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Abstract: An n+1 jobs single machine problem with fuzzy time delays is considered. 
Fuzzy time delay means the time between the completion of a job and the beginning of 
any of its predecessors, which must be within prescribed limits. A special fuzzy delays 
structure is investigated, which time delay only occur between iJ ( 1,2, ,i n= … ) and 1nJ + . 
Optimal solutions for the scheduling model under several cases are developed.   
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1. INTRODUCTION 

 
Consider the following scheduling problem. There 
are a single machine and a set of n+1 jobs 

1 2 1, , , ,n nJ J J J +…  to be run on that machine without 
preemption. Wikum, et al. (1994) showed a special 
case that job 1nJ +  couldn’t be started until all jobs 

, 1, 2, ,iJ i n= …  are completed. There are time delays 
between the completion of iJ  and the beginning of 

1nJ + . And the lower and upper bounds for time delay 
between iJ  and 1nJ +  are given by numbers il  and 

iu  respectively. They also showed that the problem 
could only be solved in polynomial time in the 
following cases  
(1) 0il =  for 1, 2, ,i n= … ; 
(2) iu = ∞  for 1, 2, ,i n= … ;  
(3) 0, ori il u= = ∞  for 1, 2, ,i n= … . 
In real world, input data may be uncertain or 
imprecise. Recently, Muthusamy et al. (2003) 
considered fuzzy version of problem satisfying (2) 
and proposed an 8( )O n  algorithm. They allowed 
lower bounds for time delays to be fuzzy numbers, 
and admitted the presence of additional fuzzy 
precedences. They left for future research derivation 

of analogous results for the problems of satisfying (1) 
and (3).  
 
As we know, fuzzy precedence doesn’t often happen 
in practice because it is difficult to decide the 
membership function of fuzzy precedence. So, a 
single machine scheduling problem only with fuzzy 
time delays will be analysed here. And time delays 
are fuzzy numbers. From three cases mentioned 
previously, case (1) and case (2) with fuzzy upper 
bounds and fuzzy low bounds respectively will be 
researched to find optimal solution in polynomial 
time. Furthermore, if both upper bounds are not 
infinite and low bound are not zero, time delays also 
can be fuzzified. Upper and low bounds can be 
considered as parameters of fuzzy time delays. The 
problem will be resolved by genetic algorithm. 
 
The remainder of this paper is organized as follows. 
Section 2 presents the problem formulation and 
introduces three kinds of fuzzy time delays. Then, 
solution procedure for every kind of fuzzy time 
delays will be given in section 3. Finally, summary 
and conclusion are presented in last section. 
 
 

2. FORMULATION OF PROBLEM 
 



 

     

 
2.1 Single Machine Scheduling with Time Delay. 
 
There are n+1 jobs 1 1, ,n nJ J J +  to be processed 
nonpreemptively on a single machine, which can 
execute at most a job at a time. The machine and jobs 
are continuously available from time 0t = . Each job 
requires an uninterrupted processing time 

, 1, , , 1ip i n n= + , where all ip  are positive rational 
numbers. The schedules are required to satisfy the 
precedence constraints 

1i nJ J +≺  for each 1,2, ,i n= …  

1i nJ J +≺  means that job 1nJ +  cannot be started until 
job iJ  is completed. The lower and upper bounds for 
time delay between iJ  and 1nJ +  are given by 
numbers il  and iu  satisfying 0 i il u≤ ≤ < ∞  for each 

1,2, ,i n= … . That is, each job iJ  must precede job 

1nJ + , and the time between the completion of iJ  and 
the beginning of job 1nJ +  must be at least il  but no 
more than iu . There are ordinary precedence 
constraints between jobs from 1{ , }nJ J=J . The 
feasibility of schedules is further constrained by time 
delays of each job iJ  from J , which are different in 
practical situations. Sometime low bounds of time 
delays are not very important and regarded as zero. 
Or upper bounds are always satisfied and considered 
as infinity. But in most of situations, both low and 
upper bounds are real numbers in the interval 
(0, )+∞ . 
 
