

A SINGLE MACHINE SCHEDULING PROBLEM WITH FUZZY TIME DELAYS

Xie Yuan, Xie Jian-ying, Deng Xiao-long

Department of Automation,
Shanghai Jiao Tong University,

Shanghai, China

Abstract: An n+1 jobs single machine problem with fuzzy time delays is considered.
Fuzzy time delay means the time between the completion of a job and the beginning of
any of its predecessors, which must be within prescribed limits. A special fuzzy delays
structure is investigated, which time delay only occur between iJ (1,2, ,i n= …) and 1nJ + .
Optimal solutions for the scheduling model under several cases are developed.
Copyright © 2005 IFAC

Keywords: Scheduling algorithm, Fuzzy modelling, Time delay, Fuzzy set.

1. INTRODUCTION

Consider the following scheduling problem. There
are a single machine and a set of n+1 jobs

1 2 1, , , ,n nJ J J J +… to be run on that machine without
preemption. Wikum, et al. (1994) showed a special
case that job 1nJ + couldn’t be started until all jobs

, 1, 2, ,iJ i n= … are completed. There are time delays
between the completion of iJ and the beginning of

1nJ + . And the lower and upper bounds for time delay
between iJ and 1nJ + are given by numbers il and

iu respectively. They also showed that the problem
could only be solved in polynomial time in the
following cases
(1) 0il = for 1, 2, ,i n= … ;
(2) iu = ∞ for 1, 2, ,i n= … ;
(3) 0, ori il u= = ∞ for 1, 2, ,i n= … .
In real world, input data may be uncertain or
imprecise. Recently, Muthusamy et al. (2003)
considered fuzzy version of problem satisfying (2)
and proposed an 8()O n algorithm. They allowed
lower bounds for time delays to be fuzzy numbers,
and admitted the presence of additional fuzzy
precedences. They left for future research derivation

of analogous results for the problems of satisfying (1)
and (3).

As we know, fuzzy precedence doesn’t often happen
in practice because it is difficult to decide the
membership function of fuzzy precedence. So, a
single machine scheduling problem only with fuzzy
time delays will be analysed here. And time delays
are fuzzy numbers. From three cases mentioned
previously, case (1) and case (2) with fuzzy upper
bounds and fuzzy low bounds respectively will be
researched to find optimal solution in polynomial
time. Furthermore, if both upper bounds are not
infinite and low bound are not zero, time delays also
can be fuzzified. Upper and low bounds can be
considered as parameters of fuzzy time delays. The
problem will be resolved by genetic algorithm.

The remainder of this paper is organized as follows.
Section 2 presents the problem formulation and
introduces three kinds of fuzzy time delays. Then,
solution procedure for every kind of fuzzy time
delays will be given in section 3. Finally, summary
and conclusion are presented in last section.

2. FORMULATION OF PROBLEM

2.1 Single Machine Scheduling with Time Delay.

There are n+1 jobs 1 1, ,n nJ J J + to be processed
nonpreemptively on a single machine, which can
execute at most a job at a time. The machine and jobs
are continuously available from time 0t = . Each job
requires an uninterrupted processing time

, 1, , , 1ip i n n= + , where all ip are positive rational
numbers. The schedules are required to satisfy the
precedence constraints

1i nJ J +≺ for each 1,2, ,i n= …

1i nJ J +≺ means that job 1nJ + cannot be started until
job iJ is completed. The lower and upper bounds for
time delay between iJ and 1nJ + are given by
numbers il and iu satisfying 0 i il u≤ ≤ < ∞ for each

1,2, ,i n= … . That is, each job iJ must precede job

1nJ + , and the time between the completion of iJ and
the beginning of job 1nJ + must be at least il but no
more than iu . There are ordinary precedence
constraints between jobs from 1{ , }nJ J=J . The
feasibility of schedules is further constrained by time
delays of each job iJ from J , which are different in
practical situations. Sometime low bounds of time
delays are not very important and regarded as zero.
Or upper bounds are always satisfied and considered
as infinity. But in most of situations, both low and
upper bounds are real numbers in the interval
(0,)+∞ .

