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Abstract: An approach to enhancing a model-based predictive controller by Kalman filter 
is proposed. The controller uses an ARX process model and the structure of the controller 
is assumed fixed; some of its internal variables – past values of controlled variables 
(output history) are accessible and can be modified to achieve better performance in 
disturbance attenuation and noise rejection. We present an algorithm of updating the 
output history using Kalman filter to achieve predictions equivalent to those of the state-
space model, thus overcoming the limitations of the ARX predictor.  Interesting relations 
of this algorithm to Kalman interval smoother are given. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Model-based predictive control (MPC) is a concept, 
which has made a significant impact on advanced 
process control.  It can be briefly described as 
follows: A sequence of future control actions is 
computed to optimise the future process behaviour 
over a finite time-horizon subject to various 
constraints. Further, only the first action of the 
sequence is implemented, and the optimisation is 
repeated on the horizon shifted one step forward. 
Particular implementations of MPC differ in the 
optimisation problem formulation as well as in the 
model used for predicting the future process 
behaviour. Prediction models in MPC can be either 
input-output or state-space based. The latter are more 
flexible in capturing the real process structure, noises 
and uncertainties; they are favoured in theoretical 
research (Bemporad and Morari, 1999). The input-
output models are used in most real-world 
applications due to a simpler representation; there is 
also some inertia in the industry and state-space 
models have not been fully accepted yet. We shall 
consider MPC of (Havlena and Findejs, 2005); it 
uses the ARX model that is very economical from 
the point of view of the on-line computational effort 

and data storage. However, it assumes a noise model 
that is not always realistic – e.g., if there is a 
significant sensor noise, the predictions exhibit large 
variations, which propagate to control actions. In that 
case, the output error model, or a state-space model 
and Kalman filter (KF) would be appropriate. 
However, major changes of the MPC engine are 
costly; KF is thus used as an incremental 
improvement for enhancing the current controller, in 
particular, for estimating unknown inputs. We 
propose an algorithm, which uses KF also to modify 
stored output values used by ARX so that the 
predictions are equal to those of a state-space model. 
A recursive formula for updating the output history is 
found, similar to Kalman interval smoother, KIS 
(Anderson and Moore, 1979). A new convergence 
result is obtained for KIS.  
 
 

2. THE BACKGROUND 
 
2.1 ARX and state-space models 
 
MISO (Multi-Input-Single-Output) ARX models are 
used for predicting the system output as follows: 
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where my is a (measured)  output variable and ˆmy its 
prediction, 1,...,m p= ; 

ru is the input (at this point we 
do not distinguish between the manipulated and the 
disturbance variables), me is Gaussian white noise 
and drn is time-delay for the rth input. Further let 
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The formula for expected future outputs is  given by 
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where the parameter matrices are given by 
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The dimensions are compatible with (2). The future 
inputs are either subject to optimisation (manipulated 
variables), or predicted using an appropriate model, 
e.g., ( ) ( )r ru k i u k+ = , 1,...,i N=  (disturbances).  
 
The process can be represented in the state-space as  

( 1) ( ) ( ) ( )
( ) ( ) ( )

x k Ax k Bu k v k
y k Cx k n k

+ = + +
= +

      (6) 

where nx R∈ is the state, lu R∈  is the input (assumed 
known) and py R∈ is the output. Vector sequences 

( )v k and ( )n k are zero-mean Gaussian white noises 
(referred to as process and measurement or sensor 
noises, respectively), independent of each other, their 
variances being TE vv Q  =   and TE nn R  =  . The 

expected future outputs of the plant are 
ˆ ( ) ( ) ( ),f fY k Mx k NU k= +    (7) 
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State-space model (6) is Multi-Input-Multi-Output 
(MIMO), whereas ARX in (1) is a collection of 
MISO models. The state-space model is inherently 

more flexible; it can reflect the physical structure of 
the plant and better absorb unmeasured noises, 
disturbances and uncertainties. Hence, it usually 
produces better predictions than ARX.  
 
