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Abstract: We present a sliding mode based control law for stabilizing an underac-

tuated underwater vehicle (UUV) moving in a horizontal plane. The novelty of the

proposed control law is that we exploit the dynamics of the vehicle to define three

sliding surfaces, at whose intersection the system is asymptotically stable. The

task of the available two actuators is then to steer the system to this intersection

set. Copyright c©2005 IFAC.
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1. INTRODUCTION

Control of underactuated systems: systems with

fewer control inputs than the degrees of freedom

has drawn widespread attention in the last one

decade. Underactuation arises out of the need to

reduce the actuator cost and weight or to increase

the reliability of the system in case of actuator fail-

ure. Typical applications include space robotics,

mobile robots and underwater/surface vehicles.

Controller design for underactuated systems are

more complex than the fully actuate systems.

In this paper we consider the problem of con-

trolling a underwater vehicle moving in a hori-

zontal plane with only two actuators. Underwa-

ter rigid vehicles are inherently underactuated

in a sense that motion along certain degrees-of-

freedom which are usually not encountered are

unactuated or they could be realized by a com-

bination of the existing controls forces. Control

of underwater vehicles has been dealt in (Astolfi

et al. 2002, Leonard 1991, Woolsey and Leonard

1997, Reyhanoglu 1997, Do et al. 2002). In (Astolfi

et al. 2002), the problem of asymptotic stabi-

lization of an underactuated underwater vehicle

moving in an ideal fluid with partial actuation has

been addressed. A control methodology known as

IDA (Interconnection and Damping Assignment)

is used to stabilize the vehicle in selected equi-

libria. Control of the planar position and ori-

entation of an autonomous surface vessel using

two independent thrusters has been addressed by

(Reyhanoglu 1997). The stabilization of bottom

heavy underwater vehicle has been addressed by

(Leonard 1991). Global exponential stabilization

of an underwater vehicle using internal rotors has

been addressed by (Woolsey and Leonard 1997).



A single controller has been designed to achieve

stabilization and tracking simultaneously in (Do

et al. 2002). Backstepping and Lyapunov’s direct

methods have been used to design the controller.

In this paper we design a sliding mode based

controller for controlling position and orientation

of an UUV . In this methodology we first define a

surface in which the closed-loop system dynamics

are asymptotically stable, then the control task is

to move from any initial condition to the surface

in some finite-time and maintain it there.
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Fig. 1. Underwater vehicle

2. DYNAMIC MODEL

The modeling of an underwater vehicle has been

carried out by many authors (Yuh 1990, Goheen

1991). The dynamic model of the vehicle is de-

scribed by a set of six nonlinear differential equa-

tions in (Yuh 1990). All the forces including Cori-

olis, drag, currents, gravity and buoyancy forces

are considered as external forces in this technique.

Goheen’s article describes techniques which can

be used to derive the underwater vehicle dynam-

ics. (Fossen and Fjellstad 1995) have developed a

unified framework for vectorial parameterization

of inertia, Coriolis, centrifugal and hydrodynamic

added mass force for a marine vehicle with six

degrees-of-freedom. All the hydrodynamic forces

are considered in the model. The dynamics are

derived using both Newtonian and the Lagrangian

method. It has been proved that the nonlin-

ear equation in vectorial form satisfies certain

matrix properties like symmetry, skew-symmetry

and positive definiteness. Some empirical formu-

lation is presented to calculate the added mass

co-efficient and the drag forces for a body with

cylindrical geometry . A few assumptions like the

fluid is irrotational and unbounded, added mass

and drag forces are constant have been made while

deriving the equations of motion. In this paper

we consider a system consisting of an underwater

rigid body moving in a horizontal plane (neutrally

buoyant). The configuration space is Q
4
= IR2×S1

and is parametrized by the co-ordinates (x, y, θ)

represented in inertial frame. The triple (x, y, θ)

represents the position of the center of mass and

orientation of the body in the inertial frame. The

corresponding linear and angular velocities in the

body frame are denoted by (vx, vy, ωz). The iner-

tial velocities and the body velocities are related

by the equations

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

θ̇ = ωz

The equations of motion are developed by (Pet-

terson and Egeland 1996) and are given by

m11v̇x − m22vyωz + d11vx = Fx

m22v̇y + m11vxωz + d22vy = Fy

m33ω̇z + (m22 − m11)vxvy + d33ωz = τz

(1)

where mii, dii, i = 1, 2, 3, are positive constants

that represent the elements of the inertia matrix

including added masses and the elements of the

damping matrix respectively. Typically the vehi-

cles are actuated by only two control forces. In the

following section we analyze the properties of the

underwater vehicle with two actuators.