 
2.2 Fuzzy Time Delay. 
 
The fuzzy time delay is associated with each job and 
represented by a fuzzy set on +R  (the positive part of 
real numbers). For our problem, fuzzy time delay can 
be represented in three kinds of cases which are 
different to each other. Firstly, when low bound of 
time delay is zero, the time delay between the 
completion of iJ  from J  and beginning of 1nJ +  
must be less than or equal to a given fuzzy number 

iU . That is, iU  is a fuzzy upper bound of the time 
delay between iJ  and 1nJ + . iU  can be formulated as 
fuzzy interval [ , ]i iu u , here iu  and iu  are 
nonnegative and i iu u< . The nonincreasing 
membership function ( )i if x  is defined as follows: 
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Obviously, the crisp time delays iu  can be 
interpreted as the limit case for i i iu u u= = . Time 
delay ix  between iJ  and 1nJ +  is considered as 
infeasible whenever i ix u≥ ; otherwise ix  is feasible, 
and the degree of satisfaction with the time delay is 
given by the formulation (1) (see Fig. 1). 

 
Secondly, if upper bound of time delay is infinite, the 
time delay between the completion of iJ  from J  
and beginning of 1nJ +  must be greater than or equal 

to the fuzzy low bound iL  (see Fig. 2). il  and il  with 

i il l<  are nonnegative and associated with each job 

iJ . Each iL  is a fuzzy number whose membership 
function ( ) : [0,1]i if x →R  is defined by 
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Thirdly, in most practical situation, upper bounds of 
time delays are not infinite, and low bounds do not 
equal to zero, too. A general fuzzy time delay in Fig. 
3 may be more appropriate for representing the grade 
of satisfaction of a decision maker than the linear on 
Fig. 1 and Fig. 2. The trapezoid membership function 
in Fig. 3 can be written as 
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Where il  is the earliest low bound of time delay and 

il  the latest low bound. iu  and iu  can be viewed as 
the earliest upper bound and latest upper bound of 
time delay, respectively. 
Since the fuzzy time delay of each job represents the 
satisfaction grade of decision maker, the shape of its 
membership function should be chosen according to 
the preference of the decision maker. Different 

Fig. 1. Membership function with fuzzy upper bound
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membership functions may be appropriate for 
different problems and different jobs. The first and 
second kind of fuzzy time delays can be considered 
as fuzzy version of the case (1) and (2) studied by 
Wikum, et al. (1994). The third kind of fuzzy time 
delay above is a more generalized case than previous 
two kinds of situations. 
 
2.3 Single Machine Scheduling Problem with Three 

Kinds of Fuzzy Time Delays 
 
For the single machine scheduling problem with 
above fuzzy time delays, there are two scheduling 
criteria. One is to minimize the makespan of 
schedules. It is defined as the maximum of 
completion times of all jobs, that is 

Minimize max max{ | =1,2,  ... , 1}iC C i n= +        (4) 
Obviously job 1nJ +  is final job, and then makespan 
of a feasible schedule π  is the completion time of 
job 1nJ + . Thus the first criterion can be rewritten as 
               Minimize max 1( ) ( )nC Cπ π+=                     (5) 
Another criterion is to maximize the minimum grade 
of satisfaction of time delays and written as 
        Maximize min =min{ (x )| =1,2,  ... , }i if f i n         (6) 
As mentioned in the first part of this section, the 
practical time delays is the time between the 
completion of iJ  and the beginning of job 1nJ + . 
Then for a feasible schedule π , the time delay of job 

iJ  can be calculated as 
                   1 1( ) ( ) ( )i n n ix C p Cπ π π+ += − −               (7) 
So the problem discussed is to find the optimal 
schedule σ  of n+1 jobs that minimizes the 
completion time 1( )nC σ+  of 1nJ +  and maximizes the 
minimum grade of satisfaction min ( )f σ  with respect 
to fuzzy time delay in the same time. It can be named 
problem P: 
P: Minimize 1( )nC σ+  and maximize min ( )f σ   
Where optimal schedule σ  subjects to σ ∈ Π  that 
Π  is the set of all permutation schedules. 
 
Although the above bi-criteria are common 
performance of three kinds of fuzzy time delays 
mentioned before, there are different solution 
procedures and methods for different kind of fuzzy 
time delays. For the first kind of fuzzy time delay, 
which is called fuzzy upper bound, the membership 
of grade of satisfaction is nonincreasing, that is, the 
less time delay is, the better grade of satisfaction. 

