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Abstract: The main objective of this paper is to show an importance of developing
suitable experimental conditions while designing and utilizing model-based fault
detection systems. In particular, the paper shows the possibilities of exploiting
the theory of optimum experimental design in parameter-estimation-based fault
detection schemes. More precisely, a novel scheme for measuring and diagnosing
an impedance is proposed. Copyright c©2005 IFAC.
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1. INTRODUCTION

A fault detection process (Chen and Patton, 1999;
Korbicz et al., 2004; Witczak, 2003) can be per-
ceived as a two-stage procedure, i.e. residuals gen-
eration and symptom evaluation based on these
residuals. The residual can be defined in many
different ways depending on the choice of the
fault diagnosis scheme, e.g. in the parameter-
estimation-based scheme the residual is defined
as a difference between the nominal and esti-
mated values of the parameters while in most
of the schemes the residual is perceived as dif-
ference between the output of the model and
that of the system. The residual should ideally
carry an information regarding a fault only. Under
such an assumption, the faults can be detected
by setting a fixed threshold on the residual The
fundamental difficulty with this kind of symp-
tom evaluation is that the residuals are normally
uncertain, corrupted by noise, disturbances and
modelling uncertainty. That is why it is necessary
to assign a threshold (significantly) larger than
zero in order to avoid false alarms. This usually

implies a reduction of fault detection sensitivity.
Thus, threshold selection should be performed
in such a way so as to attain a compromise
between the fault detection sensitivity and the
false-alarm rate. An obvious remedy to the above
mentioned problems is to utilize the knowledge
regarding model uncertainty. One of the possi-
ble approaches to gather such knowledge is to
use statistical techniques (Atkinson and Donev,
1992; Uciński, 2005; Walter and Pronzato, 1997)
to obtain parametric uncertainty of the model.
This knowledge makes it possible to design the
so-called adaptive threshold (Frank et al., 1999)
that allows robust fault detection. Apart from the
possibilities of generating an adaptive threshold,
the knowledge regarding model uncertainty makes
it possible to formulate suitable criteria of the
optimum experimental design (OED) (Atkinson
and Donev, 1992; Uciński, 2005; Walter and Pron-
zato, 1997) that allow minimization of model un-
certainty. This means that more accurate models
can be obtained resulting in an increase of fault
sensitivity as well as an increase in a general relia-



bility of the fault diagnosis scheme. Another kind
of solutions that may increase the performance of
the fault diagnosis scheme is based on an appropri-
ate scheduling of the control test signals in such a
way so as to gain as much information as possible
about the system being supervised (Delebecque et

al., 2003).

The paper shows the possibilities of exploiting
the theory of OED in parameter-estimation-based
fault detection schemes. The paper is organized
as follows. In the second section, a novel scheme
for measuring and diagnosing an impedance is
proposed. The final part of the paper is devoted
to the numerical simulations and conclusions.

2. IMPEDANCE MEASUREMENT AND
DIAGNOSIS

The objective of this section is to propose a new
impedance measurement and diagnosis scheme.
The idea of measuring the impedance with the so-
called virtual bridge was introduced by (Dutta et

al., 1987). The virtual bridge is composed of two
arms, namely a real (hardware) arm, as shown
in Fig. 1 and a virtual arm that is implemented
with the help of a computer. Dutta et al. (1987)
formulated the problem of balancing the bridge
as a non-linear parameter estimation one. To
solve such a problem they employed the gradient
descent algorithm. Other researchers (Awad et

al., 1994) developed some modifications of the
algorithm proposed in (Dutta et al., 1987) that
increased its convergence. Unfortunately, none of
the authors has provided an analytical rules for es-
timating the accuracy of the obtained impedance,
i.e. knowledge about model uncertainty. More-
over, they have not provided any analytical rules
that can be used for obtaining an auxiliary resis-
tance Rr and the sampling time. Another question
that arises while analysing (Dutta et al., 1987;
Awad et al., 1994; Angrisani et al., 1996) is as fol-
lows: Is this really necessary to use the non-linear
parameter estimation techniques for estimating R
and C? First, let us observe that for the scheme

u(t)

Rr

RC v(t)

Fig. 1. An impedance measurement scheme

presented in Fig. 1 the following current equality
can be established:

C
dv(t)

dt
+

v(t)

R
=

u(t) − v(t)

Rr

, (1)

Assuming that u(t) = U
√

2 sin(ωt), the steady-
state solution of (1) can be written as:

v(t) =ρU
√

2R((R + Rr) sin(ωt)+

− RrRCω cos(ωt)), (2)

where ρ =
(

R2 + 2RrR + R2
r(1 + ω2R2C2)

)

−1
.