3. UNDERACTUATED CONFIGURATION

In this configuration, the control inputs are the

yaw (τz) and forward thrust Fx. A schematic

of UUV is illustrated in Figure 1. The unactu-

ated dynamics constitutes a second-order non-

holonomic constraint on the system. This renders

the system unsuitable to apply full-state feedback

linearization.

We define the state vector X = (x1, x2, x3, x4, x5, x6)
T

as (Petterson and Egeland 1996)

X
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The ordering of the states is motivated by a

desire to split the state-vector into actuated and

unactuated subsystems. The control inputs after

a partial feedback linearization are defined as

u1
4
= (τz − d33ωz + (m11 − m22)vxvy)/m33

u2
4
= (Fx + m22vyωz − d11vx)/m11.

which yields the state-space representation of (1)

with Fy = 0, defined on the manifold M
4
= S1 ×

IR5 as

Ẋ = f(X) + g1(X)u1 + g2(X)u2 (2)

where

f(X) =
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and α = d22/m22, β = m11/m22. The equilibrium

configuration denoted by Xe is all of Q since the

motion of the vehicle is in the horizontal plane.

The absence of potential terms in the unactu-

ated dynamics renders the linearized model of

the nonlinear system uncontrollable. This system

does not admit time-invariant continuous state-

feedback control that can locally asymptotically

stabilize the equilibrium (Brockett 1983). A much

weaker notion of controllability called small-time

local controllability (STLC) holds for this sys-

tem (Reyhanoglu 1997). The existence of time-

varying/periodic or discontinuous control that can

asymptotically stabilize the equilibrium is guar-

anteed in view of the STLC property (Sussmann

1979). This configuration has been studied by

(Petterson and Egeland 1996, Reyhanoglu 1997),

a discontinuous control law has been presented

(Reyhanoglu 1997) to achieve asymptotic stabi-

lization to an equilibrium configuration with ex-

ponential convergence rates. The discontinuous

nature of the control law is due to the rational

transformation introduced for the states of the

system. The control law has at most one switch-

ing. We propose a sliding mode control strategy to

asymptotically stabilize the origin of the system.

(2).

4. CONTROLLER DESIGN

With out loss of generality , the problem of

stabilizing the system to a given equilibrium point

Xe can be reduced to the problem of stabilizing

the system (2) to the origin (Reyhanoglu 1997).

Proposition 1. The origin of (2) is AS (asymptot-

ically stable) under the following control law

u1 =

{

C {‖X‖2 6= 0 and x1 = x5 = 0}∀t ∈ [0, T )

−(x1 + x5)
1/3 − x5 elsewhere

u2 =

{

H(X) X ∈ K

0 elsewhere

where

T - a finite time.

C - any nonzero constant.

H(X)
4
= η(Z1,Z2)+u1(αx2+βx6)

−βx5

− α
β (x6 + x3x5)

η(Z1, Z2)
4
= −sign(Z1)|Z1|

1/3 − sign(Z2)|Z2|
1/3

Z1(X)
4
= (αx3 + x4)

Z2(X)
4
= −x5(αx2 + βx6)

A(X)
4
= (x1 + x5)

K
4
= {X ∈ M|x5 < 0 and A(X) ≥ 0 or x5 >

0 and A(X) ≤ 0}

Proof: The proof is split into three lemmas. Let

us define the following surfaces

A(X)
4
= (x1 + x5) = 0

B(X)
4
= (αx3 + x4) = 0

C(X)
4
= (kx2 + x6) = 0

where k
4
= α

β .

The intersection of the surfaces can be written as

the set

O = {X ∈ M|x5 = −x1, x4 = −αx3, x6 = −kx2}

Lemma 2. There exists a finite-time T1 ≥ 0 such

that all the trajectories starting from any arbi-
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Fig. 2. Phase plot between x1 and x5

trary point of M will enter K and stay there for

all time t ≥ T1.

