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1. INTRODUCTION

Polynomials and polynomial matrices arise nat-
urally in linear systems [Kailath, 1980]. Several
control problems can be reduced to the solution
of a polynomial matrix equation or Diophantine
equation [Kučera, 1993]. Unfortunately, the devel-
opment and analysis of computational algorithms
dealing with polynomials and polynomial matrices
is not enough developed. One of the gaps concerns
numerical stability.

During the last years, a new class of reliable
polynomial algorithms have been developed, see
for example [Henrion and Šebek, 1999]. Glob-
ally speaking, these modern algorithms are based
only on reliable numerical linear algebra methods
and avoid elementary operations over polynomi-
als. The common procedure of these modern poly-
nomial algorithms is:

(1) Reformulate the original polynomial problem
(OPP) into an equivalent numerical problem

(ENP) which can be solved via a numerical
linear algebra method.

(2) Translate the numerical solution of the ENP
into the solution of the OPP.

When the problem is the computation of struc-
tural properties of an m × n polynomial matrix
A(s) = Ads

d+ · · ·+A1s+A0 , a classical approach
to perform step (1) consists in linearizing the
polynomial matrix, namely, constructing a pencil
matrix F (s) = sF1 + F0 containing the same
structural properties as A(s) [Van Dooren and
Dewilde, 1983]. For example, the most accepted
method to solve the polynomial eigenvalue prob-
lem of A(s) consists in solving the equivalent gen-
eralized eigenvalue problem on pencil F (s) via the
QZ algorithm. Another approach to achieve (1)
consists in constructing block Toeplitz matrices
(Sylvester matrices) associated with A(s) using
the coefficients Ai [Kailath, 1980, Stefanidis et al.,
1992]. Ideally, we require that the solution of the
OPP is easily obtained from the solution of the
ENP. In our above example, the exact finite zeros
of F (s), which are the exact finite zeros of A(s),



can be obtained via the QZ algorithm which is a
polynomial time backward stable method [Golub
and Van Loan, 1996].

The algorithmic complexity is the total number
of elementary operations (flops) executed by an
algorithm. The number of flops required to solve
our OPP is then the number of flops required by
step (1) plus the number of flops required by step
(2). 1

On the other hand, the analysis of accuracy and
stability is much more complicated. In general,
we require, at least, that the numerical method
used to solve the ENP is backward stable. Never-
theless, this requirement is not always sufficient
to ensure the reliability of the solution of the
OPP. For example, consider again the polynomial
eigenvalue problem. In [Tisseur and Meerbergen,
2001] it is showed that the small backward errors
in coefficients F1 and F0 produced by the QZ
algorithm can lead to large backward errors in
the coefficients Ai. In words this means that the
accurately computed finite zeros of F (s) could
not correspond to those of A(s). In conclusion,
some questions that have to be answered are:
does an accurate solution of the ENP imply an
accurate solution of the OPP? how the errors
(backward and forward errors) in the ENP are
reflected in the OPP? In the present paper we
give some elements to answer these questions. In
particular we analyze the stability and accuracy of
some block Toeplitz algorithms to obtain different
structural properties of a polynomial matrix. We
developed these algorithms in our previous work
[Zúñiga and Henrion, 2004a]. There we showed
that the Toeplitz approach results in algorithms
which perform, in general, faster than the algo-
rithms using linearizations of the polynomial ma-
trix (pencil algorithms). Our aim now is to learn
more about the stability and accuracy of these
Toeplitz algorithms.

After some preliminaries on the stability and
accuracy of rank revealing numerical methods, in
section 3 we analyze the problem of obtaining the
infinite and null-space structure of a polynomial
matrix. In section 4 we analyze the computation of
the finite structure. Finally, in section 5 we give
some general conclusions and we state the lines
that future works could follow.

Notations: real ε represents the machine precision
in the floating-point arithmetic system, and O(ε)
is any constant depending on ε, of the same order
of magnitude.

