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1. INTRODUCTION

In the last few years, singular stochastic con-
trol problems have received considerable atten-
tion. The connection between singular control
problem and optimal stopping problem has been
studied by many authors (Alvarez, 1999; Alvarez,
2001; Boetius, 2001a; Boetius, 2001b; Boetius
and Kohlmann, 1998; Chow et al., 1995; Du-
four and Miller, 2004; El Karoui and Karatzas,
1988; El Karoui and Karatzas, 1991; Karatzas,
1983; Karatzas, 1985; Karatzas and Shreve, 1984;
Karatzas and Shreve, 1985; Karatzas and Shreve,
1986). Results on the dynamic programming prin-
ciple can be found in (Boetius, 2001b; Hauss-
mann and Suo, 1995b; Fleming and Soner, 1993;
Zhu, 1992). Sufficient conditions for the exis-
tence optimal singular control for general nonlin-
ear models have been obtained in (Dufour and
Miller, 2004; Haussmann and Suo, 1995a). The
authors do not pretend to present here an ex-
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haustive panorama of the literature relative to
singular control problems. However, the interested
reader may consult (Boetius, 2001b) for a survey
on stochastic singular control problems including
theoretical results and applications.

To the best knowledge of the authors the stochas-
tic maximum principle for singular controls was
only considered in (Cadenillas and Haussmann,
1994). In their paper A. Cadenillas and U. Hauss-
mann used a different approach and different
hypotheses that are presented now in order to
bring to the fore the main differences between
their results and ours. In (Cadenillas and Hauss-
mann, 1994), the control process is described by
a process {ζ(t)} (see the above discussion) of
bounded variation and they do not impose any
Lp bounds on the control while we assume that
the class of admissible controls {v(t)} is such
that v(T ) ≤ M for a constant M . However, in
(Cadenillas and Haussmann, 1994) the state pro-
cess must satisfy a linear stochastic differential
equation (the function A and D are assumed to
be linear), and the cost function are convex. In



our work, we suppose that the state process is de-
fined by a general nonlinear stochastic differential
equation, and we do not impose a convexity hy-
pothesis on the cost function (see assumptions 1-3
of the next section). In many aspects the results
obtained in (Cadenillas and Haussmann, 1994)
and here are different and complementary.

In general terms, the approach we used to obtain
the maximum principle for singular control prob-
lems can be divided in three steps. The first step is
to convert with a time transformation the original
singular control problem into a classical control
problem. In order to be concise, the description of
this method is briefly presented, for a complete
description see (Dufour and Miller, 2004). The
second step is to derive the maximum principle for
the auxiliary control problem. It must be stressed
the fact that the auxiliary control problem is
characterized by a state constraint. The last step
consists to recover from the auxiliary maximum
principle the original state and control variables
by using a time change, thus giving a maximum
principle for the singular control problem (see
Theorem 5.2). The form of the maximum principle
we obtained turns out to be different from the
one derived in (Cadenillas and Haussmann, 1994)
since the adjoint variables have a singular part,
and since the optimal singular control maximizes
an Hamiltonian almost surely with respect to the
Doleans-Dade measure generated by {v(t)} (see
the detailed discussion before Theorem 5.2).

Due to lack of space, the proofs of the results
are not presented here. The paper is organized
as follows. In section 2, we formulate the singular
control problem. The time change and the auxil-
iary control problem is briefly described in section
3. Section 4 deals with the auxiliary maximum
principle. In section 5, the main results are ob-
tained and in particular the stochastic maximum
principle for singular controls (see Theorem 5.2).
In the last section, we make some comments about
possible generalizations of our work.
Notation
NN

.= {1, · · · , i, · · · , N}.
For a vector V , Vi denotes the ith component of
V . If M is a matrix, Mi denotes a vector given
by the ith column of the matrix M , and Mij

is the element corresponding to ith row and the
jth column. (>) denotes the transpose operation.
0n ∈ Rn is the zero vector.

For x ∈ R, x+ is defined by x+ =
1
x

if x 6= 0; and

x+ = 0 if x = 0.
Let

(
Ω,F , P, {Ft}

)
be a filtered probability space,

for a an increasing corlol, adapted processes,
{A(t)} the measure defined on (R+ ×Ω,B(R+)⊗

F) by EP

[∫ +∞

0

IC(s)dA(s)
]

for C ∈ B(R+)⊗ F
is denoted by MA.

