/PI control system. 
 
Let us first study the stability properties of the 
control scheme. For this, the closed loop polynomial 
can be computed, normalizing all terms with suitable 
algebraic manipulations. The result is a polynomial 
in the normalized variable p=s/ωz, that takes the form 
(8): 
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where the expressions for the adimensional 
coefficients αi are given in Table I. The following 
adimensional control gains have been introduced: 
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together with the adimensional physical parameters 
ζz and ρ. If the working hypothesis is enforced that 
both the zeros of the equivalent PID are equal to the 
zero of the PI on the motor velocity, i.e. γiv = γpp γpv, 
and a unitary inertia ratio (ρ=1)  is assumed, stability 
regions can be plotted in the planes formed by two 
out of three  adimensional gains, at varying damping 
factor ζz. These plots are reported in Fig. 3, 4, 5 and 

show that the stability regions enlarge at increasing 
damping factor ζz of the transmission (ζz ranges from 
0.01 to 0.5). 
 

Table 1 Normalized coefficents of (8) 
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Fig. 3 Stability region in the plane γpp, γpv. 
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Fig. 4 Stability region in the plane γpp, γiv. 
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Fig. 5 Stability region in the plane γiv, γpv. 



     

 
The adimensionality of the parameters used to 
produce these plots make them immediately usable 
in order to select a set of control gains well inside the 
stability region. 

 
4. PERFORMANCE LIMITATIONS ON A P/PI 

CONTROLLER 
 
Consider again the block diagram of the control 
system in Fig. 2. In this Section  we analyze the 
effects on the load motion of an increasingly high 
bandwidth controller, deriving a quantitative measure 
of the loss of performance on the load side. 
  
In order to further reduce the degrees of freedom of 
the control system, a second hypothesis is enforced 
here, namely that the zeros of the equivalent PID 
controller, already supposed to be equal, are placed 
one decade before the nominal crossover frequency 
of the velocity loop, ωc, computed with reference to a 
rigid system. This frequency is therefore the actual 
free parameter of the controller. It can be easily 
approximated observing that in nominal conditions, 
i.e. with a rigid transmission, the velocity loop 
transfer function is: 
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The nominal crossover frequency can then be rather 
well approximated considering only the high 
frequency part of the transfer function, thus letting: 

 µ=ω pvc k , (11) 

or, in normalized coordinates: 

 pv
z

c
c γ=

ω
ω

=ω~ . (12) 

It is common wisdom among users of machine tool 
controllers that increasing ωc (or equivalently 
increasing “the gain” of the velocity loop) the 
machine performance improve in terms of motor 
response but vibrations may occur. A trade off is 
usually achieved on an experimental basis, once the 
servo has been assembled. In a large number of 
motion control systems it results cω~ <1. 
 
These empirical circumstances can be formalized  
deriving a quantitative relation between ωc and the 
amount of oscillation of the load. The latter is 
expressed through the H∞ norm of two transfer 
functions: the first one is from the load position 
setpoint lq  to the load position ql, the second one is 
from the external torque τe to the same load position 
ql. As the H∞ norm of a transfer function measures 
the peak of the amplitude of the frequency response, 
the higher this norm is, the more resonant the system 
is. The reason for evaluating the H∞ norm of both the 
closed loop transfer functions is that the study of just 
the setpoint response (carried out for example in 
(Ferretti, et al., 2003)) might be incomplete, in all 
those cases where significant disturbances arise at 

the load side, as for example a milling machine like 
the one described in next Section. 
Assigning suitable values to the damping factor  ζz of 
the transmission and to the inertia ratio ρ, and 
exploiting the relations among controller gains 
previously introduced, the H∞ norms can be 
numerically computed and plotted versus the 
normalized crossover frequency cω~ . This is done in 
Fig. 6 for the transfer function from the position 
setpoint lq and in Fig. 7 for the transfer function 
from the external torque τe. The values ζz=0.038 and 
ρ=1.8 have been adopted. 
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Fig. 6 H∞ norm of the transfer function from the 

position setpoint. 
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Fig. 7 H∞ norm of the transfer function from the 

external torque. 
 

Both the figures show the plots of some 
approximating functions too. These functions are 
obtained with the techniques described in detail in 
(Lucchini, 2004), where they have been derived also 
for different control configurations. Their 
expressions is here reported: 
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The approximating functions fit rather well the actual 
plots, apart from the approximation in Fig. 7 for 



     

higher values of cω~ . While the actual (exact) plots 
can be derived with a modest programming and 
computational effort, these closed form 
approximations might be useful in order to 
dimension the servo system. Notice that this 
dimensioning is to be intended in a mechatronic 
sense: the parameters to be adjusted might be the 
controller gains, ultimately expressed by the 
crossover frequency cω~ , but also the mechanical 
data (like the inertia ratio ρ and the damping factor 
ζz) might be changed in order to minimize the cost 
functions. 
 