Proof: Consider the following equations

ẋ1 = x5

ẋ5 = u1

Under the control law u1 given by Proposition (1),

the dynamics of A(X) becomes

Ȧ(X) = −[A(X)]1/3

The surface A(X) = 0 is finite-time stable (Haimo

1986). So there exists a time T1 ≥ 0 such that the

trajectories will enter K and stay there. The phase

plot between x1 and x5 alone shown in fig (2). 2

Lemma 3. There exists a time T2 ≥ T1 ≥ 0 such

that trajectories starting from K will enter the set

O and stay there for all time t ≥ T2 .

Proof: The control law u2 is non-zero in K from

Proposition (1). Our objective now is to reach

the intersection of the surfaces B(X) = 0 and

C(X) = 0. Note that Z1(X) = B(X) and Z2(X) =

−βx5C(X). Let us consider the dynamics of Z1

and Z2 , which under the control law u2, becomes

Ż1 = Z2

Ż2 =−sign(Z1)|Z1|
1/3 − sign(Z2)|Z2|

1/3

The variables Z1 and Z2 go to zero in finite-time

(Haimo 1986). Since x5 goes to zero asymptoti-

cally, this implies that the control law u2 as result

becomes

u2 = −k(x6 + x3x5)

Plugging this into the dynamics of Ż2 yields Ż2 =

0, which implies Z2 ≡ 0 ⇒ Z1 ≡ 0. Z1 = 0

implies B(X) = 0. Since x5 goes asymptotically

to zero in the set K, Z2 = 0 implies C(X) = 0.

Recall that under the control law u1, the surface

A(X) = 0 is finite-time stable. So there exists a

time T2 ≥ T1 ≥ 0 such that the trajectories reach

the set O and stay there for t ≥ T2. 2.

Lemma 4. The largest positively invariant set in

O is the origin.

In set O the closed-loop system dynamics becomes

ẋ1 =−x1

ẋ2 =−kx2 − x3x1

ẋ3 =−αx3 + x2x1

ẋ4 =−αx4 − αx1x2

ẋ5 =−x5

ẋ6 =−kx6 + kx3x1

consider a Lyapunov candidate function

V (X) =
x2

1

2
+

x2
2

2
+

x2
3

2
+

x2
4

2
+

x2
5

2
+ β2 x2

6

2

Take V̇ along the closed loop solution

V̇ = −x2
1 − kx2

2 − x1x2x3 − αx2
3 + x1x2x3

− αx2
4 − αx1x2x4 − x2

5 − kβ2x2
6 + kβ2x1x3x6

= −x2
1 − kx2

2 − αx2
3 − αx2

4

− αx1x2(−αx3) − x2
5 − kβ2x2

6 + kβ2x1x3(−kx2)

= −x2
1 − kx2

2 − αx2
3 − αx2

4 − x2
5 − kβ2x2

6

≤ 0

and V̇ = 0 only when X = 0. 2.

Now we verbally summarize the control strategy.

Starting from any initial condition in M, the

system reach in K in some finite time T1 under the

control law u1. Once in K, control law u2 will drive

the states to O. In set O, by LaSalle’s theorem,

the largest positively invariant set is the origin.

The closed-loop trajectory is shown in figure (3)

5. SIMULATION

We simulate this control law for the following

model parameters.
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m11 = 100kg, m22 = 125kg, m33 = 40kg.m2

d11 = 35kgs−1, d22 = 100kgs−1, d33 = 50kgm2s−1

and the initial conditions are given by

θ(0) = 2rad, x(0) = 1m, y(0) = 2.5m

x4(0) = 1m/s, x5(0) = 0.5r/s, x6(0) = 1m/s

The simulation results are shown in figures (4-11).
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6. CONCLUSION

We present a control law for asymptotic stabi-

lization of an underwater underactuated vehicle

moving in a horizontal plane. The task of the two

actuators is to bring the system in a finite time

to a set O on which the system is asymptotically
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Fig. 11. Reaching the surface C(X) = 0

stable. The set O is defined by the intersection of

three sliding surfaces.
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