From equation (7), the completion time of 1nJ +  will 
be decreased if time delay is shortened. In other 
words, 1nC +  and minf  with problem P are consistent 
for fuzzy upper bound, and one can be optimal if 
another is optimized. But for fuzzy low bound of 
time delay, the two criteria are contradictive because 
the membership of fuzzy time delay is nondecreasing. 
It means minimum grade of satisfaction minf  will 
decrease while makespan increase. Therefore, we 
cannot optimize the two criteria in the same time. For 
the third kinds of fuzzy time delay, it is more 
complicated to obtain the optimal sequence. In next 
section, the solution procedure for problem P will be 
described in detailed for three kinds cases. 
 
 

3. PROBLEM SOLUTION 
 
 
3.1 Fuzzy Upper Bound 
 
In this case, the low bound of time delay is not 
critical and can be zero for each job iJ  from 

1 2{ , , , }nJ J J=J … . The upper bound of time delay is 
a fuzzy number and its membership ( )i if x  is 
formulated by equation (1) showed in Fig. 1. Time 
delay xi between iJ  and 1nJ +  is infeasible whenever 

i ix u> , otherwise xi is feasible. If time delay is less 
than time iu , there is maximum degree of 
satisfaction that is one. When time delays beyond iu , 
level of satisfaction will decrease to zero. Generally, 

ix  is in the interval [ ,i iu u ]. And ( )i if x , degree of 
satisfaction with respect to ix  belongs to [0,1]. In 
order to maximizing min (x )if , last job 1nJ +  must be 
processed immediately after completion of all jobs 
from set J  because it make time delay closer to zero 
and grade of satisfaction closer to one.  
 
We turn our attention to another criteria, completion 

1nC +  of last job 1nJ + . Minimizing 1nC +  is consistent 
with maximizing the min (x )if . Because earlier the 
last job is completed, smaller time delay is for every 
job iJ  from J according to equation (7); hence 
greater ( )i if x  with iJ  must be for it is nonincreasing, 
and bigger min (x )if  will be. So, only one criterion, 
minimum grade of satisfaction of time delay need to 
be optimal. And problem P is rewritten as P1: 
P1: maximize min ( )f σ  
Where σ  is the optimal schedule for single machine 
scheduling with fuzzy upper bound of time delay. 
There are precedence constraints between first n jobs. 
The problem is called 1|prec|fmin that is similar to 
well-known crisp problem 1|prec|fmax. The difference 
is they have opposite cost function that fmin is to 
maximize the minimum grade of satisfaction of time 
delay and fmax to minimize nondecreasing function. 
Lawler’s algorithm (Lawler, 1973) for the problem 
1|prec|fmax can be applied directly to the fuzzy case 

1 

Fig. 3. Membership function of general fuzzy time delay
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because the membership of fuzzy time delay is 
nonincreasing. Later on, the algorithm 1 for problem 
P1 will be formulated and its validity will be proved. 
 
Obviously job 1nJ +  is final job and there are no idle 
times during the procedure of jobs processing. 
Therefore, job 1nJ +  finishes at time 

                                  
1

1
1
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n i
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+
=

= ∑                             (8) 

which have nothing with the precedence of all jobs. 
Let I denote jobs set in which jobs have been 
scheduled. I’, the compensation of I, is the set of 
unscheduled jobs. For those jobs that can be 
processed at the beginning of sequence with respect 
to ordinary precedence relation, we denote them by 
U. Here we give the optimal algorithm for problem 
1|prec| fmin. 
Algorithm 1 
Step 1. Let I=Φ, I’={J1, J2, ..., Jn}, Let S=Φ be the 
optimal schedule. 
Step 2. Let 

j
jJ I

p p
∈

= ∑ . Find J* from set U such 

that 
                      * ( ) max ( )

i
i

J iJ J U
f x f x

∈
=                           (9) 

Here, 1 1i n n ix C p p p+ += − − − ( iJ U∈ ). Then put J* 

into set I and delete J* from I’ and U. Put J* at the 
end of S, i.e. *:S S J= ∪ . 
Step 3.  If I’=Φ, go to step 4; Else go to step 2. 
Step 4.  Put  1nJ +  at the end of S  
This algorithm is a variant of Lawler algorithm. Even 
if we employ a straightforward implementation of 
the Lawler algorithm, the time complexity of the 
algorithm is 2( )O n . We will proof the validity of the 
algorithm. 
Theorem 1. Algorithm 1 for 1|prec| fmin constructs an 
optimal sequence. 
Proof: Enumerate the jobs in such a way that 
1,2, ,n  is the sequence constructed by the 
algorithm 1. Let : (1), , ( )nσ σ σ…  be an optimal 
sequence with ( )i iσ =  for 1,2, ,i r= …  and 