2.2 Fuzzy Time Delay.

The fuzzy time delay is associated with each job and
represented by a fuzzy set on +R (the positive part of
real numbers). For our problem, fuzzy time delay can
be represented in three kinds of cases which are
different to each other. Firstly, when low bound of
time delay is zero, the time delay between the
completion of iJ from J and beginning of 1nJ +
must be less than or equal to a given fuzzy number

iU . That is, iU is a fuzzy upper bound of the time
delay between iJ and 1nJ + . iU can be formulated as
fuzzy interval [,]i iu u , here iu and iu are
nonnegative and i iu u< . The nonincreasing
membership function ()i if x is defined as follows:

1 if

() 1 if

0 if

i i

i i
i i i i i

i i

i i

x u
x uf x u x u
u u

x u

 ≤

−= − < < −
 ≥

 (1)

Obviously, the crisp time delays iu can be
interpreted as the limit case for i i iu u u= = . Time
delay ix between iJ and 1nJ + is considered as
infeasible whenever i ix u≥ ; otherwise ix is feasible,
and the degree of satisfaction with the time delay is
given by the formulation (1) (see Fig. 1).

Secondly, if upper bound of time delay is infinite, the
time delay between the completion of iJ from J
and beginning of 1nJ + must be greater than or equal

to the fuzzy low bound iL (see Fig. 2). il and il with

i il l< are nonnegative and associated with each job

iJ . Each iL is a fuzzy number whose membership
function () : [0,1]i if x →R is defined by

0 if

() if

1 if

i i

i i
i i i i i

i i

i i

x l

x lf x l x l
l l

x l

 ≤

−= < <
−

 ≥

 (2)

Thirdly, in most practical situation, upper bounds of
time delays are not infinite, and low bounds do not
equal to zero, too. A general fuzzy time delay in Fig.
3 may be more appropriate for representing the grade
of satisfaction of a decision maker than the linear on
Fig. 1 and Fig. 2. The trapezoid membership function
in Fig. 3 can be written as

0 if

f

() 1 f

1 if

0 if

i i

i i
i i i

i i

i i i i i

i i
i i i

i i

i i

x l

x l i l x l
l l

f x i l x u
x u u x u
u u

x u

 ≤

− < < −

= < <
 − − < <
 −
 ≥

 (3)

Where il is the earliest low bound of time delay and

il the latest low bound. iu and iu can be viewed as
the earliest upper bound and latest upper bound of
time delay, respectively.
Since the fuzzy time delay of each job represents the
satisfaction grade of decision maker, the shape of its
membership function should be chosen according to
the preference of the decision maker. Different

Fig. 1. Membership function with fuzzy upper bound

1

iu iu

degree

time0

()i if x

Fig. 2. Membership function with fuzzy low bound

1
degree

time0

()i if x

il il

membership functions may be appropriate for
different problems and different jobs. The first and
second kind of fuzzy time delays can be considered
as fuzzy version of the case (1) and (2) studied by
Wikum, et al. (1994). The third kind of fuzzy time
delay above is a more generalized case than previous
two kinds of situations.

2.3 Single Machine Scheduling Problem with Three

Kinds of Fuzzy Time Delays

For the single machine scheduling problem with
above fuzzy time delays, there are two scheduling
criteria. One is to minimize the makespan of
schedules. It is defined as the maximum of
completion times of all jobs, that is

Minimize max max{ | =1,2, ... , 1}iC C i n= + (4)
Obviously job 1nJ + is final job, and then makespan
of a feasible schedule π is the completion time of
job 1nJ + . Thus the first criterion can be rewritten as
 Minimize max 1() ()nC Cπ π+= (5)
Another criterion is to maximize the minimum grade
of satisfaction of time delays and written as
 Maximize min =min{ (x)| =1,2, ... , }i if f i n (6)
As mentioned in the first part of this section, the
practical time delays is the time between the
completion of iJ and the beginning of job 1nJ + .
Then for a feasible schedule π , the time delay of job

iJ can be calculated as
 1 1() () ()i n n ix C p Cπ π π+ += − − (7)
So the problem discussed is to find the optimal
schedule σ of n+1 jobs that minimizes the
completion time 1()nC σ+ of 1nJ + and maximizes the
minimum grade of satisfaction min ()f σ with respect
to fuzzy time delay in the same time. It can be named
problem P:
P: Minimize 1()nC σ+ and maximize min ()f σ
Where optimal schedule σ subjects to σ ∈ Π that
Π is the set of all permutation schedules.

Although the above bi-criteria are common
performance of three kinds of fuzzy time delays
mentioned before, there are different solution
procedures and methods for different kind of fuzzy
time delays. For the first kind of fuzzy time delay,
which is called fuzzy upper bound, the membership
of grade of satisfaction is nonincreasing, that is, the
less time delay is, the better grade of satisfaction.