Equation (2) can be transformed into a discrete-
time form and written as follows:

vk = p1u1,k + p2u2,k, (3)

where

p1 = ρR(R + Rr), p2 = ρRrCωR2, (4)

and u1,k = U
√

2 sin(ωkτ), u2,k = U
√

2 cos(ωkτ)
where τ stands for the sampling time. In this
paper it is assumed that u1,k and u2,k are avail-
able. This is a mild assumption since it is not
difficult to design a hardware providing such sig-
nals. Another important fact that can be observed
while analysing (3) is that it can be perceived as
a linear-in-parameter model with respect to p1

and p2. Contrary to (Dutta et al., 1987; Awad
et al., 1994) where the non-linear parameter esti-
mation techniques were employed for obtaining R
and C, it is proposed to use the classical recursive
least-square (RLS) algorithm for estimation of p1

and p2. Such an algorithm can be given as follows:

p̂k+1 = p̂k + kk+1εk+1, (5)

kk+1 = P krk+1

(

1 + rT
k+1P krk+1

)

−1
, (6)

εk+1 = yk+1 − f(p̂k,uk+1), (7)

P k+1 =
[

Inp
− kk+1r

T
k+1

]

P k, (8)

where stands for the so-called forgetting factor,
yk is the k-th measurement of vk, f(p̂k,uk+1) =
p̂1,ku1,k+1 + p̂2,ku2,k+1, rk = [u1,k, u2,k]T , and
p̂k = [p̂1,k, p̂2,k]T ∈ R

np denotes the k-th estimate
of p. Thus, knowing p̂ it is possible to obtain
estimates of R and C according to the following
equations:

R̂ = − Rr(p̂
2
1 + p̂2

2)

p̂2
1 + p̂2

2 − p̂1

, (9)

Ĉ = − p̂2

Rrω(p̂2
1 + p̂2

2)
, (10)

obtained by solving (4) with respect to R and C.
It should be also pointed out that when there is no
need for on-line estimation of the impedance then
the classical, non-recursive least-square algorithm
can be employed. The well-known advantage of
this algorithm, comparing with its recursive coun-
terpart, is that the highest estimation accuracy
can be attained with a smaller nt. In this case,
estimates of p1 and p2 can be computed as follows:

p̂1 =
γ2η − β2γ1

η2 − β1β2

, p̂2 =
γ1η − β1γ2

η2 − β1β2

, (11)



where

γi =

nt
∑

k=1

ui,kyk, η =

nt
∑

k=1

u1,ku2,k,

βi =

nt
∑

k=1

u2
i,k. (12)

2.1 Initialization of the RLS algorithm

As can be found in the literature (Walter and
Pronzato, 1997) regarding the RLS algorithm,
the initial matrix P k, i.e. P 0 should be set as
P 0 = γI where γ stands for a sufficiently large
positive constant (usually 103–1020). When some
rough values of R and C are known then p̂0 should
be initialized according to (4). Otherwise, it can
be observed from (9) that p̂2

1 + p̂2
2 − p̂1 < 0 and

hence:

1

2
− 1

2

√

1 − 4p̂2
2 < p̂1 <

1

2
+

1

2

√

1 − 4p̂2
2. (13)

Since p̂2 should satisfy 1 − 4p̂2
2 > 0 and (10)

indicates that p̂2 < 0 then it is clear that:

−1

2
< p̂2 < 0. (14)

Thus, when no knowledge is available about R and
C then p̂0 should be set so as to satisfy (13)–(14).

2.2 Confidence region and fault detection

The solutions presented in the subsequent part of
this paper are based on the following assumption:

yk = vk + ǫk, (15)

where ǫ stands for the zero-mean, uncorrelated,
Gaussian noise sequence. In other words, ǫ rep-
resents the difference between the output of the
model (3) and yk that represents the actual mea-
surements of vk (cf. Fig. 1).