1 Sometimes the execution time required by step (2) can

be larger than the time required by step (1). See for
example the pencil algorithm [Beelen and Veltkamp, 1987]

to obtain the null-space structure of a polynomial matrix.

2. PRELIMINARIES

As we show in [Zúñiga and Henrion, 2004a], find-
ing the eigenstructure of a polynomial matrix A(s)
is equivalent to obtaining the null-spaces of some
constant block Toeplitz matrices. In other words,
our ENP is the computation of the rank and the
null-space of a constant k×l rank-deficient matrix
M . The classical rank revealing methods are the
singular value decomposition (SVD) and the LQ
dual to (QR) factorization with row (or column)
pivoting. Numerical properties of this methods are
well known [Golub and Van Loan, 1996, Higham,
2002]. We summarize these properties as follows.

Lemma 1. The computed singular values of a ma-
trix M are the exact ones of a slightly perturbed
matrix M + ∆ with ‖∆‖2 ≤ O(ε)‖M‖2. If σi are
the exact singular values of M , then

|σi − σ̂i| ≤ O(ε)‖M‖2 . (1)

Lemma 2. Let the exact LQ factorization of ma-
trix M be MQ = L. The computed factors Q̂ and
L̂ satisfy (M + ∆)Q̂ = L̂ with ‖∆‖2 ≤ O(ε)‖M‖2.

Lemma 3. (Higham, 1990). Let the exact LQ fac-
torization of matrix M be MQ = L. If we parti-
tion L as follows

L =
[
L11 0
L21 L22

]
where L11 is r × r with non zero elements along
the diagonal, then (to first order),

‖L̂22 − L22‖2
‖M‖2

≤ ‖∆‖2
‖M‖2

(1 + ‖L−1
11 L

T
21‖2) (2)

where ‖L−1
11 L

T
21‖2, the conditioning of the LQ

factorization for rank-deficient matrices, is usually
small.

So, from equations (1) and (2) we can expect to
recover the rank r of M by applying the SVD and
counting the number of computed singular values
less than or equal to k‖M‖2. Alternatively, we can
apply the LQ factorization and count the number
of columns of L̂22 such that ‖L̂22‖2 ≤ k‖M‖2
where k is a tolerance depending on ε. Hence, rank
determination is not only a problem in matrix
computations, but an exercise of interpretation
of the numerical results. Moreover, it is well-
known that the problem of detecting whether
rank M = r is ill-posed or ∞-conditioned when
r is less than the row or column dimension of
M . As an important implication, the problem of
finding the right null-space of a constant matrix
M can be well-conditioned only if M has full
row-rank. As we will see in the next sections this
rank property is hardly verified for the analyzed
Toeplitz matrices.



3. THE INFINITE AND NULL-SPACE
STRUCTURES

We define the eigenstructure of a polynomial ma-
trix A(s) as the set of its finite zeros and associ-
ated eigenvectors, the set of zeros at infinity and
associated eigenvectors and the set of polynomial
vectors forming a basis of the left and right null-
spaces. Another structural information which is
related with the eigenstructure is the rank of A(s).
In [Zúñiga and Henrion, 2004a] we also show that
this rank can be obtained as a sub-product of the
process of obtaining the eigenstructure. So, in the
remainder of the paper we simply consider that
ρ = rankA(s) is known.

The infinite structure of A(s) is equivalent to
the finite structure at s = 0 of the dual matrix
Adual(s) = Ad + Ad−1s + · · · + A0s

d . If s =
0 has algebraic multiplicity mA and geometric
multiplicity mG, then there exists a series of
integers ki > 0 for i = 1, 2, . . . ,mG such that
mA = k1 + k2 + · · · + kmG and a series of
eigenvectors at infinity vi1, vi2, . . . , viki for i =
1, 2, . . . ,mG such that Ad

...
. . .

Ad−ki+1 · · · Ad


 vi1

...
viki

 =

TI [A(s), ki]Vki = 0 (3)

with v11, v21, . . . , vmG1 linearly independent.