Prediction formula (7) is not directly usable, as the 
process state is not directly measurable. For this, KF 
is used for obtaining state estimates.  KF can also be 
used for estimating an unknown disturbance. That 
situation cannot be handled by the ARX predictor 
alone especially, if the process is unstable. More on 
unknown input estimation and connections to the 
ARX predictor is in Section 3.2. 
 
 
2.2 Kalman filter: an overview 
 
The concept of KF is described in detail in many 
monographs; see e.g. (Anderson and Moore, 1979), 
(Grewall and Andrews, 2001). Assume the plant 
model as in (6). Let us denote the set of data known 
up to time t as { }0 0, , , , ,t

t tu u y y= K KD . KF is 
associated with the problem of finding conditional 
probability of the state ( )x k if tD  is known; for k t>  
this problem is called prediction, for k t=  it is 
filtering and for k t< smoothing. For the above 
model, all probabilities are Gaussian; denote  

( )ˆ( ( ) | ) ( | ), ( | )tp x k x k t P k t=D N   (9) 
KF gives formulas for conditional means ˆ( | )x k t and 
co-variances ( | )P k t . 
 
Prediction and filtering.  It is assumed that we know 
the initial state probability 0( (0)) ( (0) | )p x p x= D . 
The Bayes formula yields recursive formulas for 

( ( 1) | )kp x k + D (the prediction step) and 
1( ( 1) | )kp x k ++ D  (the filtering step) for 0,1,...k = . 

We have 
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Next, for the filtering step we shall need the Kalman 
gain, which is obtained as 
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The filtered state and its covariance matrix are 
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where ˆ( | 1) ( ) ( | 1)k k y k Cx k kε − = − − . 
 
 Smoothing. The starting point is the knowledge of 

( ( ) | )kp x k D . The smoothened past values are 
obtained by running the following formulas 
recursively back in time: 
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for 1, 2,...t k k= − −  and 1( ) ( | ) ( 1| )TF t P t t A P t t −= + . 
In our case, we are particularly interested in 



 

     

smoothing an interval of the past outputs 
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 This recursive algorithm is called Kalman Interval 
Smoother, KIS; it can be immediately extended to 
non-stationary state-space models. Smoothened past 
outputs can be substituted to (2) and (3) to modify 
the output history. This leads to reducing sensitivity 
of these predictions to sensor noise in most cases, but 
the improvement is not guaranteed; a smooth history 
does not necessary mean smooth predictions. The 
history update algorithm, which guarantees 
predictions equal to those generated directly from the 
KF state is given in the next section. 
 
 

3. MAIN RESULTS 
 

3.1 Recursive formula for output history update 
 

Here we shall derive an algorithm for updating the 
past output history so that the ARX model predicts 
the same future values as the state-space one. It is 
assumed that these models are equivalent in terms of 
the input-to-output relation, i.e., their predictions are 
equal in the noiseless case. Hence, the results 
presented here are aimed at correcting the ARX-
model predictions due to its inadequate noise model. 
It is assumed that the ARX model is minimal, i.e. 
there are no pole-zero cancellations in the MISO 
transfer functions. 
 
The history update can be made on the MISO basis. 
For this, let ( )mM  denote the observability matrix of 
(8) for the m-th output. The following lemma then 
expresses the equivalence. 
 
Lemma 1. Let the ARX model  and the state-space 
one be input-output equivalent. Then, the future 
predictions are equivalent for any future input if and 
only if the following relation holds:  
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This lemma can be proven by applying a canonical 
form and using (3) and (7). It can also be found that 
if all states are observable from m-th output and A 
has no eigenvalue at 0, then there is a one-to-one 
mapping between the state and the output history.  
 

