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Abstract: This paper describes the design and the experimental validation of a
multivariable shape controller for the JET tokamak. This new controller allows
the control of extremely shaped plasmas with high values of elongation and
triangularity. The problem has been formulated as an output regulation problem
for an LTI plant whose controllable outputs are more than the control inputs. For
the case of constant references, we propose a control scheme which minimizes
a quadratic cost function. This cost function weights the tracking error at
steady-state. Our methodology is based on the singular value decomposition of
the static gain matrix of the plant. In the controller design we also take into
account the steady-state control effort. Some experimental results are presented.
Copyright c©2005 IFAC.
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1. INTRODUCTION

The increasing energy consumption pushes toward
the search of new resources. Nuclear fusion seems
to offer great possibilities since the fuel sources
are essentially inexhaustible, the fusion process
is inherently safe, and no harmful greenhouse
gases are produced. One possible approach for
nuclear fusion is the magnetic confinement of a
fully ionized gas called plasma in suitable devices.
Among the various possible configurations, the
most promising approach has proved to be the
tokamak.
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Tokamaks were first developed in the ex Soviet
Union in the late Sixties and are characterized by
toroidal symmetry. The confinement of the plasma
is obtained via the interaction of the plasma with
an external electromagnetic field, produced by
toroidal coils. Among the many different physical
and engineering problems connected with nuclear
fusion in tokamaks, plasma control has gained
more and more importance because of the need
of achieving always better performance.

High performance in the next generation toka-
maks shall be achieved by elongated, vertically
unstable plasmas, placed as close as possible to the
plasma metallic facing components. Although the
plasma facing components are designed to with-
stand high heat fluxes, contact with the plasma
is always a major concern in tokamak operations



and, therefore, adequate plasma-wall clearance
must be guaranteed. This is obtained by means
of additional magnetic fields produced by suitable
currents flowing in a number of poloidal field
coils surrounding the plasma ring. These currents
are generated by a power supply system driven
in feedback by a plasma shape control system.
Figure 1 shows the poloidal field coils of the Joint
European Torus (JET) tokamak.
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Fig. 1. The JET cross section. The plasma bound-
ary is shown in red. The poloidal coils (P1-
P4 and D1-D4) and the toroidal coils, which
surround the plasma ring, produce the neces-
sary confinement magnetic field (courtesy of
EFDA-JET).

The work described in this paper has been carried
out in the framework of a project aimed at in-
vestigating the possibility of obtaining extremely
shaped plasmas with the existing active circuits
and control hardware (Crisanti et al., 2003). One
of the steps needed to achieve this objective is the
redesign of the JET shape controller, since the
present controller does not consider the possibility
of operating with highly shaped plasmas.

In the experiments with highly shaped plasmas,
usually several geometric parameters are con-
trolled, such as the plasma center, elongation and
triangularity. Alternatively the distance between
the plasma boundary and the vessel at some spe-
cific points can be controlled. Whatever choice
is made, the strong output coupling calls for a

model-based MIMO approach to obtain improve-
ments in closed-loop performance. The controller
is also restricted to demand as little power as pos-
sible, to limit surges in the total power required
for the poloidal field system.

Multivariable control design approaches have been
used recently to control the plasma vertical po-
sition in (Vyas et al., 1998), where the authors
use the H∞ technique; in (Gossner et al., 1999),
where predictive control is adopted; in (Scibile
and Kouvaritakis, 2001), where a nonlinear, adap-
tive controller is designed. In (Ariola et al., 2001)
the authors propose a controller designed using
the H∞ technique, which has been used during
normal tokamak operation to control at the same
time the plasma current, vertical position and
some geometrical parameters.

This paper describes the features of the new JET
controller, which has been called eXtreme Shape
Controller (XSC). This new controller is the first
example of multivariable tokamak controller that
allows to control with a high accuracy the overall
plasma boundary, specified in terms of a certain
number of gaps. The problem is formulated as
an output regulation problem for a non right-
invertible plant, i.e. a plant that where the number
of independent control variables is less than the
number of independent outputs to regulate. In this
case it is not possible to guarantee that the dif-
ference between the reference and the controlled
plant output (tracking error) is zero at steady-
state. To tackle this problem, we essentially adopt
the singular value decomposition in order to iso-
late the part of the plant output which can be
better regulated at steady-state. Moreover the
singular value decomposition gives us an insight
into the steady-state control effort: since some of
the singular values of the plant static gain are
small, we truncate these singular values introduc-
ing a trade-off between the tracking error and the
control effort.

The paper is divided as follows: in Section 2 we
discuss the control requirements and we describe
the plant model; in Section 3 we present the tech-
nique we have adopted to design the controller;
Section 4 includes some experimental results; the
conclusions are drawn in Section 5.