A basis of the null-space of A(s) contains the
n− ρ non-zero polynomial vectors z(s) such that
A(s)z(s) = 0 . This last equation can be rewritten
as follows: 

Ad
...

. . .
A0 Ad

. . .
...
A0



zdz
...
z1

z0

 =

TN [A(s), dz + 1]Zdz = 0. (4)

From Equations (3) and (4) we can derive the
ENP associated to the OPP of obtaining the infi-
nite structure and the null-space structure respec-
tively. In [Zúñiga and Henrion, 2004a] we show
how indices ki and dz are determined by obtain-
ing the ranks of Toeplitz matrices TI [A(s), i] and
TN [A(s), i] of increasing size, for i = 1, 2, . . . For
example let r1 = rank TI [A(s), 1], if r1 = ρ then
matrix A(s) has no infinite zeros. If r1 < ρ,
there are ρ − r1 chains of at least one infinite
eigenvector. On the other hand, if TN [A(s), i] has
full rank, then there are no vectors of degree i −
1 in a minimal basis of the null space of A(s).
This dependence on the rank of different matrices

makes the problem of obtaining the eigenstructure
of A(s) ill-posed or ∞-conditioned.

In principle, we cannot control the conditioning
or posedness of a problem, but we can ensure,
at least, that the computed solution has a small
backward error. In the remainder of this sec-
tion we only analyze the backward error pro-
duced when computing the null-space structure of
A(s). 2 The result we expect is that the computed
null-space vector ẑ(s) = ẑ0 + ẑ1s+ · · ·+ ẑdzs

dz is
the exact null-space vector of a slightly perturbed
polynomial matrix

A(s) + ∆(s) = (A0 + ∆0) + (A1 + ∆1)s+ · · ·
+(Ad + ∆d)sd

where ‖∆(s)‖ is small for some polynomial matrix
norm. Ideally we want

‖∆i‖ ≤ O(ε)‖Ai‖2 . (5)

Equivalently, in terms of the ENP, what we want
is that (TN [A(s), dz+1]+TN [∆(s), dz+1])Ẑdz = 0
where

TN [∆(s), dz + 1] =



∆d

...
. . .

∆0 ∆d

. . .
...

∆0

 ,

‖∆i‖ ≤ O(ε)‖Ai‖2
and where Ẑdz is the computed null-space of
TN [A(s), dz+1]. The folowing result gives a bound
for the error ∆(s) when using the LQ factorization
to solve the ENP (4).

Theorem 4. Let A(s) be a polynomial matrix and
suppose that it has a vector z(s) of degree dz in
the basis of its null-space. The computed vector
ẑ(s), obtained from (4) via the LQ factorization,
is the exact null-space vector of the slightly per-
turbed matrix A(s) + ∆(s) with

‖∆i‖2 ≤ O(ε)‖TN [A(s), dz + 1]‖2 . (6)

PROOF. From Lemma 2, we obtain

(TN [A(s), dz + 1] + Φ)Ẑdz = 0

with

Φ =



∆0
d

...
. . .

∆0
0 ∆dz

d
. . .

...
× ∆dz

0

 ,

2 The obtained results can be directly applied to the

infinite structure.



‖Φ‖2 ≤ O(ε)‖TN [A(s), dz + 1]‖2

where × represents possibly non zero blocks.
We can always apply row elementary operations
grouped in a left multiplier P = I + E with
‖E‖2 ≤ O(ε)‖TN [A(s), dz + 1]‖2 such that

P (TN [A(s), dz + 1] + Φ)Ẑdz =

(TN [A(s), dz + 1] +

TN [∆(s), dz + 1])Ẑdz = 0 . (7)

Transformation matrix P and thus TN [∆(s), dz +
1] are not unique, nevertheless we can always
check that

‖TN [∆(s), dz + 1]‖2 ≤ O(ε)‖TN [A(s), dz + 1]‖2
or equivalently

‖∆i‖2 ≤ O(ε)‖TN [A(s), dz + 1]‖2
which is the expected result. 2

This result shows that our Toeplitz algorithm has
a bounded backward error. On the other hand,
because of the ill-posedness of the problem, the
forward error is not bounded. First, the number
and the degree of the computed vectors could be
different from those corresponding to the exact
null-spaces. Second, for a given degree dz, the
coefficients of the computed vector could be also
different from the exact ones because, in general,
matrix TN [A(s), dz + 1] has not full row-rank.