5. APPLICATION TO A MILLING MACHINE 
 
The milling machine studied in this paper has a “T” 
configuration and is used to work pieces of large 
dimensions and weight. The structure is made of 
steel electrically welded and thermally stabilized. 
The axes move over low pressure hydrostatic guides. 
In Fig. 8 a scheme of the machine can be found, 
where the names of the axes are also reported. 
 

 
Fig. 8 The milling machine studied in this work. 
 
Only the Z axis is here considered, where reference 
is made to a frontal milling operation. An auxiliary 
head is mounted on the machine, allowing to rotate 
by 90° the spindle in order to put it in the vertical 
direction. The X and Y axes are not considered in the 
model. Actually these axes are not used in the 
machining operation: once they are placed in the 
correct position, they are mechanically braked. 
 
The drive train of the Z axis is realized coupling a 
brushless motor to a transmission having two stages: 
the first one is a belt, the second one is a ball-screw 
coupling (Fig. 9). 
 

 
Fig. 9 Scheme of the Z axis. 

 
A detailed simulation model of the milling machine 
has been assembled in the Dymola environment: Fig. 
10 shows the top level view of the simulator. 
Particularly critical, but not detailed here, is the 

modelling of the cutting forces at the interaction 
between the cutter and the piece. The model has been 
validated against experimental data found in the 
literature (Cheng, et al., 1997). 
 
In order to make use of the results summarized in 
Section 4, a two-mass model of the transmission has 
been derived. Only the first natural frequency of the 
system has been retained, that is actually associated 
to the ball-screw stage rather than to the belt stage. 
With the physical values of this two-mass system 
(ζz=0.089 and ρ=0.77), the H∞ norms plotted versus 
the normalized crossover frequency cω~  are reported 
in Fig. 11. 
  
It is apparent that values of cω~  slightly higher than 1 
might be a good choice, as the H∞ norm of the 
transfer function from the torque disturbance presents 
a minimum, while the norm of the transfer function 
from the position setpoint is not excessively high. 
 

 
  
Fig. 10 Simulation model 
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Fig. 11. H∞ norms of the closed loop transfer 

functions for Z axis 
 
Fig. 12 shows the tracking error obtained in the 
simulation of a milling operation, at varying 
normalized crossover frequency. As cω~  increases the 
disturbance rejection improves, but this improvement 



     

is increasingly less evident. This suggests that 
excessively high velocity loop bandwidths are not 
advisable, also considering that besides the transient 
related to the first contact, significant differences do 
not emerge in the steady state behavior during 
machining. As an example, Fig. 13 reports the errors, 
conveniently translated in order to facilitate the 
comparison, in the two cases cω~ =0.5 and cω~ =1.2. 
In both cases the oscillations are confined in a range 
not larger than 4 10-4mm. 
  
On the other hand, as the plot of H∞ norms in Fig.11 
shows, an increase in cω~  emphasizes the oscillatory 
behavior of the load as a response to setpoint 
variations (for example “rapid” movements made to 
position the tool over the piece). 
 
All these considerations confirm that an adequate 
value for cω~  is slightly larger than 1. Based on this 
conclusion, and on the tuning rules summarized in 
Section 4, the gains of the PID controller can be 
properly selected.  
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Fig. 13 Details of the errors induced by the milling 

forces 
 

6. CONCLUSIONS 
 
Virtual prototyping tools help designing machine 
tools, as they allow to unify the moments when 
decisions on the dimensioning of the mechanics, 
electronics and control system of the machine must 
be taken. The mechatronic approach is actually based 
on the consideration that the performance of the 
machine are determined by the interaction of 
different parts of the system, whose complexity calls 

for the adoption of advanced tools for modular 
modeling and simulation. A further step in the 
direction of a fully computer aided design of the 
machine is the availability of cost functions that 
guide the selection of components and tuning of the 
control system. The paper contributes in this field by 
introducing and approximating some performance 
indices, that assume as a measure of performance 
degradation the resonant behavior of the machine on 
the load side.  
 
Modeling of an axis of a milling machine is an 
interesting benchmark for these methodologies. The 
related control problem, where particular relevance is 
assumed by the rejection of the disturbance induced 
by the cutting forces at the mill, might be set as the 
minimization of certain cost functions, achievable 
through a suitable tuning of the control system, but 
also with a design of the mechanical parts oriented 
towards dynamic performance. 
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