Formula (16) is quite simple, especially if we 
consider the convenient structure of matrices given 
by (4) and (5). However, it can be computationally 
more demanding than that for KIS. In this section we 
are going to obtain a recursive update formula similar 
to (14) for the output history satisfying (16), where 

( )x k is replaced by ˆ( | )x k k . First, we shall assume 
that matrix A has no eigenvalue at 0, i.e. the system 
has no pure delays ( 0drn =  for all r). This assumption 
will be relaxed later. Then it can be shown that the 
past outputs in (16) can be equivalently obtained by 
running  (6) from state ( )x k back in time, i.e.,  
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Further, if we exploit the structure of matrix ( , )m rG , 
we obtain the following recursive formula 

[ ] ( )
( ) ( , )0 ( 1)

( ) (:,1) ( 1)
0

m
m m r

r
r

I Z k
Z k G u k

 −
= + − 

  
∑  (19) 

Next, using (10)—(12) yields the following identity: 
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Then we arrive to a recursive formula for the history 
update of the form 

[ ] ( )( )
( ) 0 ( 1| 1)

( | ) ( ) ( | 1)
ˆ 0( | )

mm
m

m

FI Y k k
Y k k K k k k

y k k
ε

   − −
= + −   

     

%
%

     (21) 
where ( ) ( )( | ) ( ) ( | )
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formula holds only for systems without time-delay; 
in what follows we shall find, under a certain 
assumption on the process noise model, an update 
formula that does not have a singularity for singular 
A. In particular, let { }eA  be a sequence of matrices 
with no eigenvalues at the origin so that 

0lime eA A→ = . Then, the assumption on the process 
noise covariance matrix is 

( ) ( )lim ,   ,m m j
j ee

W C A Q m j−

→∞
= < ∞ ∀   (22) 
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Repeating the process i-times yields 
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Then, the history update formula can be written as 
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This algorithm is similar to that for KIS in (14). 
Indeed, we can derive an explicit formula relating 
these update terms as 
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Now we shall make a comment on the structural 
restriction imposed by assumption (22). Assume that 
the basis of the state-space is chosen so that  

11 12
22

22

,   0
0

DnA A
A A

A
 

= = 
 

   (30) 

where the D Dn n×  sub-matrix 22A has all eigenvalues 
at the origin and 11A is invertible. Then, a covariance 
matrix satisfying the assumption takes the form 
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On the other hand, if the zero eigenvalues are 
observable, this also characterizes all process noise 
covariance matrices, for which the proposed 
algorithm works. It means that if we decompose the 
process dynamics to a cascade of systems with finite 
and infinite impulse responses, only the latter can be 
disturbed by process noise. This assumption is 
acceptable in many cases. 
 
 
3.2 Simultaneous history update of the output and 
estimated disturbance.  
 
KF can, besides filtering and smoothing the states, 
estimate unknown disturbances of a priori known 
dynamics. In that case, the process model is 
augmented by the disturbance model as follows 
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Variables 
ku  and 

uu  denote the known input 
(manipulated variable and/or measured disturbance) 
and the unknown one (disturbance), respectively. The 
disturbance dynamics can be, e.g., a discrete-time 
representation of an integrator for constant 
disturbances (it also works well for slowly varying 
inputs), a cascade of two integrators for ramps or a 
harmonic oscillator. The unknown disturbance, 
which is an input for the predictor, is an output of 
KF; hence, it can be smoothened, or its past values 
can be updated using algorithm (27). However, 
typical disturbance models have eigenvalues on the 
unit circle or close to it; hence, the past values can be 
computed as ˆ( | ) ( | )i

u d d du k i k C A x k k−− =%  without 
any conditioning problem.  
 
If we consider both the output and the estimated 
disturbance past values as free parameters to obtain 
Kalman filter-equivalent predictions from the ARX 
model, we have an under-determined problem whose 
degrees of freedom can be exploited. For 
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(35) 
where ˆax  is the state of the augmented system and 

matrix M is of the prediction formula (8) (with 
properly re-arranged rows). The histories YΘ  and UΘ  
have to satisfy the following equation 
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( )

: ( ) ( )
( )

Y
Y U

U

k
H H H k T k

k
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Now, let us write the recursive update algorithm: 
ˆ( | )

( 1) ( ) ( )ˆ( | )

y k k
k A k B k

d k k
φΘ Θ

 
Θ + = Θ + + 
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 (37) 