4. THE FINITE STRUCTURE

Let {α1, α2, . . . , αq} be the set of finite zeros of
A(s), namely, the values such that rank A(αj) <
ρ, for j = 1, 2, . . . , q. Suppose that αj has alge-
braic multiplicity mA and geometric multiplicity
mG, so that there exists a series of integers ki > 0
for i = 1, 2, . . . ,mG such that mA = k1 + k2 +
· · · + kmG and a series of characteristic vectors
ui1, ui2, . . . , uiki for i = 1, 2, . . . ,mG associated to
αj such that


A(0) 0
A(1) A(0)

...
. . .

A(ki−1) · · · A(1) A(0)



ui1
ui2
...

uiki

 =

TF [A(αj), ki]Uki = 0 (8)

with u11, u21, . . . , umG1 linearly independent and
where

A(t) =
1
t!

[
dtA(s)

dst

]
s=αj

.

Integer ki is the length of the ith chain of charac-
teristic vectors associated to αj .

As well as for the infinite and null-space struc-
tures, the ENP associated here consists in ob-
taining the rank and null-spaces of constant
Toeplitz matrices TF [A(αj), i] of increasing size,
for i = 1, 2, . . . In [Zúñiga and Henrion, 2004a]
we sketch some methods to find integer ki. As
soon as ki is determined, solving (8) yields the
expected vectors. Nevertheless, notice that ma-
trix TF [A(αj), ki] is also computed. Moreover, its
blocks are the evaluation of A(s) and its deriva-
tives at a value αj which also has to be computed.
So, the propagation of the different errors has to
be considered.

4.1 Evaluation of a polynomial matrix

The standard method for evaluating a polynomial
at a given point α is Horner’s method which
is straightforwardly extended to a polynomial
matrix. Horner’s method is backward stable.

Lemma 5. (Higham, 2002). Consider the polyno-
mial matrix A(s). The computed value Â(j) is
the exact evaluation in α of the jth derivate of
the slightly perturbed matrix A(s) + ∆(s) with
‖∆i‖2 ≤ O(ε)‖Ai‖2 .

4.2 The polynomial eigenvalue problem

We can show that the zeros of a polynomial ma-
trix A(s) correspond to the zeros of a companion
pencil F (s) = sF1 +F0 . So, by obtaining the zeros
of F (s) with the QZ algorithm, we theoretically
obtain the zeros of A(s). The QZ algorithm is
backward stable, so the computed zeros are the
exact ones of a slightly perturbed pencil F (s) +
∆F (s) where ∆F (s) = s∆F1 + ∆F0. Neverthe-
less, a small backward error ∆F (s) can imply a
large backward error ∆(s) in A(s) [Tisseur and
Meerbergen, 2001]. In [Edelman and Murakami,
1995] this problem is analyzed with geometrical
arguments and an exact first order perturbation
expression for the polynomial eigenvalue prob-
lem is derived. In [Lemonnier and Van Dooren,
2004] an expression for the polynomial sensitivity
φpol under perturbations in F (s) is also derived
and an optimal scaling for F (s) is proposed. The
goal of the scaling is to minimize φpol. Numerical
experiments show that the backward error ∆(s)
is suitably small when we solve the polynomial
eigenvalue problem via the QZ algorithm over a
scaled pencil D−1

2 F (s)D1.

Another strategy to obtain a small backward error
∆(s) consists in scaling the coefficients Ai and
the variable s, namely, in changing the polynomial
basis in which the columns or the rows of A(s) are
represented. In our framework, this strategy has



more sense that the scaling over the pencil F (s). 3

In [Fan et al., 2003] this type of scaling is proposed
for the quadratic eigenvalue problem. For the
more general polynomial eigenvalue problem, it is
expected that the scaling over the pencil F (s) is
equivalent to a change of basis but there are not
yet results on the subject.