Let
(
Ω,F , P, {Ft}

)
be a filtered probability space

satisfying the usual hypotheses and supporting a
standard m-dimensional Brownian motion {Wt}.
Then {FW

t } denotes the augmentation of the nat-
ural filtration generated by {Wt}.
In order to define the state processes, let us intro-
duce the following data:

• T and M are fixed real numbers.
• K is a subset of Rr.
• ζ is a fixed vector in Rn.
• B1(K) .= {x ∈ K : |x| ≤ 1}.
• A : R× Rn → Rn.
• B : R → Rn×r.
• D : R× Rn → Rn×m.
• G : R× Rn → R.
• N : R → R such that N(x) = (x− T )2.

Let us introduce the following notation:

A : R× Rn ×B1(K)× [0, 1] −→ Rn+2

(t, x, u, z) −→

 1− z
A(t, x)(1− z) + zB(t)u

z|u|


and

D : R× Rn × [0, 1]−→Rn+2

(t, x, z)−→

 0
D(t, x)

√
1− z

0


(∀(t, x, u, z, p, q, P ) ∈ R × Rn × B1(K) × [0, 1] ×
R2+n × R(2+n)×m × Rn×n),

H(t, x, u, z, p,q) .= A(t, x, u, z)>p

+ tr
[
D(t, x, z)>q

]
H(t, x, u, z, p, r,P ) .= H(t, x, u, z, p, r)

+
1
2

tr[D(t, x)>PD(t, x)](1− z).

(∀(t, x, p, q) ∈ R× Rn × Rn × Rn×m),

J(t, x, p, q) = A(t, x)>p + tr
[
D(t, x)>q

]
The following assumptions will be used:
Assumption A1. A, B, D, and G are C2.
Assumption A2. The first and second derivatives
of A, B, D and the second derivative of G are
bounded. The maps A(t, x), B(t, x), D(t, x) are
bounded by C(1+ |t|+ |x|). The first derivative of
G(w, x) is bounded by C(1 + |w|+ |x|).
Assumption A3. (∀x ∈ Rn), (∀(w1, w2) ∈ R × R)
if w1 ≤ w2 then G(w1, x) ≤ G(w2, x).
In the rest of the paper, the derivative of the
function B, will be denoted by Bt, the partial
derivatives of the function A (respectively G, H,
and J) with respect to the first variable will be
denoted by At (respectively Ht, and Jt) and with
respect to the second variable it will be denoted
by Ax (respectively Hx, and Jx). For j ∈ Nm, Djt

(respectively Djx) denotes the partial derivative



of the function Dj with respect to the first variable
(respectively the second variable). The partial
derivative of G with respect to the first variable
will be denote by Gw and with respect to the
second variable it will be denoted by Gx.

2. PROBLEM STATEMENT

In this section, we formulate the original singu-
lar stochastic control problem presented in the
introduction using the formulation described in
(El Karoui et al., 1987) and in (Haussmann and
Lepeltier, 1990).

Definition 2.1. A singular control is defined by
the following term:
C

.= (Ω,F , P, {Ft}, {u(t), v(t)}, {W (t)}, {x(t)})
where

(i) (Ω,F , P ) is a complete probability space
with a right continuous complete filtration
{Ft}.

(ii) {W (t)} is a standard m-dimensional {Ft}-
Brownian motion.

(iii) {u(t), v(t)} is a B1(K) × R+-valued, corlol,
{Ft}-progressively measurable process such
that {v(t)} is increasing and satisfies

v(T ) ≤ M. (1)

(iv) {x(t)} is an Rn-valued, corlol
{Ft}-progressively measurable process such
that (∀t ∈ [0, T ])

x(t) .=ζ +
∫ t

0

A(s, x(s))ds

+
∫

[0,t]

B(s)u(s)dv(s)

+
∫ t

0

D(s, x(s))dW (s),

and x(0−) = ζ.