( )1diag ,....., p jA A AΘ Θ Θ += , ( )1diag ,....., p jB B BΘ Θ Θ += , 

where 

[ ] 0 0
0 0 1

si
i i

I
A BΘ Θ

 
=  

 

   (38) 

Let us denote a particular solution, which was 
obtained by the algorithm of the previous section as 

*( )kΘ . The corresponding update term is 
* (1) ( )( ) ( ) ( ) ( )

TT p j Tk k k kφ ξ+ = Γ Γ L  (39) 



 

     

Any history set satisfying (36) then satisfies the 
identity *( ) ( )H k H kΘ = Θ ; for the update terms there 
also holds *( ) ( )H k H kφ φ= . Among those update 
terms which satisfy this identity, the minimum-norm 
one is of interest; it is computed as 

† *
min ( ) ( )k H H kφ φ=    (40) 

where †H  denotes the Moore-Penrose pseudo-
inverse. The reason why the minimum-norm solution 
is to be considered is this: if the process model has 
eigenvalues close to the origin, update-term *( )kφ  
tends to be of high norm; in particular, past values of 

( | )sy k i k−%  may grow sharply in its absolute value 
with growing i. This is because of the matrices iW  
defined in (22) are involved in the computation 
whose norm may grow with i. Although  ( )kΘ  is an 
internal variable of the controller and any particular 
choice satisfying (36) should not affect the control 
performance, numerical difficulties are possible in 
computing future predictions for high-norm histories. 
 
Finally, we shall present an interesting relation to 
KIS whose update term can be written as 

(1) ( )( ) ( ) ( ) ( )
TT p j T

s k k k kφ ξ+ = Γ Γ L  (41) 

The history vector of KIS does not generally satisfy 
(36); however, we present a convergence result, 
which says that for a sequence of process noise 
covariance matrices, (36) is satisfied asymptotically. 
It is stated formally in the following lemma.  
 
Lemma 2. Assume the state-space form of the 
plant augmented by the disturbance model given by 
(32). Let the process noise covariance matrix be 
partitioned consistently and given as ( )diag dQ Q . 
In that case, if 0Q → , then *( ) ( )sH k H kφ φ→  
uniformly for all k. 
 
The proof is omitted for space considerations. It is 
based on relation (28). The result is of practical 
relevance: KF designed for fast disturbance tracking 
assumes that the noise affecting the plant states has 
much smaller covariance than that driving the 
disturbance model. In that case, substituting the 
smoothened past outputs and disturbances to the 
ARX prediction formula yields predictions close to 
those computed directly from KF.  
 
 

4. AN EXAMPLE 
 

To illustrate the above results, we shall consider an 
example of the master pressure controller in a 
combined heat/power plant. The controlled variable 
is the steam pressure in the header. The manipulated 
variable is the total fuel supply to boilers feeding 
steam to the header. Disturbance is the total steam 
flow from this header (to turbines, and/or to other 
processes). This flow is not known exactly and 
therefore it is estimated by KF. Continuous-time 
transfer functions of the process are given by 
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Notice that the process model is integrating and 
hence disturbance estimation is necessary to obtain 
realistic predictions. Moreover, the response to 
manipulated variable is much slower than that of the 
disturbance, which further increases the need for fast 
disturbance estimation. The ARX model is obtained 
by converting the above transfer function to its 
discrete-time counterpart. Sampling period is 5 
seconds. The state-space realization was taken as 
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(42) 

Disturbance model is assumed as ( 1) ( )f fx k x k+ = , 

( ) ( )fd k x k= and is appended to the above plant 
model as in (32). The process noise is, for the 
augmented system, assumed to have its covariance 
matrix given by ( )6 3 30s fQ diag q I q×= , where the 

zero block corresponds to transport delays in (42). 
This matrix satisfies the structural condition (22). 
The particular choice of parameters is 1e- 6sq =  and 

4fq = . The output noise variance is 1e- 2R = . The 
noise parameters were not known and used rather as 
tuning knobs to trade-off between output-noise 
filtering and disturbance rejection.  
 
