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Abstract: The suppression of liquid fuel slosh motion is critical in a launch vehicle
(LV). In particular, during certain stages of the launch, the dynamics of the fuel
interacts adversely with the rigid body dynamics of the LV and the feedback
controller must attentuate these effects. This paper describes the effort of a
multivariable control approach applied to the Geosynchronous Satellite Launch
Vehicle (GSLV) of the Indian Space Research Organization (ISRO) during a certain
stage of its launch. The fuel slosh dynamics are modelled using a pendulum model
analogy. We describe two design methodologies using the linear-quadratic Gaussian
(LQG) technique. The novelty of the technique is that we apply the LQG design
for models that are reduced in order through inspection alone. This is possible
from a perspective that the LV could be viewed as many small systems attached
to a main body and the interactions of some of these smaller systems could be
neglected at the controller design stage provided sufficient robustness is ensured by
the controller. The first LQG design is carried out without the actuator dynamics
incorporated at the design stage and for the second design we neglect the slosh
dynamics as well. Copyright c©2005 IFAC.
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1. INTRODUCTION

The wave motion of liquids in finite containers,
commonly known as slosh, is known to have ad-
verse effects on aerospace vehicles. To mitigate
these effects a variety of techniques have been
proposed including the use of baffles and dampers.
These techniques are inherently passive in nature
since energy dissipation is primary goal. To go be-
yond passive slosh suppression, several researchers
have investigated the feasibility of applying active
feedback control.

In this paper, the control of a LV with significant
fuel slosh dynamics is considered. The objective is
to simultaneously control the rigid body motion
while suppressing the sloshing of the fuel, using
only the control effectors (strap-ons) that act on
the rigid vehicle. Suppression of the unactuated
fuel slosh degree of freedom must be achieved
through the system coupling.

The paper is organized as follows. In section
2 the model of the LV with the actuator and
fuel slosh dynamics which has been developed
by Vikram Sarabhai Space Center (VSSC) in the
form of linear differential equations (perturbation



model) is presented. In section 3 we develop a
state space model of the system from the set
of descriptor equations. The next section of the
paper applies LQG controller synthesis technique
to control the LV in the presence of sloshing forces.
Simulation results that demonstrate the closed-
loop performance are then presented.

2. MODEL FORMULATION

The LV dynamic model used is provided by VSSC.
The equations derived are similar to those pre-
sented for a LV in (Greensite 1972). This model
describes linear perturbation dynamics for the
pitch plane and includes lateral motion, pitch-
ing, rolling, first sloshing mode and second order
actuator dynamics. The schematic of the LV is
shown in figure 1. Four strap-ons are symmet-
rically attached on the periphery of the central
core. The control input is the nozzle deflection
angle. Strap-ons 2 and 4 control the pitching of
the LV and all four are responsible for rolling.
The variables of interest are the attitude angle
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Fig. 1. (a): Schematic of the rocket front view, (b):
Schematic of the rocket top view

θ of the vehicle with respect to a fixed inertial
reference, the rolling angle φ of the vehicle, the
actuator deflection angles δi and slosh pendulum
angles τpi with respect to vehicle longitudinal axis.
The mass and moment of inertia of the vehicle

and engine are constant in the problem. We now
briefly describe the subcomponent dynamics.

2.1 Subcomponent dynamics

Here all the forces and moments are calculated
in the pitch (x − z) plane. The component of
forces along the vehicle longitudinal axis only
accelerate the vehicle and hence are not of interest
for control.

