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Abstract: The most time consuming and difficult step in applying model-based
concepts for synthesis, control and supervision of bioprocesses is the iterative,
manual, and therefore time-consuming model building process. In this contribution
a software tool TAM-B is introduced which provides methods for automating the
main steps of this iterative procedure. Several qualitative tests are developed to
efficiently generate only such models that are suitable for the kinetic problem
considered. It will be shown that using the modelling tool not only supports the
human modeller in many cases, it can also accelerate the model building process.
The main emphasis of the paper will be on new rule-based methods for structure
selection.Copyright c©IFAC 2005.
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1. INTRODUCTION

Models of biological reaction systems play an im-
portant role for the application of model-based
methods in supervision and control of biotechno-
logical processes. Apart from the large number
of necessary experiments, the limiting factor in
using these methods is the time-consuming model
building process.

A human modeller will carry out most steps of this
process manually in an iterative way. For describ-
ing the system, the necessary state variables and
a reaction scheme have to be postulated by the
modeller first. Afterwards, for every single reac-
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tion step a kinetic description has to be assumed.
The values of the model parameters will then be
calculated by a numerical identification. In most
cases, the modeller will not get a suitable model by
doing this only once. Rather the reaction scheme
and the kinetic model have to be modified many
times, and each time a quantitative identification
must be performed.

For the last step, the parameter identification, a
variety of supporting software is available. But
only a few approaches are reported for automating
the identification of the reaction scheme and the
kinetic model as well. In (Soo, 1989), (Ludewig,
1999), (Ruenglertpanyakul, 1996) and (Brendel
and Marquardt, 2003) several systems and meth-
ods are introduced for supporting the identifica-
tion of reaction kinetics. For the identification of



the reaction scheme, Boegarts and van de Wouver
have published a method (Bogaerts and Vande
Wouver, 2001). However, the latter approach only
works under very limited conditions.
With TAM-B (Tool for the Automatic Mod-
elling of Biological reaction systems) a software
tool was developed which combines methods for
adaptation of the reaction scheme together with
methods for an automatic identification of the
structure and parameters for the reaction rates.
Therefore, this tool can support the user during
the whole modelling process. In this contribution
some newly developed methods in the tool will be
described and an example is given, how a reaction
system was modelled supported by TAM-B.

2. SUPPORTING THE MODEL BUILDING
PROCESS WITH TAM-B

In the following, the modelling process supported
by TAM-B (see Fig. 1) will be introduced in gen-
eral, whereas for reasons of space, only some cen-
tral parts and new developments will be demon-
strated in detail. More information about the
other methods can be found in (King et al., 2002),
(Schaich et al., 2001), and (Leifheit and King,
2004).

Before a model identification is started, the user
has to input the description of the experiments,
the measurement data and a list of necessary state
variables. On the basis of a qualitative description
of the data, typical biological phenomena can be
detected by a rule-based data analysis. Now, the
user will input a possible reaction scheme. During
this input the user will get advises, which reac-
tions or components have to be added to take
the prior detected phenomena into account. After-
wards, it can be checked by an efficient qualitative
simulation whether the obtained scheme is largely
consistent with the experimental data.

A model generator will create possible kinetic
structures. Here, also results of the rules-based
analysis can be used to avoid the building of un-
reasonable model candidates. Next, by qualitative
identification methods some of these model can-
didates can be ruled out in an efficient manner, so
that the final parameter identification performed
for the remaining candidates is possible within a
manageable time.

3. DESCRIPTION OF SOME METHODS
USED IN TAM

3.1 Qualitative description of data

The basis of most of the methods used for model
verification and adaptation in TAM is a qualita-
tive analysis of data, sometimes combined with an
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Fig. 1. Scheme of TAM-B

interpretation of domain knowledge. For analysing
data on a qualitative level, a qualitative descrip-
tion has to be generated first. This is done on the
basis of smoothed data curves for the measured
quantities, e.g. for concentration measurements
for nutrients, products, and biomass. Different
spline methods are available in TAM-B for that
purpose. Afterwards, the time plots are divided
into sections of the same qualitative behaviour.
Such sections could be characterized by the sign
of the first derivative of the smoothed data curve,
see for example Fig. 2. This is a simpler version of
a formerly used description which was based on an
idea of (Cheung and Stephanopoulos, 1990). The
position where a new qualitative section begins is
called phase transition. Because for most of the
measured quantities only a few data are available,
the times for these phase transitions will often
be determined incorrectly. In such cases, online
measurements, like pO2- or exhaust gas CO2-
values, could be used to locate the transition times
more exactly.