Since estimates of R and C are known, the next
problem being considered is to obtain a set of all
possible R̂ and Ĉ that are consistent with the
measurements. Such a set can easily be obtained
with the use of (1 − α)100% confidence region
(Walter and Pronzato, 1997) for p and equations
(4). As a result the following inequality is given:

d
T
k P−1

k dk ≤ 2σ̂2
kFα,2,k−2 (16)

where

dk = p̂k − ρ
[

R(R + Rr), RrCωR2
]T

, (17)

and Fα,2,k−2 stands for the F-Snedecor distribu-
tion quantile with 2 and k− 2 degrees of freedom,
and σ̂ is the estimate of the standard deviation.

Thus, the problem of fault detection can be trans-
formed into the task of testing the hypotheses.
This means that, at the α-level, the hypothesis:

H0 : (R,C) = (R0, C0)

vs.

H1 : (R,C) 6= (R0, C0), (18)

where R0, C0 are the required values of R and C, is
rejected when the inequality (16) is violated. The
acceptance of hypothesis H1 denotes the faulty
behaviour of the impedance.

2.3 Application of OED

As we can see from (16), the size of the confidence
region depends on the so-called Fisher Informa-
tion Matrix (FIM) P−1. On the other hand, FIM
depends on the experimental conditions, e.g. ξ =
[u1, . . . ,unt

]. Thus, optimal experimental condi-
tions can be obtained by optimising some scalar
function Φ(P−1). Such a function can be defined
in several different ways (Atkinson and Donev,
1992; Uciński, 2005; Walter and Pronzato, 1997).
In this paper, the so called D-optimality criterion
is used, i.e. Φ(P−1) = det

(

P−1
)

is maximised. It
should be also pointed out that the experimental
conditions are developed for R and C but not
for p1 and p2. This means that all dependencies
among Rr, ω, τ , R, and C that provide additional
source of knowledge are exploited. First, let us
define FIM:

P−1 =

nt
∑

k=1

rkrT
k , rk =

[

∂vk

∂R
,
∂vk

∂C

]T

, (19)

The purpose of further consideration is to obtain
D-optimum values of Rr and τ , i.e. Rr and τ that
maximise det

(

P−1

k

)

.
It can be observed that:

rk =P 1r1,k, P 1 =
√

2URrρ
2diag(1, ωR2),

r1,k =[a sin(ωkτ) + b cos(ωkτ),

b sin(ωkτ) − a cos(ωkτ)]

a =R2 + 2RrR + R2
r(1 − ω2R2C2),

b = − 2Cω(RrR
2 + RR2

r).

Bearing in mind that:
√

a2 + b2 sin(ωkτ + arctan(a/b))

= a sin(ωkτ) + b cos(ωkτ),
√

a2 + b2 = ρ−1, (20)

it is possible to write:

rk =P 2r2,k, P 2 =
√

2URrρdiag(1, ωR2),

r2,k = [sin(ωkτ + arctan(a/b)),

sin(ωkτ + arctan(−b/a))]
T

. (21)

Using equations (21), now FIM can be given as
follows:

P−1 = P 2

nt
∑

k=1

r2,krT
2,kP 2 (22)



The main difficulty associated with further con-
sideration is concerned with the selection of the
number of measurements nt. Indeed, it is very
difficult to give nt a priori. In order to perform
further derivations, two relatively non-restrictive
assumptions are formulated:

• Assumption 1: Sampling starts exactly at the
beginning of the period of u(t).

• Assumption 2: The ratio between the period
of u(t) and the sampling interval is a rational
number.

Under the above assumptions and due to the
nature of sin(ωkτ) it is easy to see that the
experimental conditions are cyclically repeated.
When some experiments are repeated then the
number ne of distinct experimental conditions is
less than the total number of observations nt.
The design resulting from this approach is called
a continuous experimental design (Atkinson and
Donev, 1992; Uciński, 2005; Walter and Pronzato,
1997). FIM can then be written as:

P−1 = P 2

ne
∑

k=1

µkr2,krT
2,kP 2. (23)

where µk = wk/nt, wk is the number of repetitions
of measurements under the k-th experimental
condition. Caratheodory’s theorem then indicates
that (23) can always be written with a linear
combination of at most ne = np(np + 1)/2 + 1
(ne = 4 since we have two parameters R and C)
matrices r2,krT

2,k. In the sequel, the setting ne = 4
is employed.
It can be shown that:

det
(

P−1
)

= det (P 2)
2
det

(

ne
∑

k=1

µkr2,krT
2,k

)

.