Thrust Refer to figure 1(a),

FzT = Tc sin δ2 ≈ Tcδ2, sin δ2 is small

MyT = lcTcδ2. (1)

These expressions are the same for all the nozzles.
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Fig. 2. Schematic of a slosh pendulum

Sloshing Consider the schematic of the slosh
pendulum shown in figure 2. Using Lagrange’s
method the sloshing forces and moments can be
formulated as

Fzs =
∑

i

mpiU̇0τpi

Mys =
∑

i

mpilpiU̇0τpi. (2)

Engine inertia The engine and the launch ve-
hicle are treated as two pendulums connected to
each other in the free space, as shown in figure 3.
The force exerted by the engine on the vehicle is

FzE = mRlRδ̈i. (3)

The total torque applied to the vehicle in the
positive θ direction due to engine inertia forces
is

MyE = (IR + mRlRlc)δ̈i + mRlRU̇0δi. (4)
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Aerodynamic forces The aerodynamic force acts
at the center of pressure of the LV. It acts along
the line of the vehicle velocity as shown in figure
1(a) and can be given as and

FAz = Lαα (5)

where, Lα is constant of proportionality and de-
pends on vehicle shape, body cross-section area,
air density and velocity (Heitchue 1968).

2.2 Short period dynamics equations for pitch/roll
coupled system

The forces and moments given in the previous
subsection are now incorporated to give the final
linearized short period model frozen at an instant
and valid for short time. So we have the following
equations

Pitching All the moments acting about vehicle
body y−axis are summed to yield

Iyy θ̈ =
∑

i=2,4

(IR + mRlRlc)δ̈i −

8∑

i=1

[U̇0mpilpi]τpi

+[Lαlα]α +
∑

i=2,4

(Tclc + mRlRU̇0)δi (6)

Each strap-on has two compartments one for fuel
and the other for oxidizer hence there are total of
eight pendulums.

Lateral motion All the forces producing the ac-
celeration in the vehicle body z−direction are
summarized to give

(m0U0)(α̇ − θ̇) =
∑

i=2,4

[mRlR]δ̈i +

8∑

i=1

[mpiU̇0]τpi

−[Lα]α +
∑

i=2,4

[Tc]δi. (7)

Rolling All the moments in the roll direction give

Ixxφ̈ =

3∑

i=1

[Tcl
R
φi + mRU̇0l

R
φi]δi +

3∑

i=1

[mRlRlRφi]δ̈i

−[Tcl
R
φ4

+ mRU̇0l
R
φ4

]δ4 − [mRlRlRφ4
]δ̈4

+
8∑

1=1

[mpiU̇0l
op
φi ]τi. (8)

Slosh Slosh pendulums have second order dy-
namics given by

τ̈pi + 2ζpiωpiτ̇pi + ω2

piτpi = [(lpi − Lpi)/Lpi]θ̈

−[U0/Lpi]α̇ − [lφi/Lpi]φ̈ + [U0/Lpi]θ̇ (9)

where the terms on the right hand side are forcing
functions on the pendulums.

Actuator dynamics As shown in figure 3, the
nozzle is considered as a pendulum and is modeled
as

δ̈i = ω2

aδc − 2ζaωaδ̇i − ω2

aδi (10)

where ωa is the natural frequency, ζa the damping
coefficient and ω2

aδc is the forcing function, where
δc is the desired nozzle deflection. The autopilot
command δP for the pitch loop and δR for roll
are transformed into four actuator commands as
given in the transformation matrix T as follows:







δ1c

δ2c

δ3c

δ4c







︸ ︷︷ ︸

u

=







0 1
1 1
0 1
1 −1







︸ ︷︷ ︸

T

∗

[
δP

δR

]

︸ ︷︷ ︸

u′

(11)

Sensors The sensors are rate and angle gyros
modeled as second order systems.

3. FORMULATION OF THE STATE SPACE
MODEL

The vehicle dynamics including rigid body, slosh
and actuators can be written in a descriptor state
space form as

Kẋ = Ax + Bu

y = Cx + Du (12)

where,

x ∈ IR29 : the vehicle state vector,
u ∈ IR4 : pitch and roll control signal,

defined in (11),

y ∈ IR4 : output vector, y = [θ, θ̇, φ, φ̇]T ,
and A,K,B,C,D have appropriate dimensions.