3.2 Rule-based generation of information about

the reaction model

Metabolic processes in biotechnological reaction
systems are mainly characterized by the occur-
rence of typical biological phenomena, like sub-
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strate limitation, product inhibition, or diauxic
effects. In the model these phenomena will be
described by separate reactions, like regulatory
enzyme reactions, or by appropriate kinetic terms,
like an inhibition term for example. To detect such
phenomena and to take them into account for
model building, rules were implemented in TAM-
B.

By use of these rules, the qualitative represen-
tations of measured data will be analysed sys-
tematically, qualitative dependencies will be de-
tected, and accordingly, occurring phenomena will
be found. For example, a completed growth of
biomass after depletion of a nutrient will be an
indicator for a growth limitation by this nutrient.
In this case the appropriate rule is formulated as:

IF

substance A (nutrient) is depleted
(qualitative ”0” after qualitative ”-1”)

AND

substance B (biomass) becomes constant
(qualitative ”const” after qualitative ”+1”)

THEN

a limitation from B by A exists
(limitation(B,A))

More typical relations will be found in Table 1.
If a phenomenon was detected in at least one
experiment, it will be added to a list of possible
phenomena. But because the number of measured
data for some substances is typically very low,
the qualitative description of these curves may be
inaccurate. That’s why some detected phenomena
are not really true for the system. Another reason
could be that a relation between two substances
was caused by a second effect, which wasn’t taken
into account. Therefore, the phenomena will be
checked in all experiments by further rules. A rule
for checking limitation(B,A) looks as follows:

IF

in the i-th experiment there is at least one
time period (2 percent of whole length of
the experiment)

WHERE

substance A is depleted

AND

substance B is growing (qualitative ”‘+1”’)

THEN

limitation(B,A) is disproved by the i-th
experiment.

After such a kind of automatic detection and
verification of phenomena by rules, the obtained
information will be announced to the user. Now,
the user may decide which phenomena are really
true and which phenomena could be rejected.

3.3 Consideration of detected phenomena during

the input of a reaction scheme

In order to input a reaction scheme into the
modelling tool, the user will define single reac-
tion steps, for which the reaction components
like nutrients, products, inhibitors, and catalysts
will be defined. One substance, like biomass for
example, could exist as a catalyst as well as a
product in the same reaction step. During this
manual input the user will get advises, how the
phenomena identified before could be described
by this reaction scheme. For example, if a growth
inhibition by a substance takes place, the user
will get the suggestion that he should add this
inhibitor, whenever he defines a reaction step,
where biomass is a product.

Moreover, the user can be informed that new
reactions have to be added. This can be the case
if phenomena could be described by regulatory
enzyme reactions, like diauxic effects for example.
After a manual confirmation, such reactions will
be added automatically.

3.4 Qualitative simulation of a postulated reaction

scheme

The qualitative simulation of a reaction scheme
is a simple, but efficient approach for checking
whether the postulated reaction scheme is largely
consistent with the data courses. Because at this
stage there is no or just little information about
the kinetic dependencies in the model, a quanti-
tative simulation cannot be performed. Instead,
a model will be generated automatically, which
describes the qualitative evolution of the reac-
tions. By using this model, the postulated reaction
network can be simulated on a qualitative level. A
more detailed description of this qualitative simu-
lation will be found in (Leifheit and King, 2004).