For our purposes in this paper, we simply consider
that, if α is a finite zero of the polynomial matrix
A(s), then the computed zero ᾱ = α + ∆α is the
exact finite zero of A(s) + ∆(s) with ‖∆i‖2 ≤
O(ε)‖Ai‖2 .

4.3 The associated eigenvectors

Now, we return to the problem of solving Equation
(8). The result we expect is that a computed chain
of k eigenvectors {û1, û2, . . . , ûk} associated to the
computed zero α̂ is an exact chain of eigenvectors
associated to the exact zero α̂ of the slightly
perturbed matrix A(s) + ∆(s) with ‖∆(s)‖ small
for some polynomial matrix norm. Ideally we want

‖∆i‖2 ≤ O(ε)‖Ai‖2 . (9)

Equivalently, in terms of the ENP, we expect that
(TF [A(α̂), k] + TF [∆(α̂), k])Ûk = 0 where

TF [∆(α̂), k] =

 ∆(0) 0
...

. . .
∆(k−1) · · · ∆(0)

 ,

‖∆i‖2 ≤ O(ε)‖Ai‖2

and where

∆(t) =
1
t!

[
dt∆(s)

dst

]
s=α̂

.

The following result gives a bound for the error
∆(s) when using the LQ factorization to solve the
ENP (8).

Theorem 6. Let A(s) be a polynomial matrix and
suppose that it has a finite zero α and a chain
of k associated eigenvectors {u1, u2, . . . , uk}. The
computed vectors {û1, û2, . . . , ûk} associated to
the computed zero α̂, obtained from (8) via the
LQ factorization, are the exact vectors associated
to the exact finite zero α̂ of the slightly perturbed
matrix A(s) + ∆(s) with

‖∆(j)‖2 ≤ O(ε)‖TF [a(|α̂|), k]‖2 , (10)

and where a(s) = ‖Ad‖sd + · · ·+ ‖A0‖ .

3 Notice that block columns of block Toeplitz matrices
associated with A(s) are the representation of the columns

of A(s) in a canonical polynomial basis {Isd, . . . , Is, I}.
So, a change of basis changes directly the properties of the

associated block Toeplitz matrices.

PROOF. In this proof we use the notation γi
to refer to a constant of the same magnitude
as ε. The computed finite zero α̂ is the ex-
act finite zero of matrix A1(s) = A(s) + ∆1(s)
with ‖∆1i‖2 ≤ γ1‖Ai‖2. Now, applying Horner’s
method to A1(s), and from Lemma 5, we obtain
that Â(j)

1 = (A1(s) + ∆2(s))(j) with ‖∆2i‖2 ≤
γ2‖A1i‖2 or equivalently,

‖∆2i‖2 ≤ γ2‖Ai‖2+γ2γ1‖Ai‖2 = (γ2+γ2γ1)‖Ai‖2.

So, Â(j)
1 = (A(s) + ∆3(s))(j) with

‖∆3i‖2 ≤ γ1‖Ai‖2 + (γ2 + γ2γ1)‖Ai‖2 = γ3‖Ai‖2 .
Finally we obtain the computed value of TF [A(α̂), k]
related to the computed zero α̂

T̂F [A(α̂), k] =


A

(0)
3
...

. . .
A

(k−1)
3 · · · A(0)

3

 =

TF [A(α̂), k] + TF [∆3(α̂), k] .

Now, from Lemma 2, and introducing an elemen-
tary transformation as in (7), we obtain the back-
ward stable result (T̂F [A(α̂), k]+TF [∆4(α̂), k])Ûk =
0 where

‖TF [∆4(α̂), k]‖2 ≤ γ4‖TF [A(α̂), k]‖2 +

γ4‖TF [∆3(α̂), k]‖2 .