The 29 state variables are θ, θ̇, α, φ, φ̇, τi, τ̇i . . . i
= 1 to 8 and, δj , δ̇j . . . j = 1 to 4. Rewrite (12)
as

ẋ = A1x + B1u, (13)

where A1 = K−1A and B1 = K−1B, for K−1

exists. The system (13) is a 4 input and 4 output
system. The inputs to the system are the desired
actuator deflections but the signal generated by
the controller are the pitch and roll angles. Hence
substituting (11) in (13) gives a 2 input 4 output
system,

ẋ = A1x + B′

1
u′, (14)

where, B′

1
= B1T. The system (14) is analyzed

and found to be unstable, uncontrollable and
unobservable. This makes the system unsuitable
for LQG controller design. To circumvent these
problems, we carry out some conditioning and
model order reduction on the system.

Standard model order reduction techniques are
not applicable here due to the unstable nature
of the system. The model order is reduced by
inspecting the system equations. We return to the
system in the form given by (12) for this purpose.
It is observed that with some assumptions on the
magnitudes of the coefficients in the K matrix,
we are able to separate the actuator dynamics as
follows.
[

K11 K12

K21 K22

]

︸ ︷︷ ︸

K29×29

[
ẋ0

∆̇

]

=

[

A11 A12

A21 A22

]

︸ ︷︷ ︸

A29×29

[

x0

∆

]

+

[

B11

B21

]

u

Actuator

︷ ︸︸ ︷

∆̇ = A22∆ + B21u

yact = Cact∆

Rocket

︷ ︸︸ ︷

K11ẋ0 = A11x0 + B∗yact

y = C0x0

where, K11 ∈ IR21×21 , K12 ∈ IR21×8 and is
approximated to zero, K21 = [0]8×21 and K22 =
[I]8. Also A21 = [0]8×21. B11 ∈ IR21×4 and B21 ∈
IR8×4.

The left hand side set of equations describe an
8th−order actuator system

∆̇ = Aact∆ + Bactu
′

yact = Cact∆ (15)

where ∆ = [δ1, δ̇1, . . . , δ4, δ̇4]
T , Aact = A22, Bact =

B21T and yact = [δ1, δ2, δ3, δ4] is the output
of the actuator.The set of equations on the right
hand side describes a 21st− order rigid body plus
slosh system where the terms in B∗ are terms in
A12 corresponding to δ1, δ2, δ3 and δ4. We rewrite
this system as

K0ẋ0 = A0x0 + B0yact

y = C0x0 (16)

where x0 is a state vector consisting of the 5 rigid
body and 16 slosh state variables. Since K0 is
invertible we have

ẋ0 = A01x0 + B01yact

y = C0x0 (17)

where A01 = K−1

0
A0 and B01 = K−1

0
B0. The

system (17) is a 4 input and 4 output system. For
the purpose of controller design we neglect the
actuator dynamics and hence (11), (15) and (17)
give a 2 input 4 output system given by

ẋ0 = A01x0 + B′

01
u′ y = C0x0 (18)

where B′

01
= B01T. The system (18) is control-

lable and observable though unstable.

4. LQG CONTROLLER SYNTHESIS

The expression for the LQG compensator, a dy-
namic output feedback compensator made up of
regulator and filter, is given by

u(s) = −Kc(sI − A + BKc + KfC)−1Kfy(s)

where Kc is regulator gain matrix and Kf is
Kalman filter gain matrix. The KC is calculated
such that it minimizes the performance criterion

J(x, t0, T,u(·)) =

T∫

t0

[xT Qx + uT Ru]dt,

and Kf is such that it gives best estimate for the
given random process noise and observation noise
covariances, W and V respectively. These condi-
tions lead to the Riccatti equations, solving which
the gain matrices are obtained (Siouris 1996). The
choice of the weighting matrices Q, R, W, and V
is somewhat arbitrary. In this work, all such com-
putations were performed on MATLAB.