( 1) 1r rσ + ≠ +  where r is maximal. We have the 
following situation 

: [1, , , , , , 1, , ]r k j r nσ +… … …  
It is possible to schedule r+1 immediately after r. 
Therefore, r+1 and k have no predecessor in the set 
{ 1, , }r n+ … . This implies 1 1( ) ( )r r k kf x f x+ + ≥  
because 1,2, ,n  was constructed by the algorithm 
1 where 

1 1 1 1r n n rx C p p p+ + + += − − −  
1

( )
r

i
i

p p
=

= ∑ , 

1 1k n n kx C p p p+ += − − −
1

( )
r

i
i

p p
=

= ∑  

Thus, the schedule we get by shifting the block of 
jobs between r and r+1 in σ  with an amount of pr+1 
units to the right and processing r+1 immediately 
after r is again optimal. This contradicts the 
maximality of r. 
 

 
3.2 Fuzzy Low Bound 
 
While upper bound of time delay is infinity, the low 
bound of time delay is fuzzy number with 
nondecreasing membership function showed in Fig. 2. 
This kind of case was discussed by Muthusamy et al. 
(2003). They admitted the presence of additional 
fuzzy precedence that is not considered here. As 
mentioned in part 2.3, the problem has following two 
criteria: minimize 1nC +  and maximize minf . It’s 
called problem P2. Since fuzzy low bound of time 
delay is nondecreasing, the two criteria are 
contradictive. If completion of last job is minimal, in 
the meantime, the minimum grade of satisfaction of 
time delay cannot be maximal. Muthusamy et al. 
(2003) analysed this case with fuzzy precedence 
appearing. If fuzzy precedence is removed from their 
problem, the algorithm of Muthusamy et al. is same 
to Tada’s algorithm (Tada, 1994) for single machine 
scheduling with fuzzy due dates. In other words, the 
problem P2 can be resolved by Tada’s algorithm.  
 
In order to finding the optimal schedules of the 
problem P2, several observations proposed by 
Muthusamy et al. will be repeated in next part. 
 
Observation 1. For every feasible schedule π , 

1 1( ) max{ ( ) ( )( )}n i n i i i iC C p l f x l lππ π+ += + + + −    (10) 
Where 1,i n= … .  
 
Observation 2. For each optimal schedule, there is 
no idle time between jobs from 1 2{ , , , }nJ J J=J … , 
i.e., all jobs from J are processed in the interval 

1 2[0, ]np p p+ + + . 
 
For 1,i n= … , let : [0,1]iλ → R  be a function 
defined as follows: 

( ) ( )i i i il l lλ γ γ= + −  
From the definition of iλ  that ( ) ( )i ij i ijλ γ λ γ=  
implies 

( ) ( )
i j

ij
j j i i

l l
l l l l

γ
−

=
− − −

. 

Let 0 0γ =  and 1mγ = , and rank all the quantities 
(0 1)ij ijγ γ< <  in increasing order and create the 

interval 1[ , ]k kγ γ +  ( 1,,0 −= mk … ). All of these 
intervals follow such observation. 
 
Observation 3. For any γ  in the interval 1[ , ]k kγ γ + , 
problem P2 has the same optimal schedule π . If γ  
passes from interval 1[ , ]k kγ γ +  to interval 1 2[ , ]k kγ γ+ + , 
the optimal schedule must be different. 
 
For a permutation π : { 1, } { 1, }i n i n= → =… …  and 
a real number [0,1]γ ∈ , the schedule γπ  defined by 
I Jobs are processing from time 0t = , 
II There is no idle time between jobs from J . 



 

     

III 1 1( ) max{ ( ) ( )}n i n iC C pπ π λ γ+ += + + . 
Notice that γπ  is a feasible schedule such that the 
processing order of jobs from J  in γπ  is π , and the 
degree min ( )f γπ  of satisfaction of fuzzy time delay 
constraints is γ . Let I denote jobs set in which jobs 
have been scheduled. I’ is the set of unscheduled jobs. 
For those jobs that can be processed at the end of 
sequence with respect to ordinary precedence 
relation, we denote them by U. Now the algorithm 2 
for finding the optimal schedule can be described as 
follows: 
Algorithm 2 
Step 1. For 1 ,i j n≤ ≤  with i j≠ , Find all 0 1γ≤ ≤  
such that 

( ) ( )
i j

ij
j j i i

l l
l l l l

γ
−

=
− − − .  