From equation (7), the completion time of 1nJ + will
be decreased if time delay is shortened. In other
words, 1nC + and minf with problem P are consistent
for fuzzy upper bound, and one can be optimal if
another is optimized. But for fuzzy low bound of
time delay, the two criteria are contradictive because
the membership of fuzzy time delay is nondecreasing.
It means minimum grade of satisfaction minf will
decrease while makespan increase. Therefore, we
cannot optimize the two criteria in the same time. For
the third kinds of fuzzy time delay, it is more
complicated to obtain the optimal sequence. In next
section, the solution procedure for problem P will be
described in detailed for three kinds cases.

3. PROBLEM SOLUTION

3.1 Fuzzy Upper Bound

In this case, the low bound of time delay is not
critical and can be zero for each job iJ from

1 2{ , , , }nJ J J=J … . The upper bound of time delay is
a fuzzy number and its membership ()i if x is
formulated by equation (1) showed in Fig. 1. Time
delay xi between iJ and 1nJ + is infeasible whenever

i ix u> , otherwise xi is feasible. If time delay is less
than time iu , there is maximum degree of
satisfaction that is one. When time delays beyond iu ,
level of satisfaction will decrease to zero. Generally,

ix is in the interval [,i iu u]. And ()i if x , degree of
satisfaction with respect to ix belongs to [0,1]. In
order to maximizing min (x)if , last job 1nJ + must be
processed immediately after completion of all jobs
from set J because it make time delay closer to zero
and grade of satisfaction closer to one.

We turn our attention to another criteria, completion

1nC + of last job 1nJ + . Minimizing 1nC + is consistent
with maximizing the min (x)if . Because earlier the
last job is completed, smaller time delay is for every
job iJ from J according to equation (7); hence
greater ()i if x with iJ must be for it is nonincreasing,
and bigger min (x)if will be. So, only one criterion,
minimum grade of satisfaction of time delay need to
be optimal. And problem P is rewritten as P1:
P1: maximize min ()f σ
Where σ is the optimal schedule for single machine
scheduling with fuzzy upper bound of time delay.
There are precedence constraints between first n jobs.
The problem is called 1|prec|fmin that is similar to
well-known crisp problem 1|prec|fmax. The difference
is they have opposite cost function that fmin is to
maximize the minimum grade of satisfaction of time
delay and fmax to minimize nondecreasing function.
Lawler’s algorithm (Lawler, 1973) for the problem
1|prec|fmax can be applied directly to the fuzzy case

1

Fig. 3. Membership function of general fuzzy time delay
il iuil iu

()i if xdegree

because the membership of fuzzy time delay is
nonincreasing. Later on, the algorithm 1 for problem
P1 will be formulated and its validity will be proved.

Obviously job 1nJ + is final job and there are no idle
times during the procedure of jobs processing.
Therefore, job 1nJ + finishes at time

1

1
1

n

n i
i

C p
+

+
=

= ∑ (8)

which have nothing with the precedence of all jobs.
Let I denote jobs set in which jobs have been
scheduled. I’, the compensation of I, is the set of
unscheduled jobs. For those jobs that can be
processed at the beginning of sequence with respect
to ordinary precedence relation, we denote them by
U. Here we give the optimal algorithm for problem
1|prec| fmin.
Algorithm 1
Step 1. Let I=Φ, I’={J1, J2, ..., Jn}, Let S=Φ be the
optimal schedule.
Step 2. Let

j
jJ I

p p
∈

= ∑ . Find J* from set U such

that
 * () max ()

i
i

J iJ J U
f x f x

∈
= (9)

Here, 1 1i n n ix C p p p+ += − − − (iJ U∈). Then put J*

into set I and delete J* from I’ and U. Put J* at the
end of S, i.e. *:S S J= ∪ .
Step 3. If I’=Φ, go to step 4; Else go to step 2.
Step 4. Put 1nJ + at the end of S
This algorithm is a variant of Lawler algorithm. Even
if we employ a straightforward implementation of
the Lawler algorithm, the time complexity of the
algorithm is 2()O n . We will proof the validity of the
algorithm.
Theorem 1. Algorithm 1 for 1|prec| fmin constructs an
optimal sequence.
Proof: Enumerate the jobs in such a way that
1,2, ,n is the sequence constructed by the
algorithm 1. Let : (1), , ()nσ σ σ… be an optimal
sequence with ()i iσ = for 1,2, ,i r= … and