2. CONTROL REQUIREMENTS AND
SIMPLIFIED PLASMA MODELLING

In the JET tokamak (see Figure 1) there are eight
poloidal field coils available to the plasma shape
control system. These coils are denoted by P1,
. . . ,P4, and D1, . . . ,D4. The P-coils are connected
to form five circuits. The currents flowing in these
circuits are indicated by IP1E , IPFX , ISHA, IP4T ,



IP4i, whereas the currents flowing in the D-coils
are indicated by IDi, with i = 1, . . . , 4. Therefore
we have nine circuits available to the plasma
control system. One of these circuits, P1E, is used
to control the plasma current, whereas the other
eight circuits can be used to control the plasma
shape.

The controller we want to design should be able
to control the plasma shape. One problem re-
garding the plasma shape control is the choice of
the controlled variables. In this case the plasma
shape has been characterized by a finite number
of parameters which are identified on the basis
of the available magnetic measurements. More
specifically, the geometrical parameters controlled
by the XSC are a set of 28 gaps, the radial and
vertical position of the X-point, and finally 2 para-
meters describing the strike point positions. The
system we want to control plant is characterized
by the fact that the number of controlled outputs,
equal to 32, is much larger than the number of
control inputs, which is equal to 8.

A tokamak device is a rather complex system:
it includes the plasma, the active coils, and the
metallic structures (hereafter named passive con-
ductors). It is a distributed parameter system
whose dynamic behavior is described by a set of
nonlinear PDEs, whereas most controller design
techniques consider ODE models, usually linear
and time invariant. The main problem is then
that of introducing some simplifying physical as-
sumptions and of using approximate numerical
methods to obtain a model detailed enough to
catch the principal phenomena, but reasonably
simple to make the controller design straightfor-
ward and fast. In this paper we use the model
derived by Albanese and Villone (1998).

As shown by Ariola et al. (2003), making use of
some preliminary compensation loops, for the de-
sign of the plasma shape controller we are reduced
to the following linearized simplified model

Y (s) = P (s)U(s) (1)

where Y (s) are the controlled parameters, U(s)
are the current references for the m = 8 circuits
which are available to the shape controller, and

P (s) =
Cl

1 + sτ

with τ = 0.1s, and C ∈ R
p×m with p = 32.

3. THE CONTROLLER DESIGN

The shape control problem basically consists in
determining the circuit currents that can reduce
the errors on the geometrical descriptors to zero
at steady-state. Since we are using m currents,
only m linear combinations of the geometrical

descriptors can reduced to zero at steady-state.
Our problem then becomes that of determining
the m linear combinations of the errors on the
geometrical parameters that minimize the overall
error in a quadratic sense. On the other hand,
once these m linear combinations have been se-
lected, the m values of the control circuit currents
at steady-state are univocally determined. Hence
this approach could lead to high values of the
currents; these values could possibly exceed the
saturation limits. To overcome this problem, the
number of linear combinations of geometrical de-
scriptor errors to reduce to zero could be chosen to
be less than m. This extra degree-of-freedom can
be used to reduce the amplitude of the requested
currents. A straightforward solution to both these
optimization problems is given by the following
singular value decomposition approach, which can
be applied to more general cases as shown by Am-
brosino et al. (2003).

We want a constant reference r̄ to be tracked by
the controlled output variable y(t). We will denote
the tracking error by

e(t) := r̄ − y(t) .

Let us consider a controller K(s) with input e(t)
and output u(t). Therefore the closed-loop system
is defined by the equations

y = Pu , u = Ke , e = r̄ − y (2)

Our aim is to find a controller K(s) which in-
ternally stabilizes the closed-loop system (2) and
makes the error e(t) small in some sense at steady-
state. Since the number p of output variables to
regulate is greater than number of control in-
puts m, we consider the problem of minimizing
a steady-state performance index in the form

J = lim
t→+∞

eT (t)Qe(t) , (3)

where Q ∈ R
p×p is a positive definite weighting

matrix.

Let us consider the singular value decomposition
of the following matrix

C̃ = Q1/2CR−1/2 = UΣV T , (4)

where Σ = diag(σ1, σ2, . . . , σm) ∈ R
m×m, U ∈

R
p×m, V ∈ R

m×m, and R ∈ R
m×m is a positive

definite weighting matrix. An analysis of the sin-
gular values showed that σ1 > . . . σk � σk+1 >

. . . σm for k = 5. We recall the following properties
of the SVD (4)

V T V = V V T = I , (5a)

UT U = I . (5b)

The properties of the SVD imply that the columns
of the matrix Q−1/2UΣ form a basis for the
subspace of the obtainable steady-state output



values. The reference signal can be splitted into
two components: one which lies in this subspace,
and the other which is orthogonal to it; therefore
we can write

r̄ = Q−1/2UΣw̄ + b̄ , (6)

where w̄ ∈ R
m is defined as

w̄ = Σ−1UT Q1/2r̄ , (7)

and b̄ satisfies b̄T Q1/2U = 0.