As a result, it can be detected if there are discrep-
ancies between postulated reactions and the mea-
sured data. For example, it can be discovered that



Substance A Substance B Further condition Biol. phenomenon

consumption finished growth limitation of substance B by A

consumption decomposition limitation of substance B by A
after growth (B is an intermediate)

formation finished growth inhibition of substance B by A

consumption beginning no decomp. of B diauxic effect
decomposition while A available

consumption decomposition B is biomass death of biomass
after growth

no consumption finished growth A is nutrient inhibtion or limitation
B is biomass by a not considered substance

no consumption decomposition A is nutrient inhibition or limitation
after growth B is biomass by a not considered substance

consumption no reaction B is biomass not considered nutrient
of an essential nutrient (continued growth) qualitative ”+1” or internal storage

Table 1. Typical biological phenomena characterized by qualitative dependencies of
measured quantities

a reaction doesn’t take place, though all necessary
reaction components, like nutrients and catalysts,
are available in the medium. Here, an inhibition
could be the reason. If such or similar model
deficits are detected, the user will be informed and
suggestions will be made, how the reaction scheme
could be adapted.

It should be pointed out that the expert could
perform all of the above steps as well manually.
However, TAM-B not only speeds up this process.
It also performs the same tests when many exper-
iments are available. In such situations, a human
modeller tends to concentrate only on a subset
of experiments, thereby postulating models which
could explain this subset, but possibly contradict
other experiments.

3.5 Generation of kinetic models for the reaction

system

The modelling tool TAM-B offers the possibil-
ity to identify the mathematical structures for
describing the concentration-dependencies of the
reaction rates automatically. Therefore, a mathe-
matical model is constructed inside TAM-B in a
symbolic fashion, where different structures can
be inserted during the model identification. This
is realized by integrating so-called sockets in the
model where successively different kinetic terms
are plugged in.

For every reaction component (reactants, in-
hibitors and catalysts as well) a separate socket

is created for describing the influence of its con-
centration on the reaction rate. Moreover, sockets

for nutrient-catalyst-combinations are added, in
which for example a Contois-term 2 could be in-
serted. The rate of this reaction is finally the prod-
uct of all sockets. During model identification,

2 typical biological term cS/(KScX + cS) with cx and cs

as concentrations of biomass and nutrient, respectively

all those kinetic terms will be plugged in, which
where enabled for identification for this socket.
In this manner, all combinatorial possibilities of
model structures are created.

To hold the number of the thereby created models
as small as possible, only those structures should
be enabled which lead to meaningful models from
a biological point of view. Hence, for every socket
a list of preselected kinetics is prepared inside
TAM. Depending on the type of the reaction
component (nutrient, catalyst etc.), only such
kinetics are added which are typical for describing
the belonging influence. If due to the rule-based
analysis biological phenomena were found, the
lists of kinetics can be adapted accordingly. If,
for example, a product inhibition is detected, only
inhibition kinetics for this product will be enabled.
Additionally, the lists can be restricted further by
the user.

3.6 Qualitative model verification and quantitative

identification of the model parameters

For all generated models the model parameter val-
ues will be identified by a numerical optimisation.
Under certain conditions, an efficient check of
models by a so-called qualitative interval algebra
can be performed before. This method is described
in detail in (King et al., 2002). The advantage of
this method is that a variety of models can be
ruled out automatically in a small amount of time.

Only for the remaining candidates the time-
consuming quantitative identification is necessary.
For this identification several optimisation meth-
ods are available in an external FORTRAN pro-
gram (e.g. a Simplex or a SQP-solver) which is
connected to TAM-B via a file interface.

Often, the user will get more than one model
with similar quality values. Here, it is possible



to use an external optimal experimental design
software (Heine, 2004) for determining new opti-
mal experiments. The results of these experiments
complete the existing measurements and allow the
verification of the best model candidates.