We write C for the set of controls satisfying the
previous conditions.
The cost is given by

J [C] .= EP

[
G

(∫ T

0

|u(s)|dv(s), x(T )
)]

. (2)

The set Ca of admissible controls is defined by

Ca .= {C ∈ C : J [C] < ∞}. (3)

The singular control problem is defined by the
minimization of J [C] on Ca. Assuming the exis-
tence of an optimal singular control C̃, the aim of
the paper is to derive necessary conditions for C̃
to be optimal in terms of variational inequalities
(see the maximum principle presented in Theorem
5.2).

3. THE AUXILIARY CONTROL PROBLEM

In this section, it is shown that the original singu-
lar control problem can be converted into a clas-
sical control problem by using a time transforma-
tion (see Propositions 3.2, 3.3, and 3.5). We used
the technique previously described in (Dufour and
Miller, 2004). These results are presented here
with minimal details in order to be concise.
Assume the existence of an optimal singular con-
trol denoted by
C̃

.=
(
Ω̂, F̂ , P̂ , {F̂t}, {ũ(t), ṽ(t)}, {Ŵ (t)}, {x̃(t)}

)
.

such that {ũ(t), ṽ(t)} is {F̂Ŵ
t }-progressively mea-

surable.
The existence problem for singular stochastic
control has been already studied under general
hypotheses in many papers (see for example
(Dufour and Miller, 2004) and (Haussmann and
Suo, 1995a) and the references therein). With the
next Proposition, we show how it is possible to
construct an optimal singular control Ĉ satisfying
v̂(T ) = M from the optimal singular control C̃.

Proposition 3.1. The control Ĉ defined by

Ĉ
.=

(
Ω̂, F̂ , P̂ , {F̂t}, {û(t), v̂(t)}, {Ŵ (t)}, {x̂(t)}

)
where

v̂(t) = ṽ(t)I[[0,T [[ + (M − ṽ(T ) + ṽ(t))I[[T,+∞[[,

û(t) = ũ(t)I[[0,T [[ + ũ(t)
[
ṽ(T )− ṽ(T−)
M − ṽ(T−)

I
[T,+∞[×{ṽ(T )<M} + I

[T,+∞[×{ṽ(T )=M}

]
,

is optimal. Moreover, v̂(T ) = M , and {û(t), v̂(t)}
is a {F̂Ŵ

t }-progressively measurable process.

Now, we will work with the optimal control Ĉ for
technical reasons. However, a general stochastic
maximum principle will be derived in terms of the
optimal control C̃ giving the full generality to our
result (see Theorem 5.2).

Proposition 3.2. Denote the process
{
t+ v̂(t)

}
by

{Γ̂(t)}. Let {η∗(t)} be the right inverse of {Γ̂(t)}.
Then, {η∗(t)} is a continuous time change such
that the probability space (Ω̂, F̂ , P̂ , {F̂Ŵ

η∗(t)}) sat-
isfies the usual hypotheses. Moreover, there exists
a [0, 1]-valued, {F̂Ŵ

t }-progressively measurable
process {ẑ(t)} such that v̂(t) =

∫
[0,t]

ẑ(s)dΓ̂(s).

Define the B1(K) × [0, 1]-valued, {F̂Ŵ
η∗(t)}- pro-

gressively measurable process {(α∗(t), θ∗(t))} by
α∗(t) = û(η∗(t)) and θ∗(t) = ẑ(η∗(t)). Let
(Ω̃, F̃ , P̃ , {F̃t}) be a filtered probability space sat-
isfying the usual hypotheses and supporting a



standard m-dimensional Brownian motion {Ṽt}.
Define by (Ω,G, Q, {Gt}), the usual augmentation
of the filtered probability space {Ω̂×Ω̃, F̂⊗F̃ , P̂⊗
P̃ , F̂Ŵ

η∗(t) ⊗ F̃t}. A random variable X̂ defined on

(Ω̂, F̂ , P̂ ) may be viewed as defined on (Ω,G, Q) by
setting X(ω̂, ω̃) = x̂(ω̂) for (ω̂, ω̃) ∈ Ω̂×Ω̃ and sim-
ilarly for a random variable defined on (Ω̃, F̃ , P̃ ).
Consequently, let us introduce on (Ω,G, Q, {Gt})
the following processes: α(t, ω̂, ω̃) .= α∗(t, ω̂),

θ(t, ω̂, ω̃) .= θ∗(t, ω̂), η(t, ω̂, ω̃) .= η∗(t, ω̂),

ξ(t, ω̂, ω̃) .= ξ∗(t, ω̂), µ(t, ω̂, ω̃) .= µ∗(t, ω̂),

W (t, ω̂, ω̃) .= Ŵ (t, ω̂), W̃ (t, ω̂, ω̃) .= Ṽ (t, ω̃).