Now let us decompose the plant output accord-
ingly to what has been done for the reference (6).
Therefore let us define

z(t) = Σ−1UT Q1/2y(t) . (8)

The signal z(t) represents the component of the
output signal y(t) that can be actually regulated;
it has the same dimension of u(t).

Denoting by z̄ the steady-state value of z(t), we
have

z̄ = Σ−1UT Q1/2ȳ = Σ−1UT Q1/2Cū

= Σ−1UT UΣV T R1/2ū = V T R1/2ū ,
(9)

where we have used (1), (4) and (5b). From (9),
using (5a), we obtain

ū = R−1/2V z̄ .

Finally using (1) we have

ȳ = Cū = Q−1/2UΣV T R1/2ū = Q−1/2UΣz̄.

(10)

The decomposition (6) has a direct consequence
on the cost function (3); indeed using (6) and (10)
it is possible to write

ē = r̄ − ȳ = Q−1/2UΣw̄ + b̄ − Q−1/2UΣz̄ .

In this way we obtain

J = (w̄ − z̄)T Σ2(w̄ − z̄) + b̄T Qb̄

=
m
∑

i=1

σ2
i (w̄i

− z̄i)2 + b̄T Qb̄ ,
(11)

where w̄i (resp. z̄i) indicate the components of w̄

(resp. z̄). The quadratic term involving the vector
b̄ in (11) does not depend on the choice of the
controller, but only on the reference signal r̄ to be
tracked. Therefore minimizing J is equivalent to
minimize the cost function

J̃ = (w̄ − z̄)T Σ2(w̄ − z̄) =

m
∑

i=1

σ2
i (w̄i

− z̄i)2 .

In our case for k = 5, σk � σk+1. This suggests
that we modify the cost function (11) neglecting
the terms corresponding to the singular values σi

with i > k (the smallest ones). In this way we
are using just k linear combinations of the inputs
and therefore we can minimize a weighted norm
of the steady-state control vector ū. To this aim
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Fig. 2. The feedback scheme with the con-
troller (18)

we consider the new cost function (with k < m

terms)

J̃1 =

k
∑

i=1

σ2
i (w̄i

− z̄i)2 . (12)

Hence our aim becomes to find a controller struc-
ture which solves the following optimization prob-
lem

min
ū

ūT Rū such that J̃1 = 0 . (13)

Let us introduce the following partitions

U =
(

U1 U2

)

, V =
(

V1 V2

)

, Σ =

(

Σ1 0
0 Σ2

)

,

z(t) =

(

za(t)
zb(t)

)

, z̄ =

(

z̄a

z̄b

)

, w̄ =

(

w̄a

w̄b

)

,

where U1 ∈ R
p×k, V1 ∈ R

m×k, Σ1 ∈ R
k×k,

za(t) ∈ R
k, z̄a ∈ R

k and w̄a ∈ R
k. Using these

partitions, (5) become
(

V T
1 V1 V T

1 V2

V T
2 V1 V T

2 V2

)

=

(

I 0
0 I

)

, (14a)

V1V
T
1 + V2V

T
2 = I , (14b)

(

UT
1 U1 UT

1 U2

UT
2 U1 UT

2 U2

)

=

(

I 0
0 I

)

. (14c)

Our performance index (12) can be rewritten as

J̃1 = (w̄a − z̄a)T Σ2
1(w̄a − z̄a) . (15)

From (7) we have that

w̄a = Σ−1

1 UT
1 Q1/2r̄ ,

whereas from (8) we have

za(t) = Σ−1

1 UT
1 Q1/2y(t) .

Finally making use of (1), (4) and of (14c) we
have

z̄a = Σ−1

1 UT
1 Q1/2ȳ

= Σ−1

1 UT
1 Q1/2Q−1/2UΣV T R1/2ū = V T

1 R1/2ū .

(16)

Now let
u(t) = R−1/2V1ũ(t) , (17)

and

K(s) = R−1/2V1K̃(s)Σ−1

1 UT
1 Q1/2 . (18)

In this way we arrive to the feedback scheme of
Figure 2.

Let us choose K̃(s) in the form



K̃(s) = K̃a(s) +
K̃b(s)

s
, (19)

so that (18) becomes

K(s) = R−1/2V1

(

K̃a(s) +
K̃b(s)

s

)

Σ−1

1 UT
1 Q1/2 .

(20)
In this way, provided that K(s) defined in (20)
internally stabilizes the closed-loop (2) system,
the performance index (15) is equal to zero.

Now we can prove the following result.

Theorem 1. Any controller with the structure (20),
provided that it internally stabilizes the closed-
loop system (2), solves the optimization prob-
lem (13).

