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Abstract: When considering the set of all possible solutions, e.g. by state or measurement 
feedback, of a given control problem (e.g. disturbance decoupling), complete pole 
placement is usually not possible, due to the so-called fixed poles: these are present as 
dynamics of the compensated system, whatever be the way the solution has been designed 
(within the chosen class). These fixed poles have two different origins: some are present, 
whatever be the considered control problem, because of possible non minimality of the 
state description (in the Kalman sense, i.e. controllability and observability). The other 
are due to the very particular control problem for which the feedback law is a solution. 
We show here how non minimality impacts the corresponding geometric solvability 
conditions and how the global set of the fixed poles of such control problems can be 
characterised in the general case (i.e. without any controllability or observability 
assumption).  Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
When analysing a control problem for a linear 
system having both control and disturbance inputs, 
there is no reason for the dynamics of the disturbance 
signal to be controllable by the control input. Hence, 
assuming controllability of the state description 
would be restrictive. Faced to such non minimal 
situations, and in the objective of designing solutions 
insuring some nice pole placement properties (e.g. 
stability or, more generally, pole placement in a 
desired region of the complex plan), one is limited by 
the so-called fixed poles of the considered control 
problem. These fixed poles are present as dynamics 
of the compensated system, whatever be the way the 
solution has been designed (within the chosen class). 
Since the set of those fixed poles obviously contains 
one subset which is problem independent, namely the 
uncontrollable poles (and, in the case of 
measurement feedbacks, also the unobservable 
poles), one is naturally tempted to first minimise the     
state realisation (i.e. to get rid of the uncontrollable 
part, and similarly the unobservable one), and then to 

consider the given control problem for the reduced 
system. However, can we claim (as intuition tells us) 
that the fixed poles of the solutions are the union of 
the uncontrollable and the unobservable poles, with 
the fixed poles of the control problem computed for 
the minimal realisation? How are the solvability 
conditions related, are these two problems equivalent 
before and after minimisation? Namely, could we 
loose some potential solutions through the reduction 
process? We give answers to these questions for 
classical control problems like disturbance rejection 
and non interaction, through the use of the so-called 
geometric approach.  
 
 

2. NOTATION AND BACKGROUND  
 
Let us consider a linear time-invariant strictly proper 
system described by: 
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where x, u, q, z, and y are respectively the state, 
control input, disturbance input, output to be 
controlled and measurement. These signals belong to 
the vector spaces X, U, Q, Z, and Y, respectively. 
 
The Disturbance Rejection problem by dynamic 
Measurement Feedback (DRMF) amounts to finding 
(if any) a dynamic compensator with input y and 
output u, such that, for the compensated system, the 
transfer function matrix from q to z be zero.  The 
general form of such compensators is the following, 
where w∈W is the state of the compensator: 
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The system (1) controlled by (2) can be described by 
the following description, where Xe=X ⊕ W, with ⊕ 
denoting the direct sum : 
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where: 
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The DRMF control objective thus amounts to 
cancelling all the Markov parameters of the 
compensated system, i.e.: 
 

0=e
i

ee DAE , for all i ≥ 0    (5) 
 

This problem has been receiving a lot of 
complementary contributions since the major 
solutions proposed by (Schumacher, 1980) and 
(Willems and Commault, 1981). These authors gave 
geometric necessary and sufficient conditions for the 
solvability of this problem, without any minimality 
assumption on the considered system. Conditions for 
the existence of internally stable solutions have also 
been provided (see for instance (Basile and Marro, 
1992), with the use of the so-called self-bounded and 
self-hidden invariant subspaces). An alternative way 
to characterise the existence of stable solutions came 
through the characterisation of the fixed poles. As an 
interesting by product, this way also gives an answer, 
without any extra cost, to a more general question 
related to pole placement within a pre-specified 
region of the complex plan. Indeed, thanks to some 
minimality assumptions on the considered model, it 
is possible to place all the other poles except the 
fixed ones. And thus, the location of these fixed 
poles with respect to the desired pole placement 
region, directly gives the answer. Concerning the 

characterisation of the DRMF fixed poles (poles 
which are present in any solution of the DRMF 
problem) the most advanced contribution (Del-Muro-
Cuellar and Malabre, 2001) has been using the 
assumptions (A,[BD]) controllable and ([CT ET]T, A) 
observable (where T denotes the transpose). We shall 
here consider the general case with none of these 
assumptions.  
 