4.1 Design 1

Initially the weighting matrices are selected as
unity matrices of appropriate size multiplied by
a scalar, and by varying the value of the scalar
some iterations are done. To obtain a better con-
troller it is essential to vary individual entries
in the weighting matrices. Since working with a
21st−order weighting matrices is difficult, smaller
weighting matrices are designed for a 5th−order
rigid body system by neglecting the slosh dy-
namics. The smaller weightings are selected such
that the closed loop with the rigid body dynamics
alone exhibits a good response. Then these smaller
weighting matrices are inserted into the larger



unity matrices of appropriate size. The weighting
matrices hence obtained are

Q =







100 8 2
8 1 0.5
2 0.5 1

Ø

Ø [I]
18







, W = 4.5[I]
21

R = [I]
2
, V = [I]

4
.

The controller thus obtained has all the poles
in left hand s−plane, farthest from Im−axis
is at -90.1860 and nearest is at -0.0003. It
places the closed loop poles between Re{pi} =
−86.1156 and Re{pi} = −0.0211.

4.2 Design 2

Design 1 gives a 21st−order controller which may
be difficult to implement and will increase the
closed-loop order significantly. Hence a controller
of smaller order is designed. For this purpose the
5th−order rigid body system is used.

For selecting the weighting matrices, the rigid
body system is further divided into pitch and
roll systems. Since the system is a 2 input 4
output one, out of two singular value plots one
belongs to the pitch and the other to the roll. The
objective is to keep these singular value plots for
the closed loop system as close to each other in
the bandwidth of operation/interest. The smaller
order weighting matrices are then augmented to
get a 5th−order weighting matrix which is further
manipulated to get a better performance. The
weighting matrices thus obtained are

Q = diag {20, 0.01, 0.1, 1, 1}, R = 10[I]2,
W = diag {100, 500, 0.1, 150, 150},
V = diag {10, 10, 1, 1}.

The controller poles are at -3.4018, -0.0252, -
8.8524, -15.5837, -12.8088 and the closed-loop
poles are located between Re{pi} = −76.9718 and
Re{pi} = −0.0208.

5. SIMULATION RESULTS

In this section we demonstrate the effectiveness
of the controller by performing simulations of the
closed-loop shown in figure 4. The closed-loop sys-
tem is the system between the points 1 and 2, and
the output signals plotted are taken from point 3.
A step input is applied separately in the pitch
and roll channel. The step response, actuator de-
flection and deflection of the slosh pendulums are
plotted. The step is 1◦ in magnitude and applied
at time t = 0 sec.

The step response with controller 1 is better for
the pitch channel, while the response of the roll
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Fig. 4. Closed-Loop block diagram.

channel is better with controller 2 (figure 5). In all
the cases the actuator deflections are well within
the allowable limits of ±6◦, see figure 6. Figure 7
shows sloshing excited due to the application of
the step input in the pitch channel. The slosh is
suppressed well with controller 1, but in the case
of controller 2, the oscillations are sustained for a
long period of time indicative of the fact that at
the design stage the slosh dynamics was neglected.
Figure 8 shows the Nyquist plots for the pitch and
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Fig. 6. Actuator deflection corresponding to re-
sponse plotted in figure 5.
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roll channel. The pitch channel transfer function
(TF) is the TF from δp to θ and for roll channel it



is the TF from δr to φ. The plot depicts that the
gain and phase margins are larger for the system
with controller 2. The Bode plots for the same
system are shown in figure 9. The phase plot shows
the effect of the actuator dynamics on the system
phase near 25 rad/sec.
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6. CONCLUSION

In this paper we have synthesized a LQG con-
troller for a 29th−order perturbation model of a
LV. The proper system for LQG design is obtained
from the given system by separating the actuator
dynamics. If a large system comprises of a main
system and many smaller systems coupled to it,
then with some assumptions the smaller systems
can be decoupled. If a controller is designed for
the main system with significant robustness then
the original large system can be successfully con-
trolled with the same controller. Here we have
presented two such controllers.
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