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Abstract: Volterra series (VS) are widely used in non-linear dynamical system
identification. Much physical information about a system can be extracted from
the corresponding VS model. Most non-linear frequency domain representations
have been based on VS models through the application of the Fourier transform.
But the fact that the number of the parameters to be identified in a VS model
increases exponentially with the size of the VS model restricts its application. The
involvement of kernel methods has been shown significantly to reduce the burden
of the computation, with the potential to increase the practical usability of VS
and the methods that are based on it. This paper presents the identification of
infinite degree, finite memory length, time-invariant, discrete VS from the general
reproducing kernel Hilbert space point of view and introduces its extension to the
estimation of generalized frequency response functions. Copyright c© 2005 IFAC
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1. INTRODUCTION

Volterra series (VS) models can be regarded as
a generalization of Taylor series. They are widely
used in solving non-linear dynamical system iden-
tification problems. They can represent a wide
range of non-linear dynamical systems in terms
of their individual polynomial components (Boyd
and Chua, 1985). Without the involvement of
autoregressive terms, such models can provide
prediction with consistent precision over the do-
main of interest for “fading memory” type sys-
tems (Boyd and Chua, 1985), provided that mea-
sured inputs are accurate. They are also the
basis of many non-linear frequency domain rep-
resentations (Peyton-Jones and Billings, 1989).
Because of these and some other practical ad-
vantages, such as the linear-in-parameters prop-
erty (Schetzen, 1980), much has been done in the

development and application of VS models. At the
same time, the fact that the number of parameters
to be determined increases exponentially with the
size of the VS models restricts their practical
application.

Kernel methods have been shown to be of help
in solving this problem (Harrison, 1999; Drezet,
2001; Dodd and Harrison, 2002a; Dodd and Harri-
son, 2002b; Wan et al., 2003; Franz and Schölkopf,
2004). Previously, a specially constructed expo-
nential kernel has been involved to estimate a gen-
eral infinite degree, finite memory length 1 VS in
generalized Fock space (Zyla and De Figueiredo,
1983; Wan et al., 2003). Since our focus is on the

1 The use of a finite memory length method implies that
the dynamics under consideration must be of the class of
“fading memory” systems (Boyd and Chua, 1985).



discrete time situation, the Fock space framework
is overly general. This paper solves the problem
from a simpler mathematical point of view, while
presenting a detailed exploration of its properties.
The extension of the idea to the estimation of gen-
eralized frequency response functions (GFRFs)
directly, in the frequency domain, is also provided.

The construction of the reproducing kernel Hilbert
space (RKHS) containing infinite degree, finite
memory length VS, and the corresponding expo-
nential kernel are discussed in the next section.
In Section 3 the method of computing the least
squares (LS) approximation of the target VS using
the exponential kernel, constructed in Section 2,
is discussed. The recovery of the estimated VS
from the kernel model is introduced in Section 4.
A new method for estimating the corresponding
GFRFs is discussed in Section 5, and, in Section
6 a synthetic system identification example is an-
alyzed. Finally, the characteristics of the method
are summarized.

2. ESTIMATION IN RKHS

Consider a time-invariant, discrete-time, finite
memory length, infinite degree VS

y (u) = h0+

∞∑
n=1

{
M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · , mn)

n∏
j=1

umj

}

(1)

where u , [u0, · · · , uM−1]
T is the vector of lagged

input samples, and M is the memory length.

A sufficient, but not necessary, condition that
guarantees the convergence of Eq.(1) is that
(Schetzen, 1980):

M−1∑
m1=0

M−1∑
m2=0

· · ·
M−1∑
mn=0

| hn (m1,m2, · · · , mn) |< ∞

(2)
This series can be written in a compact form

y (u) = hT φ(u) (3)

in which h is a coefficient vector consisting of all
the Volterra coefficients in Eq.(1) and φ(u) is a
vector of all possible polynomial combinations of
the inputs, ui, i = 0, · · · ,M − 1 with the first
element 1. Furthermore, we can express Eq.(3) in
vector form for a finite sample of N input-output
pairs as

y = hT Φ (4)
where y = [y(u1), y(u2), · · · , y(uN )] and Φ =
[φ(u1), φ(u2), · · · , φ(uN )].

It can be shown that the space H, spanned by
φ(·), is a RKHS, equipped with a positive definite
reproducing kernel k.