Step 2. Arrange all ijγ  in increasing order and 
rename the resulting γ  different values so that 

1 2 10 1mγ γ γ −< < < < < . Let 0 0γ =  and 1mγ = . 
Choose the initial 0γ = . Let S be the set of optimal 
schedules.  
Step 3. Let I=Φ, I’={J1, J2,..., Jn}, π = Φ  be the 
optimal schedule.  
Step 4. Find J* from set U such that 

* ( ) min ( )iJ i U
λ γ λ γ

∈
=  Then put J* into set I and delete 

J* from I’ and U. Put J* at the beginning of π , i.e. 
*: Jπ π= ∪ . 

Step 5. If I’=Φ, go to step 6; Else go to step 4. 
Step 6. If current 1γ ≠ , add π  into set S after put 

1nJ +  at the end of π . Choose next γ , and go to step 
3. Else stop. 
 
Muthusamy et al. showed this algorithm is a variant 
of algorithm designed by Lawler (1973) that can 
ensure the correctness of it. Same to Lawler’s 
algorithm, the complexity of this one is 2( )o n .  
 
 
3.3 General Fuzzy Time Delay 
 
In fact, a more general fuzzy time delay showed in 
Fig. 3 can more explicitly express the degree of 
satisfaction of decision maker about actual time 
delay. In this case, the full satisfaction will be 
attained in the interval [ , ]i il u . Earlier or later time 
delay that leaves this interval will reduce the 
satisfaction of decision maker about schedules. This 
kind of fuzzy time delay is the combination of fuzzy 
upper bound and fuzzy low bound. It is more 
difficult to deal with than previous kinds of fuzzy 
times. One cannot get the optimal schedule through 
just mixing the respective algorithm for fuzzy upper 
and low bound of time delay. Because the algorithm 
1 for fuzzy upper bound queues jobs except 1nJ +  
from first one to last, and the algorithm 2 for fuzzy 
low bound from job last to first. The procedures of 
two algorithms are opposite and cannot be well done 
together. So a new method will appear for single 

machine scheduling problem with general fuzzy time 
delay. Since it is NP-hard problem when 0il ≠  or 

iu ≠ ∞  in crisp situation, the fuzzy logic alternative 
cannot be solved in polynomial time, too. We apply 
genetic algorithm for this single machine scheduling 
problem with general fuzzy time delay. 
 
There are two criteria, maximum completion time 

1nC +  and minimum degree of satisfaction with time 
delay minf , need to be optimal. Hence, the Niched 
Pareto GA proposed by Horn et al. (1994), which is a 
good multiobjective optimization method, will be 
employed for this two objective optimization. In the 
Niched Pareto GA, the optimal solution is called 
nondominated solution, or Pareto optimal solution. 
Next the definition of nondominated solution will be 
given. For any feasible schedule π , schedule vector 

πν  consists two elements, minf π  and maxCπ . We denote 
it as min max( , )f Cπ π πν = . For two vectors 

1 1 1
min max( , )f Cν =  and 2 2 2

min max( , )f Cν = , we say 1ν  
dominates 2ν  and denote it by 1 2ν ν>  when 

1 2
min minf f≥ , 1 2

max maxC C≤  and 1 2ν ν≠ . If 1 2π πν ν>  
for two schedules 1π  and 2π , we say 1π  dominates 

2π . A feasible schedule 1π  is called to be 
nondominated if and only if there exist no feasible 
schedule that dominates 1π . In order to finding the 
nondominated solution, the Niched Pareto GA 
implements a sampling scheme as follows. Two 
candidates for selection are picked at random from 
the population. A comparison set of individuals is 
also picked randomly from the population. Each of 
the candidates is then compared against each 
individual in the comparison set. There are two kinds 
of results: 
1. If one candidate is dominated by the comparison 

set, and the other is not, the latter is selected for 
reproduction. 