(1) 1r rσ + ≠ + where r is maximal. We have the
following situation

: [1, , , , , , 1, ,]r k j r nσ +… … …
It is possible to schedule r+1 immediately after r.
Therefore, r+1 and k have no predecessor in the set
{ 1, , }r n+ … . This implies 1 1() ()r r k kf x f x+ + ≥
because 1,2, ,n was constructed by the algorithm
1 where

1 1 1 1r n n rx C p p p+ + + += − − −
1

()
r

i
i

p p
=

= ∑ ,

1 1k n n kx C p p p+ += − − −
1

()
r

i
i

p p
=

= ∑

Thus, the schedule we get by shifting the block of
jobs between r and r+1 in σ with an amount of pr+1
units to the right and processing r+1 immediately
after r is again optimal. This contradicts the
maximality of r.

3.2 Fuzzy Low Bound

While upper bound of time delay is infinity, the low
bound of time delay is fuzzy number with
nondecreasing membership function showed in Fig. 2.
This kind of case was discussed by Muthusamy et al.
(2003). They admitted the presence of additional
fuzzy precedence that is not considered here. As
mentioned in part 2.3, the problem has following two
criteria: minimize 1nC + and maximize minf . It’s
called problem P2. Since fuzzy low bound of time
delay is nondecreasing, the two criteria are
contradictive. If completion of last job is minimal, in
the meantime, the minimum grade of satisfaction of
time delay cannot be maximal. Muthusamy et al.
(2003) analysed this case with fuzzy precedence
appearing. If fuzzy precedence is removed from their
problem, the algorithm of Muthusamy et al. is same
to Tada’s algorithm (Tada, 1994) for single machine
scheduling with fuzzy due dates. In other words, the
problem P2 can be resolved by Tada’s algorithm.

In order to finding the optimal schedules of the
problem P2, several observations proposed by
Muthusamy et al. will be repeated in next part.

Observation 1. For every feasible schedule π ,

1 1() max{ () ()()}n i n i i i iC C p l f x l lππ π+ += + + + − (10)
Where 1,i n= … .

Observation 2. For each optimal schedule, there is
no idle time between jobs from 1 2{ , , , }nJ J J=J … ,
i.e., all jobs from J are processed in the interval

1 2[0,]np p p+ + + .

For 1,i n= … , let : [0,1]iλ → R be a function
defined as follows:

() ()i i i il l lλ γ γ= + −
From the definition of iλ that () ()i ij i ijλ γ λ γ=
implies

() ()
i j

ij
j j i i

l l
l l l l

γ
−

=
− − −

.

Let 0 0γ = and 1mγ = , and rank all the quantities
(0 1)ij ijγ γ< < in increasing order and create the

interval 1[,]k kγ γ + (1,,0 −= mk …). All of these
intervals follow such observation.

Observation 3. For any γ in the interval 1[,]k kγ γ + ,
problem P2 has the same optimal schedule π . If γ
passes from interval 1[,]k kγ γ + to interval 1 2[,]k kγ γ+ + ,
the optimal schedule must be different.

For a permutation π : { 1, } { 1, }i n i n= → =… … and
a real number [0,1]γ ∈ , the schedule γπ defined by
I Jobs are processing from time 0t = ,
II There is no idle time between jobs from J .

III 1 1() max{ () ()}n i n iC C pπ π λ γ+ += + + .
Notice that γπ is a feasible schedule such that the
processing order of jobs from J in γπ is π , and the
degree min ()f γπ of satisfaction of fuzzy time delay
constraints is γ . Let I denote jobs set in which jobs
have been scheduled. I’ is the set of unscheduled jobs.
For those jobs that can be processed at the end of
sequence with respect to ordinary precedence
relation, we denote them by U. Now the algorithm 2
for finding the optimal schedule can be described as
follows:
Algorithm 2
Step 1. For 1 ,i j n≤ ≤ with i j≠ , Find all 0 1γ≤ ≤
such that

() ()
i j

ij
j j i i

l l
l l l l

γ
−

=
− − − .

Step 2. Arrange all ijγ in increasing order and
rename the resulting γ different values so that

1 2 10 1mγ γ γ −< < < < < . Let 0 0γ = and 1mγ = .
Choose the initial 0γ = . Let S be the set of optimal
schedules.
Step 3. Let I=Φ, I’={J1, J2,..., Jn}, π = Φ be the
optimal schedule.
Step 4. Find J* from set U such that

* () min ()iJ i U
λ γ λ γ

∈
= Then put J* into set I and delete

J* from I’ and U. Put J* at the beginning of π , i.e.
*: Jπ π= ∪ .