Proposition 3.3. On (Ω,G, Q, {Gt}), the process
{V (t)} defined by

V (t) .=
∫ t

0

√
(1− θ(s))+dW (η(s))

+
∫ t

0

√
1− (1− θ(s))(1− θ(s))+dW̃ (s)

is a standard m-dimensional {G(t)}-Brownian mo-
tion.

On the probability space (Ω,G, Q), define the
filtration Jt

.= F̂Ŵ
η∗(t) ⊗ {∅, Ω̃}. The set of aux-

iliary control E is the set of {Jt}-progressively
measurable processes defined on (Ω,G, Q, {Gt})
and taking their value in B1(K) × [0, 1]. For any
{(α(t), θ(t))} in E , the auxiliary state process
(η(t), ξ(t), µ(t)) is defined on (Ω,G, Q, {Gt}) by

η(t) .=
∫ t

0

(1− θ(s))ds,

ξ(t) .=ζ +
∫ t

0

A(η(s), ξ(s))(1− θ(s))ds

+
∫ t

0

B(η(s))α(s)θ(s)ds

+
∫ t

0

D(η(s), ξ(s))
√

(1− θ(s))dV (s),

µ(t) .=
∫ t

0

|α(s)|θ(s)ds.

Note that for any {(α(t), θ(t))} in E , the previous
system admits a unique solution. Moreover, we
have EQ

[
G

(
µ(T + M), ξ(T + M)

)]
< ∞. The

associated cost functional is defined by

M[α, θ] .= EQ

[
G

(
µ(T + M), ξ(T + M)

)]
. (4)

Definition 3.4. The set of admissible auxiliary
control Ead is defined by the set of processes
{(α(t), θ(t))} ∈ E such that the corresponding
auxiliary state process {(η(t), ξ(t), µ(t))} satisfies
the following constraint

EQ

[
N

(
η(T + M)

)]
= 0. (5)

The auxiliary control problem is to minimize the
cost (4) over Ead.

Proposition 3.5. The auxiliary control process
{(α(t), θ(t))} is optimal. Moreover, {(α(t), θ(t))}
and the corresponding optimal auxiliary state
{(η(t), ξ(t), µ(t))} are {Jt}-progressively measur-
able processes.

4. THE MAXIMUM PRINCIPLE FOR THE
AUXILIARY CONTROL PROBLEM

In this section, a maximum principle is obtained
for the auxiliary singular control problem.

Theorem 4.1. There exists unique solutions of the
following backward stochastic differential equa-
tions defined on the filtered probability space
(Ω̂, F̂ , P̂ , {F̂Ŵ

η∗(t)}):

dp∗(t) = q∗(t)dŴ (η∗(t))

−

Ht(η∗(t), ξ∗(t), α∗(t), θ∗(t), p∗(t), q̃∗(t))
Hx(η∗(t), ξ∗(t), α∗(t), θ∗(t), p∗(t), q̃∗(t))

0

 dt

with q̃∗(t) =
√

1− θ∗(t)q∗(t),

p∗(T + M) = −

 0
Gx

(
µ∗(T + M), ξ∗((T + M)

)
Gw

(
µ∗(T + M), ξ∗(T + M)

)


and

dP ∗(t) = −Ax(η∗(t), ξ∗(t))>P ∗(t)(1− θ∗(t))dt

− P ∗(t)Ax(η∗(t), ξ∗(t))(1− θ∗(t))dt− (1− θ∗(t))
m∑

j=1

[Djx(η∗(t), ξ∗(t))]> P ∗(t)Djx(η∗(t), ξ∗(t))dt

− (1− θ∗(t))
m∑

j=1

(
[Djx(η∗(t), ξ∗(t))]> Q∗j(t)

+ Q∗j(t)Djx(η∗(t), ξ∗(t))
)
dt

−Hxx(η∗(t), ξ∗(t), α∗(t), θ∗(t), p∗(t), q̃∗(t))dt

+
m∑

j=1

Q∗j(t)dŴ (η∗(t))

with P ∗(T +M) = −Gxx

(
µ∗(T +M), ξ∗(T +M)

)
.