After some relatively easy but lengthy calculations
it can be shown that:

det

(

ne
∑

k=1

µkr2,krT
2,k

)

= sin(ωτ)2
(

16µ1µ4 cos(ωτ)4

+4(µ1µ3 + µ2µ4 − 2µ1µ4) cos(ωτ)2 + µ1µ4

+µ1µ2 + µ2µ3 + µ3µ4) (24)

It can easily be observed that (24) is independent
of R, C and Rr. On the other hand, P 2 does not
depend on τ . This means that maximisation of
FIM with respect to τ is equivalent to:

τ∗ = arg max
τ>0,µi,i=1,...,ne

det

(

ne
∑

k=1

µkr2,krT
2,k

)

.

(25)
While maximisation of FIM with respect to Rr is
equivalent to

R∗

r = arg max
Rr>0

det(P 2) = arg max
Rr>0

2ρ2ωU2R2R2
r .

(26)
The solution of (25) is given as follows:

τ∗ =
π(1 + i)

2ω
, i = 0 (27)

with µk = 1/4, k = 1, . . . , ne = 4. Note that i
is equal zero which is equivalent to the sampling
frequency two times larger than that of the input
signal. While the D-optimum value of an auxiliary
resistance R∗

r being the solution of (26) can be
written according to:

R∗

r =
R√

1 + ω2R2C2
. (28)

2.4 Other properties

The objective of this section is to investigate the
influence of the experimental conditions (27) and
(28) on the estimation accuracy of p. First let us
define FIM for p:

P−1 =

nt
∑

k=1

rkrT
k , rk =

[

∂vk

∂p1

,
∂vk

∂p2

]T

= U
√

2 [sin(ωτk), cos(ωτk)]
T

, (29)

Thus, FIM for the continuous design can be writ-
ten as:

P−1 =

ne=4
∑

k=1

rkrT
k . (30)

Substituting (27) into (30) it can be shown that:

P−1 = 2U2diag(µ1 + µ3, µ2 + µ4). (31)

From (31) it can be observed that FIM is diagonal.
A design satisfying this property is called the
orthogonal design. Its appealing property is that
the covariance between the parameters p1 and p2

equals zero, which means that they are estimated
independently. The remaining task is to check
if the experimental conditions (27)–(28) are D-
optimum for p. In order to do that the following
useful criterion can be used (Atkinson and Donev,
1992; Walter and Pronzato, 1997):

rkPrk ≤ np. (32)

when the equality holds for rk satisfying the ex-
perimental conditions (27) and (28). Substituting
np = 2 and then (31) into (32) it can be shown
that:

sin(1

2
πk)2

µ1 + µ3

+
cos( 1

2
πk)2

µ1 + µ3

≤ 2. (33)

Setting µk = 1/4, k = 1, . . . , ne = 4 in (33)
implies that the experimental design (27)–(28) is
D-optimum and orthogonal for p.

3. EXPERIMENTAL RESULTS

Let us consider a numerical simulation example
for the following parameters: R = 500Ohm, C =
300nF ω = 1000π, τ = τ∗ (for i = 0). For the
purpose of simulation vk was disturbed with noise
generated according to the uniform distribution
U(−3×10−4, 3×10−4). Two different experiments
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were performed for two different values of Rr, i.e.
Rr = R∗

r and Rr = 5kOhm. Figure 2 presents
the obtained confidence regions and the associated
estimates of R and C (assuming α = 0.01, i.e. 99%
confidence region). From these results it is clear
that the proposed solution provides more accurate
estimates with considerably smaller uncertainty
than those obtained without it. Undoubtedly, this
will result in an increased fault sensitivity and
in a general improvement of the reliability of the
proposed fault detection scheme.

Let us assume that the non-faulty R and C are
R = 500.03[Ω] and C = 300.6[nF]. Thus, the
problem of fault detection boils down to the task
of testing:

H0 : (R,C) = (500.03[Ω], 300.6[nF])

vs.