PROOF. The optimization problem (13) con-
sists in finding the minimum of ūT Ru with the
constraint that J̃1 = 0. It is easy to show by
standard static optimization techniques that this
minimum value, that must satisfy (16), is attained
when

ū = R−1/2V1w̄a .

On the other hand, using the controller struc-
ture (20) J̃1 = 0 and from (16) and (17), using
the fact that V T

1 V1 = I (see (14a)) we have

ū = R−1/2V1z̄a .

The fact that z̄a = w̄a (see (15)) completes the
proof.

Now we need to design a stabilizing controller with
the structure (18). Let us choose K̃(s) (see (19))
in the simplified form

K̃(s) = KP +
KI

s
,

with KP ,KI ∈ R
k×k. In order to find a con-

venient choice for KP and KI , let us evaluate
the loop gain transfer matrix F (s); using (14a)
and (14c) we have

F (s) = Σ−1

1 UT
1 Q1/2P (s)R−1/2V1K̃(s)

= Σ−1

1 UT
1 Q1/2 Q−1/2UΣV T R1/2

1 + sτ
R−1/2V1K̃(s)

= Σ−1

1

(

I 0
)

(

Σ1 0
0 Σ2

)(

I

0

)

K̃(s)

1 + sτ

=
K̃(s)

1 + sτ

Therefore exploiting the properties of the singular
value decomposition, if we choose KP and KI as
diagonal matrices

KP = diag(KP1
, . . . KPk

) , KI = diag(KI1
, . . . KIk

) ,

we reduce our problem to k decoupled SISO
problems (see Figure 3). Since we are controlling

KP1
s + KI1

s(1 + sτ)

KPi
s + KIi

s(1 + sτ)

KPk
s + KIk

s(1 + sτ)

...

...
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6

? -e - +
+

+

`

-

-

6
-+
−
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Fig. 3. The decoupled scheme for the PI design

k linear combinations of the output y(t), the most
reasonable choice is to let KP = kpI, KI = kiI.
The values of the two scalars kp and ki have been
chosen so as to assign to each SISO loop the
behavior of a second-order system with a natural
frequency of 25 rad/s and a damping factor of 0.7.

4. EXPERIMENTAL RESULTS

The XSC has been implemented at JET on a
400 MHz G4 PowerPC. The controller software
architecture has been designed so that it allows
to test all the software off-line, since at JET long
commissioning periods are not available.

Tokamak reactors are pulsed machines; in each
pulse the plasma is created, ramped up to the
reference flat-top current, heated, maintained in
a constant state and finally cooled down and
terminated. The XSC has been designed to control
the plasma shape during the flat-top phase, when
the plasma current has a constant magnitude; as
a matter of fact it has been used at JET also
during large excursions of the plasma current:
maintaining the plasma shape constant during
such large excursions is very demanding, since
all the plasma parameters are changing and the
assumption that a single linearized model can
describe the plasma behavior is no longer valid.

Hereafter we show the results obtained during
the JET shot number 61995, where the XSC
took control during the plasma flat-top at t =
68 s. Figure 4 shows the reference shape and the
shape that has been obtained with the XSC: the
shape is reached with a small error. Figure 5a
shows the average value of the error on the 28
controlled gaps. As it can be seen, initially, when
the XSC is switched on, the mean error is of
about 4 cm, then the XSC reduces this error to
about 1 cm; eventually the error slightly increases
since the plasma current is changing significantly
(Figure 5b). The XSC has been successfully used
also in the presence of injection of heating power



with the neutral beams; in these experiments, the
maintenance of a constant shape is very important
for the physicist to carry out their analyses.

5. CONCLUSIONS

In this paper we have described the eXtreme
Shape Controller which has been recently de-
signed and implemented on the JET tokamak.
This new controller gives the possibility of control-
ling the plasma shape, specified in terms of some
plasma-wall distances, and of maintaining it even
in the presence of significant variations of critical
plasma parameters. The design procedure is essen-
tially based on the singular value decomposition of
the plant output matrix. This procedure allows us
to take into account all the different requirements,
specified in terms of accuracy on the controlled
variables and of maximum allowable control effort.
The new controller has been fully commissioned
on the JET tokamak; now it is in operation and
it delivers the performance that were expected.
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Fig. 4. Experimental test of the XSC during
the shot #61995: i) the reference shape to
be tracked (dashed in red); ii) the plasma
boundary before the XSC is active (solid in
blue); iii) the plasma boundary two seconds
after the XSC takes control (solid in black).
The vessel is shown in green.
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Fig. 5. Experimental test of the XSC during the
shot #61995: (a) shows the average error on
the controlled gaps when the XSC is active;
(b) shows the plasma current Ip (blue) and
its reference.
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