4. AN EXAMPLE

The functionality of TAM-B will be demonstrated
with an example with experimental data. The
microbial strain Saccharomyces cerevisiae (bakers
yeast) was cultivated in a 10 litre pH-controlled
fermenter. A defined medium was used which is
described in (Rieger et al., 1983). Glucose was the
only carbon and energy source. For a first identifi-
cation, 6 different experiments were used, 5 batch
and one fed-batch experiment. The initial concen-
trations of the batch experiments laid between 5
and 30 g/l of glucose. The concentrations of the
other nutrients were identical. Biomass concentra-
tions at t=0 differed slightly due to variations in
the precultures.

After the input of the substance list (Glc-glucose,
X-biomass and Eth-ethanol) and the experimental
conditions, the rule-based detection of biological
phenomena was started. A limitation of biomass
by ethanol, a limitation of ethanol by glucose and
a diauxic effect were found. The diauxic effect
was described by 2 regulatory enzyme reactions,
so that now the following reaction scheme was
proposed manually:

Glc + X
r2

→ ν2X + ν3Eth

Eth + X
r3

→ ν4X

Enz
r4

→EnzAct

EnzAct
r5

→Enz

As a further reaction

Glc + X
r1

→ ν1X

was added. This reaction describes the Crabtree
effect known from literature (Barford and Hall,
1981), which is typical for yeasts. However, this
relation couldn’t be detected on the basis of the
available experiments.

For the two enzyme reactions a definite kinetic
structure was inserted. The conversion of the en-
zyme (Enz) to the activated enzyme (EnzAct) is
inhibited by glucose and limited by the enzyme
itself, see r4, whereas the backward reaction is
limited by the activated enzyme and by glucose.
Furthermore, the enzyme inhibits ethanol degra-
dation, so that this reaction won’t take place until
the enzyme concentration is very low. Therefore,

r3 was restricted to kinetics containing an inhi-
bition with respect to the enzyme. For r1 and
r2 TAM-B could insert all kinetic terms with
the exception of inhibition terms with respect to
ethanol. All parameter pi were assumed to be
unknown. The parameters comprise parameters
inside the reaction rates ri as well as the stoichio-
metric coefficients νi.

Altogether 2304 models were formulated inside
TAM automatically after this users input. As a
result about 20 models were found with nearly
the same model quality measured by the sum
of squared errors. It was concluded that the ex-
periments didn’t contain enough information to
identify some kinetic structures exactly. That’s
why more fermentations were planned by the
external optimal experimental design (OED) us-
ing the most plausible model of this list. After
adding these new experimental results, a new
kinetic identification run was performed, were,
after analysing the results of the first identifica-
tion, more restrictions concerning possible kinetic
terms were formulated to limit the search space.
These restrictions were that an inhibition by glu-
cose in r2 and r3 was excluded. The structure of
the best-identified model now looks as follows:

r1 = p1

cGlccX

p2 + cGlc + p3cX

r2 = p4

cGlccX

p5 + cGlc

r3 = p6

cEthcX

(p7 + cEth)(p8 + cEnz)

r4 = p9

cEnz

(p10 + cEnz)(p11 + cGlc)

r5 = p12

cEnzActcGlc

(p10 + cEnzAct)(p11 + cGlc)

Simulation results for some of the experiments are
shown in figure 3.

Without the time for executing the experiments,
preparing the identification and creating the re-
action scheme, the automatic model identification
took about 68 hours using a personal computer
with an Athlon 2000+ processor. The overall time
needed is significantly lower compared to the clas-
sical approach. Moreover, the search space used,
could not have been covered in a manual ap-
proach, thereby increasing the chance of finding
a more adequate model.

5. CONCLUSIONS

Today an experienced human modeller identi-
fies models for biological reaction systems mainly
manually in an iterative and time-consuming way.
Only for the parameter identification a variety
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Fig. 3. Results of the model identification for
some of the used experiments, - simulated
results, + experimental values of biomass (x),
glucose (glc), and ethanol (eth). The last two
experiments were planned by the OED.

of supporting software is available. TAM-B ad-
ditionally automates parts of reaction network
identification and the model structure selection.
By this, the user is supported during the whole
modelling process. Consequently, inexperienced
modeller, but as well modelling experts, can build
up models for biological reaction systems with
minor efforts in a manageable amount of time.
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