Since ‖∆3i‖2 ≤ γ3‖Ai‖2 , we can show that

‖∆(t)
3 ‖ ≤ γ3

1
t!

[
dta(s)

dst

]
s=|α|

where a(s) = ‖Ad‖sd + · · ·+ ‖A0‖ and then

‖TF [∆3(α̂), k]‖2 ≤ γ3‖TF [a(|α̂|), k]‖2 .
Therefore

‖TF [∆4(α̂), k]‖2 ≤ γ4‖TF [A(α̂), k]‖2 +

γ4γ3‖TF [a(|α̂|), k]‖2 .

Finally (TF [A(α̂), k] + TF [∆(α̂), k])Ûk = 0 where

‖TF [∆(α̂), k]‖2 ≤ γ4‖TF [A(α̂), k]‖2 +

(γ4γ3 + γ3)‖TF [a(|α̂|), k]‖2 .

Now, notice that

‖A(t)‖ ≤ 1
t!

[
dta(s)

dst

]
s=|α|

and so

‖TF [A(α̂), k]‖2 ≤ ‖TF [a(|α̂|), k]‖2 .
Therefore

‖TF [∆(α̂), k]‖2 ≤ (γ4 +γ3 +γ4γ3)‖TF [a(|α̂|), k]‖2 ,
or equivalently

‖∆(j)‖2 ≤ O(ε)‖TF [a(|α̂|), k]‖2 ,
which is the expected result. 2



This result shows that the block Toeplitz algo-
rithm has a backward error bound. On the other
hand, the forward error is not bounded. Because
of the ill-posedness of the problem, the number
and the length of the computed chains of vectors
could be different from those corresponding to the
exact ones. For a given length k, the coefficients
of the computed vectors could be also different
from the exact ones because, in general, matrix
TF [A(α̂), k] has not full row-rank.

5. CONCLUSIONS AND PERSPECTIVES

The results presented here are only preliminary,
nevertheless they show that rigorous numerical
linear algebra analysis can also be applied to the
block Toeplitz methods for polynomial matrices
proposed in [Zúñiga and Henrion, 2004a,b]. It is
our opinion that research efforts must be devoted
to problems with polynomials solved in a context
of limited accuracy (scientific computing), see
[Stetter, 2004]. The application of this conceptual
framework to our algorithms has to be considered
in the future.

In this paper we determined backward error
bounds for the block Toeplitz algorithms of
[Zúñiga and Henrion, 2004a] computing the eigen-
structure of a polynomial matrix. These bounds
are given by equations (6) and (10) for computing
the null-space structure and the finite structure
respectively. The obtained bounds are more pes-
simistic than the ideal ones given by equations (5)
and (9). Sharper bounds can be expected from a
componentwise error analysis [Higham, 2002]. The
analysis with geometrical arguments as in [Edel-
man and Murakami, 1995] can also be considered
as a future line of research. The objective of such
analysis should be the derivation of exact first
order expressions of the errors in the coefficients
of a polynomial matrix due to the perturbations
in the analyzed Toeplitz matrices. Along the lines
proposed in [Lemonnier and Van Dooren, 2004] or
[Fan et al., 2003], we can also consider the study
of optimal scaling techniques over these Toeplitz
matrices.

Ill-posedness of the rank revealing problem ren-
ders the problem of obtaining the eigenstruc-
ture of a polynomial matrix also ill-posed or ∞-
conditioned. Ill-posed problems arise in several
fields of scientific computing and thus, represent
a challenge in numerical computations. As ex-
plained in [Stetter, 2004], a lot of meaningful ill-
posed problems can be solved numerically very
satisfactorily in practice. In [Zeng, 2005] some ge-
ometrical strategies allow to reformulate some ill-
posed problems restoring the well-posedness and
even making them well-conditioned. So, another
line of future research could be the extension of

these strategies to the polynomial eigenstructure
problem.
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