The connection of KF and the ARX predictor was 
tested in the closed loop with a predictive controller 
that solves the following quadratic program: 

{ }
( )2 2

( ) ,
ˆ( ) ( | ) + ( )min

Y U

U

y u
i I i Iu k i

i I

r k i y k i k Q u k i R
∈ ∈+

∈

+ − + + ∆ +∑ ∑
(43) 

Here, r  is reference to be followed, ˆ( | )y k i k+  is the 
estimate of future outputs generated by the ARX 
model (1); the disturbance is assumed constant over 
the future horizon. Reference tracking is penalized at 
specific instants in the future given by the set 

YI ; 
further, the future inputs are restricted to 

( ) 0u k i∆ + =  if Ui I∉ . There are further constraints to 
(43) which are not considered here; for the full 
formulation see (Havlena and Findejs, 2005). The 
specific parameter choice is as follows: 1e5yQ = , 

1e3uR = , 8,9,...,50YI =  and 0,2,4,...,40UI = .  
 
We compare results for three algorithms: first, no 
history update, i.e., ( ) 0kφ ≡ in (37). Second, the 
algorithm introduced in Section 3.1, i.e., the history 
update as in (39). Finally, KIS given by (41).  
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Figure 1 Output step response to disturbance: no 

history update (dashed), history update (solid) 

 
Figure 2 Output history/predictions, no history 

update 
 
Figure 1 compares responses to the disturbance step. 
Both algorithms using history updates produce 
essentially identical responses; for the noise model 
used in KF, asymptotic properties due to Lemma 2 
are fully shown up. Compared to the algorithm 
without history update, the disturbance attenuation is 
slower, but negligibly.  
 
An interesting picture we can get, if we plot all 
predicted and smoothened values of ˆ( | )y k i k+  for 

,..,0,...,i s N= −  in a 3D plot, where one independent 
variable is the current time, i.e. skT , and the other is 
the time offset siT . The predictions are assumed 
unforced, i.e., future manipulated variables being 
zero. The disturbance is set to a constant (hence, the 
predicted unforced trajectory is ramped). The output 
measurement is subject to Gaussian white noise. 
Figure 2 plots the history and unforced predictions 
without history update. Measurement noise is hugely 
amplified at the end-of-horizon predictions; these 
variations are mapped to the optimal manipulated 
variable. Note that the ARX predictor still receives 
the plant outputs pre-filtered by KF, not raw 
measurements. Figure 3 and Figure 4 show the same 
variables for the two history update algorithms. It 
can be seen that the predictions are fairly smooth, 
and identical in both cases. However, the corrected 
histories are very different: they are smooth for KIS 
and of growing magnitude for decreasing time offset 
in the case of algorithm (27). 

 
Figure 3 Output history/prediction with KIS 

 
Figure 4 Output history update for Kalman-

equivalent predictions 
 
 

5. CONCLUSIONS 
 

This paper addresses the problem of modifying data 
of the ARX predictor to obtain future predictions 
equal to those of Kalman filter. A recursive 
algorithm for updating the data was found, under a 
certain assumption on the noise model. A relation to 
Kalman internal smoother was found. 
 
 

ACKNOWLEDGEMENT 
 
This work was partially supported by the Grant 
102/05/2075 of the Czech Science Foundation. 
 
 

REFERENCES 
 
Anderson, B.O.D. and Moore, J.B. (1979). Optimal 

Filtering. Prentice Hall, Englewood Cliffs. 
Bemporad, A. and Morari, M. (1999). Robust Model 

Predictive Control: A Survey. In: Robustness in 
Identification and Control, Garulli, A. Tesi, A. 
Vicino, A. (Eds), Springer, pp. 207-226. 

Grewall, M.P. and Andrews, A.P. (2001). Kalman 
Filtering. Theory and Practice Using MATLAB, 
Wiley, New York. 

Havlena, V. and Findejs, J. (2005). Application of 
model predictive control. Control Engineering 
Practice, Vol. 13, pp. 671-680. 

                                       