Now we give the maximum principle for the aux-
iliary control problem.

Theorem 4.2. For all (α, θ) ∈ B1(K)× [0, 1]

H(η∗(t), ξ∗(t), α, θ, p∗(t), r∗(t), P ∗(t))
≤ H(η∗(t), ξ∗(t), α∗(t), θ∗(t), p∗(t), r∗(t), P ∗(t))

λ⊗ P̂ − a.s. on [0, T + M ]× Ω̂, with
r∗(t) .=

[
q∗(t)−TP ∗(t)D(η∗(t), ξ∗(t))

]√
1− θ∗(t),

where the matrix T is defined by
(
0n In 0n

)>
.



5. THE SINGULAR MAXIMUM PRINCIPLE
AND ADJOINT VARIABLES

It is possible to obtain the adjoint variables for the
original control problem by using a time change.
The interesting feature of these adjoint variables
is that the first component is the solution of a
singular backward equation. Finally, the stochas-
tic maximum principle for the original singular
control problem in the general case is obtained
and presented in Theorem 5.2.

Definition 5.1. Let C ∈ Ca be a singular control
C

.= (Ω,F , P, {Ft}, {u(t), v(t)}, {W (t)}, {x(t)})
such that {u(t), v(t)} is {FW

t }-progressively mea-
surable. If there exist((
{pi(t)}, {qi(t)}

)
i∈N3

, {P (t)},
(
{Qj(t)}

)
j∈Nm

)
so-

lutions of the following backward stochastic differ-
ential equations

p1(t) =
∫ T

t

At(s, x(s))>p2(s)ds

+
∫

]t,T ]

p2(s)>Bt(t)u(s)dv(s)

+
∫ T

t

m∑
j=1

Djt(t, x(t))>q2
j (s)dt

−
∫ T

t

q1(s)dW (s)

p2(t) = −Gx

(∫ T

0

|u(s)|dv(s), x(T )
)

+
∫ T

t

Ax(s, x(s))>p2(s)ds

+
∫ T

t

m∑
j=1

Djx(s, x(s))>q2
j (s)dt

−
∫ T

t

q2(s)dW (s)

p3(t) = −Gw

(∫ T

0

|u(s)|dv(s), x(T )
)

−
∫ T

t

q3(s)dW (s)

P (t) = −Gxx

(∫ T

0

|u(s)|dv(s), x(T )
)

+
∫ T

t

[
Ax(s, x(s))>P (s)− P (s)Ax(s, x(s))

]
ds

+
m∑

j=1

∫ T

t

Djx(s, x(s))>P (s)Djx(s, x(s))ds

+
∫ T

t

Jxx(s, x(s), p2(s), q2(s))ds

+
m∑

j=1

∫ T

t

[
Djx(s, x(s))>Qj(s)

+ Qj(s)Djx(s, x(s))
]
ds−

∫ T

t

m∑
j=1

Qj(s)dW (s).

((
{pi(t)}, {qi(t)}

)
i∈N3

, {P (t)},
(
{Qj(t)}

)
j∈Nm

)
are then called the adjoint variables associated to
the control C. They are said unique if the solutions
of the previous equations are unique.

By using a time transformation, we show that
from

(
{p∗(t)}, {q∗(t)}, {P ∗(t)},

(
{Q∗j(t)}

)
j∈Nm

)
we can obtain the adjoint variables for the original
optimal control. Here we present a maximum prin-
ciple given in terms of three variational inequal-
ities but not in the integral from as in the work
by A. Cadenillas and U. Haussmann (Cadenillas
and Haussmann, 1994). The first two variational
inequalities result from a time change of the varia-
tional inequality of the auxiliary control problem.
The first one is given with respect to the mea-
sure of Doleans-Dade generated by the absolutely
continuous part of {ṽ(t)}. Note that it does not
depend directly on {ṽ(t)} but on the derivative
dṽ

dt
(t). The second one is given with respect to

the measure of Doleans-Dade generated by the
singular part of {ṽt}. The last inequality can be
interpreted as a necessary condition for the size of
the jumps of {ṽt}. It is different from the first two
ones because it is not obtain from a time change of
the variational inequality of the auxiliary control
problem.