Some geometric concepts are first quickly recalled.  
 
For systems described by (1), let us denote by R and 
N, respectively, the reachability and unobservability 
subspaces with respect to all input and output signals, 
namely:  
 

R = Im[BD] + AIm[BD] +…+  Adim(X)-1Im[BD] 
 

N = Ker[CTET]T ∩ A-1Ker[CTET]T ∩ … 
... ∩ A-[dim(X)-1] Ker[CTET]T 

 
where Im stands for the Image, Ker for the Kernel, 
and A-1(.) for the inverse image of the subspace 
inside the brackets.  
 
We shall here denote by S* the infimal (C,A) (or 
conditioned)-invariant subspace containing ImD, and 
by V* the supremal (A,B) (or controlled)-invariant 
subspace contained in KerE. These are the respective 
limits of the following and famous algorithms (see 
(Basile and Marro, 1992) and (Wonham, 1985)): 
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It is well known (Schumacher 1980) that the DRMF 
problem is solvable if and only if: 
 

** VS ⊂       (8) 
 
Let us now consider one of the possible minimisation 
processes which from the general model (1) extracts 
a minimal one (controllable and observable with 
respect to all input and output signals, i.e. (u, q) and 
(z, y)). This amounts to keeping the trajectories 
which are controllable and getting rid of those which 
are unobservable. It is well known that the following 
diagrams (see Fig.1) “commute” and that the reduced 
system with maps (A”, B”, D”, C”, E”) is indeed 
minimal. The terms “commute” (which is commonly 
used in the geometric approach, see e.g. (Wonham, 
1985)) simply means that the following equations are 
satisfied: 
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and, 
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where Φ denotes the insertion map of R+N into X, Π 
is the canonical projection onto (R+N)/N, the 
quotient space modulo N (for details about these 
standard tools of the geometric approach, see e.g. 
(Wonham, 1985)). 
 
These commutations hold true because ImB+ImD is 
included in Im Φ and KerΠ is included in both KerE’ 
and KerC’. The maps (A’, B’, D’, C’, E’) and (A”, 
B”, D”, C”, E”) are unique since Φ is monic and Π  
epic. 
 
        A 
       X     X 
                       
       [B  D]      Φ     Φ  [CTET] T

     
             [B’ D’]       A’       [C’TE’T] T 
U ⊕ Q        R+N     R+N          Y ⊕ Z 
               
              Π       Π        
      [B” D”]             [C”TE”T] T 
       A’’ 
    (R+N)/N   (R+N)/N 
 
   

Fig. 1. Commutative diagrams 
 
Let us denote by S’i, respectively S”i, and V’i, 
respectively V”i,  the steps of the algorithms (6) and 
(7) with data A’, B’, … and respectively A”, B”, … in 
place A, B, … and with respective limits S’*, S”*, 
V’*, and V”*.  
 
It can easily be shown that, for all i ≥ 0, and thus also 
for the limits: 
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[Sketch of the proof for the first relationship: 
 
S’0 = 0 = Φ-1(0) = Φ-1S0  (remember that Φ is monic) 
 
Assume that S’i = Φ-1Si , for a given i ≥ 0. 
 
Then: 
 
S’i+1 := ImD’ + A’(KerC’ ∩  S’i) 
= Φ-1 ImD + A’(KerC’ ∩  Φ-1Si ) 
= Φ-1 ImD + A’(Φ-1KerC ∩  Φ-1Si ) 

= Φ-1 ImD + A’Φ-1(KerC ∩ Si ) 
= Φ-1 ImD + Φ-1A(KerC ∩ Si ) 
= Φ-1 [ImD + A(KerC ∩ Si ]  
 
this distributes since ImD ⊂ ImΦ = R+N, and thus: 
 
S’i+1 = Φ-1Si+1, 
 
The other relationships can be proved in a similar 
way.▄] 
 
 

3. MAIN RESULTS  
 
It is now possible to compare the DRMF solvability 
conditions for the initial system (1), for the reduced 
system (A’, B’, D’, C’, E’), and for the minimised 
realisation (A”, B”, D”, C”, E”).  
 