Step 5. If I’=Φ, go to step 6; Else go to step 4.
Step 6. If current 1γ ≠ , add π into set S after put

1nJ + at the end of π . Choose next γ , and go to step
3. Else stop.

Muthusamy et al. showed this algorithm is a variant
of algorithm designed by Lawler (1973) that can
ensure the correctness of it. Same to Lawler’s
algorithm, the complexity of this one is 2()o n .

3.3 General Fuzzy Time Delay

In fact, a more general fuzzy time delay showed in
Fig. 3 can more explicitly express the degree of
satisfaction of decision maker about actual time
delay. In this case, the full satisfaction will be
attained in the interval [,]i il u . Earlier or later time
delay that leaves this interval will reduce the
satisfaction of decision maker about schedules. This
kind of fuzzy time delay is the combination of fuzzy
upper bound and fuzzy low bound. It is more
difficult to deal with than previous kinds of fuzzy
times. One cannot get the optimal schedule through
just mixing the respective algorithm for fuzzy upper
and low bound of time delay. Because the algorithm
1 for fuzzy upper bound queues jobs except 1nJ +
from first one to last, and the algorithm 2 for fuzzy
low bound from job last to first. The procedures of
two algorithms are opposite and cannot be well done
together. So a new method will appear for single

machine scheduling problem with general fuzzy time
delay. Since it is NP-hard problem when 0il ≠ or

iu ≠ ∞ in crisp situation, the fuzzy logic alternative
cannot be solved in polynomial time, too. We apply
genetic algorithm for this single machine scheduling
problem with general fuzzy time delay.

There are two criteria, maximum completion time

1nC + and minimum degree of satisfaction with time
delay minf , need to be optimal. Hence, the Niched
Pareto GA proposed by Horn et al. (1994), which is a
good multiobjective optimization method, will be
employed for this two objective optimization. In the
Niched Pareto GA, the optimal solution is called
nondominated solution, or Pareto optimal solution.
Next the definition of nondominated solution will be
given. For any feasible schedule π , schedule vector

πν consists two elements, minf π and maxCπ . We denote
it as min max(,)f Cπ π πν = . For two vectors

1 1 1
min max(,)f Cν = and 2 2 2

min max(,)f Cν = , we say 1ν
dominates 2ν and denote it by 1 2ν ν> when

1 2
min minf f≥ , 1 2

max maxC C≤ and 1 2ν ν≠ . If 1 2π πν ν>
for two schedules 1π and 2π , we say 1π dominates

2π . A feasible schedule 1π is called to be
nondominated if and only if there exist no feasible
schedule that dominates 1π . In order to finding the
nondominated solution, the Niched Pareto GA
implements a sampling scheme as follows. Two
candidates for selection are picked at random from
the population. A comparison set of individuals is
also picked randomly from the population. Each of
the candidates is then compared against each
individual in the comparison set. There are two kinds
of results:
1. If one candidate is dominated by the comparison

set, and the other is not, the latter is selected for
reproduction.

2. If both or neither is dominated by the
comparison set, then sharing can choose a
winner.

Fitness sharing was introduced by Goldberg and
Richardson (1987), analyzed in detail by Deb (1989).
Sharing calls for the degradation of an individual’s
objective fitness fi by a niche count mi calculated for
that individual. But Niched Pareto GA do not
implement any form of fitness degradation according
to the niche count. Instead, the “best fit” candidate is
determined to be that candidate who has the smallest
niche count. This type of sharing is called
equivalence class sharing. The niche count mi is an
estimate of how crowded is the neighbourhood
(niche) of individual i. It is calculated over all
individuals in the current population:

pop_size

1

sh()i ij
j

m d
=

= ∑ (11)

Where dij is the distance between individuals i and j
and sh(·) is the sharing function:

 1 ,sh()

0,

ij
ij share

ij share

d
if dd

other

α

σ
σ

 − < =

 (12)