Theorem 5.2. Assume the existence of an optimal
singular control denoted by
C̃

.=
(
Ω̂, F̂ , P̂ , {F̂t}, {ũ(t), ṽ(t)}, {Ŵ (t)}, {x̃(t)}

)
.

such that {ũ(t), ṽ(t)} is {F̂Ŵ
t }-progressively mea-

surable. Denote by {τ̃i}i∈N∗ the sequence of
{F̂Ŵ

t }-stopping times which exhausts the jumps
of {ṽ(t)}. Then, for all (u, z) ∈ B1(K)× [0, 1]

[zu− z̃(t)ũ(t)]>B(t)>p̃2(t)

+ [z|u| − z̃(t)|ũ(t)|]p̃3(t)

+ tr
[
D(t, x̃(t))>r̃(t)

](√
1− z −

√
1− z̃(t)

)
+ [z̃(t)− z]

[1
2

tr
[
D(t, x̃(t))>P̃ (t)D(t, x̃(t))

]
+ p̃1 + A(t, x̃(t))>p̃2(t)

]
≤ 0,M

ṽac − a.s. on

[0, T ]× Ω̂, where z̃(t) =
dṽ
dt (t)

1 + dṽ
dt (t)

,

r̃(t) .=
[
q̃2(t)− P̃ (t)D(t, x̃(t))

]√
1− z̃(t), and

[zu− ũ(t)]>B(t)>p̃2(t) + [z|u| − |ũ(t)|]p̃3(t)

+ (1− z)
[1
2

tr
[
D(t, x̃(t))>P̃ (t)D(t, x̃(t))

]
+ p̃1(t) + A(t, x̃(t))>p̃2(t)

]
≤ 0

M
ṽs − a.s. on [0, T ] × Ω̂, and for all i ∈ N and

γ ∈ [0, 1]



[
B(τ̃i)(zu− ũ(τ̃i))

]>
p̃2(τ̃i) + (z|u| − |ũ(τ̃i)|)p̃3(τ̃i)

+ (1− z)

{
p̃1(τ̃i−)− γ

[
B(τ̃i)ũ(τ̃i)∆ṽ(τ̃i)

]>
p̃2(τ̃i)

+ A
(
τ̃i, x̃(τ̃i−) + γB(τ̃i)ũ(τ̃i)∆ṽ(τ̃i)

)>
p̃2(τ̃i)

+
1
2

tr
[
D

(
τ̃i, x̃(τ̃i−) + γB(τ̃i)ũ(τ̃i)∆ṽ(τ̃i)

)>
P̃ (τ̃i)

D
(
τ̃i, x̃(τ̃i−) + γB(τ̃i)ũ(τ̃i)∆ṽ(τ̃i)

)]}
≤ 0,

P̂ − a.s. on {τ̃i ≤ T} where((
{p̃i(t)}, {q̃i(t)}

)
i∈N3

, {P̃ (t)},
(
{Q̃j(t)}

)
j∈Nm

)
are the adjoint variables associated C̃.

6. CONCLUSION

Our work can be generalized in several directions:
a running cost can be added to the definition
of J [C] (with no convexity hypothesis) and a
classical control process can be added in the
dynamic of the state (for example in A, D and into
the running cost if it exists) as in (Cadenillas and
Haussmann, 1994). Soft constraints with the same
form of the cost G may also be added to the model,
see page 855 in (Haussmann and Lepeltier, 1990)
for constraints of these types in classical control
problems.

REFERENCES

Alvarez, L.H.R. (1999). A class of solvable sin-
gular stochastic control problems. Stochastics
Stochastics Reports 67(1-2), 83–122.

Alvarez, L.H.R. (2001). Singular stochastic con-
trol, linear diffusions, and optimal stopping:
a class of solvable problems. SIAM Journal of
Control and Optimization 39(6), 1697–1710.

Boetius, F. (2001a). Bounded variation singu-
lar stochastic control and associated dynkin
game. In: Mathematical finance, Trends in
Mathematics (M. Kohlmann and S. Tang,
Eds.). pp. 111–120. Birkhäuser. Basel.
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