Theorem 1: The DRMF problem is solvable for (A, 
B, D, C, E) if and only if it is solvable for the reduced 
realisation (A’, B’, D’, C’, E’), if and only if it is 
solvable for the minimal realisation (A”, B”, D”, C”, 
E”), both described in (9)-(11). 
 
Proof: Thanks to (12): 
 

S”*= ΠS’* and S’*= Φ -1S*  
and 

V”*= ΠV’* and V’*= V*. 
 
Therefore,  
 
  S  "*"* V⊂

'*'* VS Π⊂Π⇔    (since (12)) 
Π+⊂⇔ KerVS '*'*  

'*'* VS ⊂⇔    (since KerΠ ⊂V’*) 

** 11 VS −− Φ⊂Φ⇔    (since (12)) 
*Im*Im VS ∩Φ⊂∩Φ⇔  (since Φ is monic)  

** VS ⊂⇔ ,     [since S* ⊂ ImΦ] .▄ 
 
Moreover, it is rather easy to show that the set of 
solutions is exactly the same for the initial 
description (A, B, D, C, E), for the reduced 
realisation (A’, B’, D’, C’, E’), and for the minimal 
realisation (A”, B”, D”, C”, E”): 
 
Theorem 2: A dynamic controller (N, M, L, K), as 
described in (2), is a solution of the DRMF problem 
for (A, B, D, C, E), as described in (1), if and only if 
it is a solution of the DRMF problem for the reduced 
realisation (A’, B’, D’, C’, E’), if and only if it is a 
solution of the DRMF problem for the minimal 
realisation (A”, B”, D”, C”, E”), both described in 
(9)-(11). 
 
Proof: Thanks to (9)-(11) it is quite direct to check 
that: 
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Similarly, it can be shown that: 
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and so on …  
 
Each Markov parameter of the compensated system 
(4) thus has exactly the same analytic expression, for 
the systems (A, B, D, C, E), (A’, B’, D’, C’, E’), and 
(A”, B”, D”, C”, E”), with exactly the same 
parameters N, M, L, and K, which ends the proof (see 
(5)).▄ 
 
 
Using the results of (Del-Muro-Cuellar and Malabre, 
2001), one can get as an obvious corollary the 
following general characterization of the DRMF 
Fixed Poles1.  
 
Theorem 3: Assume that the DRMF problem is 
solvable. The DRMF Fixed Poles for system (1) with 
parameters (A, B, D, C, E) are given as the union 
(with any common elements repeated) of: 
 
• the uncontrollable poles of the pair (A, [B D]) 

• the unobservable poles of the pair  

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• the fixed poles of the DRMF problem for the 
minimal realisation (A”, B”, D”, C”, E”)2. 

 
Proof (sketch):  
The uncontrollable poles of the pair (A, [B D]) are 
obviously not controllable by u. Similarly, the 

unobservable poles of the pair  are 

obviously not observable through y. This means that 
these are fixed dynamics for the closed-loop system 
controlled by any dynamic measurement feedback 
compensation like (2). The result then follows from 
the minimisation process, from Theorems 1 and 2, 

[ ] 





 TTTT CEA ,

and from the results in (Del-Muro-Cuellar and 
Malabre, 2001).▄ 

                                                 
1 As recalled earlier, assuming that the DRMF 
problem is solvable, the DRMF Fixed Poles are the 
dynamics which are present in any solution. Some 
come from uncontrollable and/or unobservable 
modes, the others are due to the specific problem to 
be solved (here DRMF). 
2 As characterised in (Del-Muro-Cuellar and 
Malabre, 2001) under the minimality assumptions: 
R=X and N=0. 

 
As another corollary, we can also easily characterise 
the Fixed Poles of the Disturbance Rejection problem 
by State Feedback (DRSF). Indeed, this just amounts 
to assuming full measurement, i.e. C = Id (Identity). 
Remembering that for the particular case of state 
feedback, static and dynamic solutions are known to 
be equivalent (see Emre and Hautus, 1980), this 
gives an alternative description to the DRSF Fixed 
Poles characterised in (Malabre et al. 1997).  
 
Theorem 4: Assume that the DRSF problem is 
solvable. The DRSF Fixed Poles for system (1) with 
parameters (A, B, D, C=Id, E) are given as the union 
(with any common elements repeated) of: 
 
• the uncontrollable poles of the pair (A, [B D]) 
• the fixed poles of the DRSF problem for the 

minimal realisation (A’, B’, D’, C’=Id, E’). 
 