H1 : (R,C) 6= (500.03[Ω], 300.6[nF]). (34)

It can be observed from Fig. 2 and inequality
(16) that hypothesis H0 is rejected when Rr =
R∗

r which means that a fault occurs. Contrary,
hypothesis H0 is accepted when Rr = 5[kΩ]
which means that there is no fault. These results
clearly indicate that the application of the D-
optimum experimental conditions increases the
fault sensitivity, i.e. it makes the proposed fault
diagnosis scheme more reliable.

3.1 Accuracy analysis

The main objective of this section is to estimate
the measurement accuracy provided by the con-
sidered approach. For that purpose a set of dif-
ferent impedances were selected (similar to that
of (Angrisani et al., 1996)). The relative measure-
ment errors were defined as:

δR =
R − R̂

R
100[%], δC =

C − Ĉ

C
100[%], (35)

Each measurement was repeated 50 times and
then the mean measured values R̄ and C̄ were

calculated and for each of them a coefficient of
variation σ̄ was computed:

σ̄ =
σR

R̄
100[%], or σ̄ =

σC

C̄
100[%], (36)

where σC (or σR) stands for the standard de-
viation of 50 measurements. Table 1 shows the
achieved results. From this results it is clear that
the proposed approach provides a high measure-
ment accuracy. It should be also pointed out that
these measurements were achieved for nt = 4000
which implies that the measurement time was
1[s]. Figure 3 shows the evolution of the relative

Table 1. Simulation results

True value Mean measured σ̄[%]
value

C 0.75[nF] 0.7502[nF] 0.41
R 500[Ω] 499.9997[Ω] 9.2252 ∗ 10−4

C 150[nF] 150[nF] 0.0018

R 570[Ω] 569.999[Ω] 9.3179 ∗ 10−4

C 320[nF] 320[nF] 4.6464 ∗ 10−4

R 48[kΩ] 4.7999[kΩ] 0.0425

C 1[nF] 0.9998[nF] 0.1441
R 1[kΩ] 999.99[Ω] 0.0010

C 50[nF] 50[nF] 0.0028

R 1.1[kΩ] 1.1[kΩ] 8.7803 ∗ 10−4

C 160[nF] 160[nF] 5.1671 ∗ 10−4

R 97[kΩ] 96.986[kΩ] 0.0391

C 840[pF] 840[pF] 0.0313
R 5[kΩ] 5[kΩ] 8.6657 ∗ 10−4

C 15[nF] 15[nF] 0.0018
R 5.7[kΩ] 5.7[kΩ] 9.1961 ∗ 10−4

C 32[nF] 32[nF] 4.5223 ∗ 10−4

R 296[kΩ] 296[kΩ] 0.0301

C 540[pF] 540[pF] 0.0220

R 10[kΩ] 10[kΩ] 8.8802 ∗ 10−4

C 13[nF] 13[nF] 8.8790 ∗ 10−4

R 17[kΩ] 17[kΩ] 0.0012

C 16[nF] 16[nF] 5.3046 ∗ 10−4

R 495[kΩ] 495.01[kΩ] 0.0245

errors (35) (for R = 500[Ω], C = 0.75[nF], and
Rr = R∗

r) in the consecutive iterations of the
proposed algorithm. From these results it is clear
that relatively high measurement accuracies can
be achieved after a few hundred iterations only.
This corresponds to the measurement time less
than 0.25[s].

4. CONCLUSION

It was shown that the experimental conditions
do not concern an appropriate input selection
only but can also provide rules for selecting
other parameters, e.g. sampling time, auxiliary
resistances, etc. In particular, the problem of
impedance measurement was transformed into the
parameter estimation task. Contrary to the ap-
proaches presented in the literature, parameter
estimation was realized with the use of the lin-
ear least-square method (or the recursive least-
square method when an on-line measurement is
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Fig. 3. Relative errors in the subsequent iterations
of the proposed algorithm

required) which enables fast convergence rate. An-
other important contribution of this paper was
the development of the D-optimum experimental
conditions that make it possible to enhance the
measurement accuracy. In particular, explicit for-
mulaes for selecting the reference resistance Rr

and the sampling time τ were provided. It was
also shown that the proposed approach can ef-
fectively be applied for fault detection which is
very important from the point of view of modern
control and fault diagnosis. The numerical exper-
iments performed with the proposed impedance
measurement scheme confirm that the application
of OED is very profitable and leads to the de-
creased modelling uncertainty and an increased
fault sensitivity.
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