2. If both or neither is dominated by the 
comparison set, then sharing can choose a 
winner. 

Fitness sharing was introduced by Goldberg and 
Richardson (1987), analyzed in detail by Deb (1989). 
Sharing calls for the degradation of an individual’s 
objective fitness fi by a niche count mi calculated for 
that individual. But Niched Pareto GA do not 
implement any form of fitness degradation according 
to the niche count. Instead, the “best fit” candidate is 
determined to be that candidate who has the smallest 
niche count. This type of sharing is called 
equivalence class sharing. The niche count mi is an 
estimate of how crowded is the neighbourhood 
(niche) of individual i. It is calculated over all 
individuals in the current population: 

pop_size

1

sh( )i ij
j

m d
=

= ∑                        (11) 

Where dij is the distance between individuals i and j 
and sh(·) is the sharing function: 
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Here α  is a constant and shareσ  is the niche radius, 
fixed by the user at some estimate of the minimal 
separation desired or expected between the goal 
solutions. So the total procedure of the problem is 
demonstrated as: 
Algorithm 3 
Step 1 (Initialization): Randomly generate an initial 
population of Npop solutions. 
Step 2 (Evaluation): Calculate the values of the two 
objectives for each solution in the current population, 
and then update the tentative set of nondominated 
solutions. 
Step 3 (Selection): Select a pair of solutions 
according to Niched Pareto GA method. Repeat this 
step to produce Npop offspring by crossover operation 
in step 4. 
Step 4 (Crossover): For each selected pair, apply a 
crossover operation to generate an offspring with the 
crossover probability Pc. 
Step 5 (Mutation): For each solution generated by 
crossover operation, apply operation with a 
prespecified mutation probability Pm. 
Step 6 (Elitist strategy): Randomly remove Nelite 
solutions from the Npop solutions generated by the 
above operations, and add the same number of 
strings from a tentative set of Pareto optimal solution 
to the current population. 
Step 7 (termination test): If a prespecified stepping 
condition is not satisfied, return to step 2. 
The Niched Pareto GA maintains Pareto diversity 
and shows the final set of Pareto optimal solution to 
the decision maker. A single solution (i.e. the final 
solution) is selected by decision maker’s preference. 
Here, in order to cutting the length of the paper, test 
example will not be provided. But it does not reduce 
ability that Niched Pareto GA finds nondominated 
solutions of this problem. 
 
 

4.CONCLUDING REMARKS 
 
A single machine scheduling problem with fuzzy 
time delay was discussed here. All feasible schedules 
must satisfy a given precedence relation with a 
special structure, in which last job Jn+1 cannot start 
until all other jobs J1, J2, … , Jn are completed. 
Moreover, the fuzzy delays between the completion 
time of Ji and the starting time of Jn+1 are categorized 
into three kinds: fuzzy upper bound of time delay, 
fuzzy low bound of time delay and general fuzzy 
time delay. The objective of scheduling is to 
maximize minimum degree of satisfaction with fuzzy 
time delays and minimize maximum completion time 
of jobs. For different kind of fuzzy time delays, there 
are different solution procedures. When fuzzy time 
delay contains upper and low bound, it is general 
fuzzy time delay. Because the crisp counterpart of 
problem with general fuzzy time delay is already NP-
hard, the fuzzy version is computationally intractable 

in the sense that it is strongly NP-hard, too. 
Therefore, some kinds of heuristic search methods 
are needed for this NP-hard problem. Here, a kind of 
genetic algorithm, Niched Pareto GA, was applied 
and it can efficiently provide the set of nondominated 
solutions for two scheduling objectives. As a matter 
of fact, the genetic algorithm also fits for fuzzy upper 
and low bounds of time delay. But it consumes a 
great deal of time and is not as efficient as modified 
Lawler algorithm which was discussed in this paper. 
 
In this paper, a kind of simplest single machine 
scheduling problem with fuzzy time delay was 
considered. Fuzzy time delay only appeared between 
last job and each one of other jobs. However, more 
general situation in which fuzzy time delay occurs 
between every pair of jobs deserves to research. 
Otherwise, more than one machine scheduling 
problems with fuzzy time delay aren’t yet analysed 
seriously. They are good challenges for future work. 
While their membership functions of three kinds of 
fuzzy time delays are linear, all of them may be 
nonlinear. But, fuzzy upper bound must be 
nonincreasing and fuzzy low bound must be 
nondecreasing. And for general fuzzy time delay, 
there are not significantly affected by their shape 
since genetic algorithm does not restrict the type of 
fuzzy number. In the future research, other 
performance functions will be taken into account. 
And multiobjective scheduling problems more than 
two are more interesting and intractable. 
Approximating algorithms such as genetic algorithm 
will be good solution method for that multiobjective 
optimization. 
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