Proof: This is exactly Theorem 3 with C=Id.▄ 
 
From these Theorems directly follows that, when 
considering solvability conditions as well as pole 
assignment abilities, one is indeed fully allowed to 
first minimise the state space realisation and then 
work with the minimal version of the problem. It is 
important, however, to note that the minimisation 
process has to be performed with respect to all the 
input and output signals, i.e. with both control and 
disturbance inputs, as well as both controlled and 
measurement outputs. 
 
 

4. EXTENSIONS  
 
Similar results can be obtained for other control 
problems, such as (diagonal or block) decoupling or 
non interaction, model matching, and combined 
versions of those problems (e.g. simultaneous 
disturbance rejection and decoupling).  
 
We shall just sketch some of these in the following.  
 
Consider systems like (1) with D=0 (no disturbance) 
and with C=Id (state feedback case). The block-
decoupling problem (by regular static state feedback) 
solved by (Wonham and Morse 1970) relies on the 
geometric condition: 

*ImIm
1

i
k

i
VBB ∑ ∩=

=
   (13) 

where k is the number of blocks, and Vi* denotes the 
supremal (A,B) or controlled invariant subspace 
contained in , where Ej

ij
KerEI

≠
j denotes the jth 

block of E. 
 
It can easily be shown that relations similar to (12) 
hold between the controlled invariant subspaces of 
(A,B,E) and those of the reduced system (A’,B’,E’) 
obtained by just getting rid of the uncontrollable 
modes of (A,B). Indeed, V’i*= T-1Vi*, with T the 
insertion of ImB + AImB +…+  Adim(X)-1ImB into X. 

     



 
Thanks to that, it can easily be shown that the 
Wonham and Morse condition (13) holds for the 
system (A,B,E) if and only if it holds for the reduced 
(controllable) system (A’,B’,E’). This “justifies” the 
usual assumption that “for state feedback decoupling 
purposes, there is no loss of generality assuming that 
the pair (A,B) is controllable”. 
 
From this, directly follows that the fixed poles of the 
block-decoupling problem, for any possibly non 
minimal state realisation (A,B,E), are the union of the 
uncontrollable poles of (A,B) with the set of the fixed 
poles of the block-decoupling problem computed on 
the minimal realisation (A’,B’,E’), as characterised 
for instance in (Koussiouris 1983). 
 
A similar treatment can be done from the geometric 
conditions given by (Grizzle and Isidori 1989) for the 
same problem (but slightly differently formulated), 
namely, the block non interaction problem by static 
state feedback. This is solvable if and only if: 

BLBLB j
k

jij
i Im*Im*Im

1,
=∑ ∩+∩

=≠
 (14) 

where Li* denotes the supremal (A,B) or controlled 
invariant subspace contained in KerEj (with Ej 
denoting the ith block of E). 
 
Similarly also, the geometric solvability conditions, 
as well as the characterisation of the Fixed Poles can 
be obtained for the simultaneous disturbance 
rejection and block decoupling (or non interaction) 
problem by static state feedback, following the lines 
of (Camart et al. 2001) (established under the 
assumption that R = X). This can be achieved by 
making use of such connections between the 
invariant subspaces of the initial system (1) and those 
of the minimal realisation described in (9)-(11) and 
Fig. 1. 
 
 

5. CONCLUDING REMARKS  
 
We have proposed here a simple frame, based on a 
geometric treatment, which fully justifies the very 
natural, but up to now “intuitive3” feeling, that, for 
several classical control problems by state or 
measurement feedback, we can indeed treat 
separately the non minimality of the description and 
the solvability conditions. This justifies the assertion 
that there is indeed no loss of generality assuming 
minimality. Note however, that in the presence of 
disturbances, minimality (and in particular 
controllability), has to be understood with respect to 
all the external signals (i.e. with both control and 
disturbance inputs). 
 
This is not detailed here, but easy dualisations of the 
present results can also be obtained, leading to 
similar results for some dual problems such as state 
estimation in the presence of disturbances, failure 

detection and isolation (see e.g. (Massoumnia et al. 
1989) … 

                                                 
3 Indeed, up to the knowledge of the author, despite 
the fact that the results appear a posteriori as 
“obvious”, such a rigorous proof was lacking.   
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