Here α is a constant and shareσ is the niche radius,
fixed by the user at some estimate of the minimal
separation desired or expected between the goal
solutions. So the total procedure of the problem is
demonstrated as:
Algorithm 3
Step 1 (Initialization): Randomly generate an initial
population of Npop solutions.
Step 2 (Evaluation): Calculate the values of the two
objectives for each solution in the current population,
and then update the tentative set of nondominated
solutions.
Step 3 (Selection): Select a pair of solutions
according to Niched Pareto GA method. Repeat this
step to produce Npop offspring by crossover operation
in step 4.
Step 4 (Crossover): For each selected pair, apply a
crossover operation to generate an offspring with the
crossover probability Pc.
Step 5 (Mutation): For each solution generated by
crossover operation, apply operation with a
prespecified mutation probability Pm.
Step 6 (Elitist strategy): Randomly remove Nelite
solutions from the Npop solutions generated by the
above operations, and add the same number of
strings from a tentative set of Pareto optimal solution
to the current population.
Step 7 (termination test): If a prespecified stepping
condition is not satisfied, return to step 2.
The Niched Pareto GA maintains Pareto diversity
and shows the final set of Pareto optimal solution to
the decision maker. A single solution (i.e. the final
solution) is selected by decision maker’s preference.
Here, in order to cutting the length of the paper, test
example will not be provided. But it does not reduce
ability that Niched Pareto GA finds nondominated
solutions of this problem.

4.CONCLUDING REMARKS

A single machine scheduling problem with fuzzy
time delay was discussed here. All feasible schedules
must satisfy a given precedence relation with a
special structure, in which last job Jn+1 cannot start
until all other jobs J1, J2, … , Jn are completed.
Moreover, the fuzzy delays between the completion
time of Ji and the starting time of Jn+1 are categorized
into three kinds: fuzzy upper bound of time delay,
fuzzy low bound of time delay and general fuzzy
time delay. The objective of scheduling is to
maximize minimum degree of satisfaction with fuzzy
time delays and minimize maximum completion time
of jobs. For different kind of fuzzy time delays, there
are different solution procedures. When fuzzy time
delay contains upper and low bound, it is general
fuzzy time delay. Because the crisp counterpart of
problem with general fuzzy time delay is already NP-
hard, the fuzzy version is computationally intractable

in the sense that it is strongly NP-hard, too.
Therefore, some kinds of heuristic search methods
are needed for this NP-hard problem. Here, a kind of
genetic algorithm, Niched Pareto GA, was applied
and it can efficiently provide the set of nondominated
solutions for two scheduling objectives. As a matter
of fact, the genetic algorithm also fits for fuzzy upper
and low bounds of time delay. But it consumes a
great deal of time and is not as efficient as modified
Lawler algorithm which was discussed in this paper.

In this paper, a kind of simplest single machine
scheduling problem with fuzzy time delay was
considered. Fuzzy time delay only appeared between
last job and each one of other jobs. However, more
general situation in which fuzzy time delay occurs
between every pair of jobs deserves to research.
Otherwise, more than one machine scheduling
problems with fuzzy time delay aren’t yet analysed
seriously. They are good challenges for future work.
While their membership functions of three kinds of
fuzzy time delays are linear, all of them may be
nonlinear. But, fuzzy upper bound must be
nonincreasing and fuzzy low bound must be
nondecreasing. And for general fuzzy time delay,
there are not significantly affected by their shape
since genetic algorithm does not restrict the type of
fuzzy number. In the future research, other
performance functions will be taken into account.
And multiobjective scheduling problems more than
two are more interesting and intractable.
Approximating algorithms such as genetic algorithm
will be good solution method for that multiobjective
optimization.

REFERENCES

Deb, K. (1989). Genetic algorithms in multimodal

function optimization. MS thesis, TCGA Report
No. 89002. University of Alabama.

Goldberg, D.E. and Richardson, J. J.(1987). Genetic
algorithms with sharing for multimodal function
optimization. In: Genetic Algorithms and Their
Applications: Proceedings of the Second ICGA
(Grefenstette, J.), 41-49. Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Horn, J., N. Nafpliotis and D. Goldberg (1994). A
niched Pareto genetic algorithm for
multiobjective optimization. In: Proceeding of
the first IEEE conference on evolutionary
computation (Fogel, D.), 82-87. IEEE Press,
New Jersey.

Lawler, E.L. (1973). Optimal sequencing of a single
machine subject to precedence constraints.
Management Science, 19 (5), 544-546.

Muthusamy, K., Sung, S.C., Vlach, M., Ishii, H.
(2003). Scheduling with fuzzy delays and fuzzy
precedences. Fuzzy Sets and Systems, 134 (3),
387-395.

Wilum, E.D., Llewellyn, D.C., Nemhauser, G.L.
(1994), One-machine generalized precedence
constrained scheduling problems. Operations
Research Letters, 16 (2), 87-99.