Firstly, given two functions f, g in H, we can
define the corresponding inner product as

〈f, g〉H = 〈(hf )T φf , (hg)T φg〉H

=
∞∑

l=1

hf
l(n,m1,··· ,mn)h

g
l(n,m1,··· ,mn)

λl
(5)

where hf , φf are the coefficient and polynomial
vectors of the function f , respectively, and hg, φg

are defined in the same way. Additionally, the role
of λl will be revealed shortly but for now can be
considered as a sequence of positive numbers.

Then the kernel k is defined as

k(ui, uj) =
∞∑

l=1

λlφl(ui)φl(uj) = 〈ϕ(ui), ϕ(uj)〉l2
(6)

where ϕ(·) is a vector with lth element ϕl(·) =√
λlφl(·).

We can now prove k is a reproducing kernel in H
in two steps:

(1) For a fixed input sequence u, given Eq.(6),
a new vector hk can be defined with lth
element hk

l = λlφl(u), l = 1, 2, · · · ,∞, then

k(u, ·) =
∞∑

l=1

λlφl(u)φl(·) =
∞∑

l=1

hk
l φl(·)

= (hk)T φ(·) (7)

which implies k (u, ·) ∈ H.
(2) According to the inner product definition (5),

for every f in H,

〈k(u, ·), f(·)〉H = 〈(hk)T φ(·), (hf )T φ(·)〉H

=
∞∑

l=1

hk
l hf

l

λl
=

∞∑

l=1

λlφl(u)hf
l

λl

= 〈φ(u), hf 〉l2 = (hf )T φ(u)

= f(u) (8)

Eq.(8) demonstrates the reproducing prop-
erty of the kernel, 〈k (u, ·) , f(·)〉H = f(u).

A function k that has such characteristics is called
the “reproducing kernel” (Aronszajn, 1950) of the
space H. The space H, equipped with this k, is
known as a RKHS. The properties of k and H
are summarized in the Moore-Aronszajn theorem
(Wahba, 1990).

Given the kernel k(u, ·), every function f in H,
which corresponds to a particular VS with the
form of Eq.(1), can be expressed as:

f(·) =
∑

i

αik(ui, ·) (9)

in which αi ∈ R.

So far, the representation of infinite degree, finite
memory length VS in terms of k has been pre-
sented. However, since the evaluation of k involves
an infinite number of φl, it is computationally



infeasible. By using a specially constructed kernel,
the computation of φl can be mapped to a finite
dimensional space, making computation feasible.

Consider the exponential kernel

ke(u, v) = exp
( 〈u, v〉l2

p

)

(Zyla and De Figueiredo, 1983; Wan et al., 2003),
where p ∈ R+ is a constant adjusting the coeffi-
cients in the following expansion sequence

ke(u, v) = exp
( 〈u, v〉l2

p

)
=

∞∑
n=0

1
n!

(∑M−1
i=0 uivi

)n

pn

= 1 +
1
p

M−1∑

i=0

uivi +
1

2!p2

(
M−1∑

i=0

uivi

)2

+ · · ·

+
1

h!ph

(
M−1∑

i=0

uivi

)h

+ · · · (10)

which corresponds to an infinite dimensional space

spanned by
(∑M−1

i=0 uivi

)h

with h = 0, 1, · · · ,∞,
consisting of all possible polynomial terms. There-
fore, we have

exp
( 〈u, v〉l2

p

)
=

∞∑

l=1

λlφl(u)φl(v) (11)

Hence, it can be shown that Eq.(9) is equivalent
to

f(·) =
∑

i

αike(ui, ·) (12)

3. LS APPROXIMATION

Given a sample of size N , the representation of
Eq.(12) becomes approximate but finite. The LS
approximation ŷ of a VS f with the form (1) in a
RKHS HN , spanned by ke(u1, ·), · · · , ke(uN , ·), is
given by the projection of y in HN ,

ŷ(u) =
N∑

i=1

αike(ui, u), (13)

Express Eq.(13) in vector form,

ŷ = Kα (14)

where

ŷ = [ŷ(u1), · · · , ŷ(uN )]T

α = [α1, · · · , αN ]T

and K is the exponential kernel Gram matrix,

Kij = ke(ui, uj) = exp
( 〈ui, uj〉l2

p

)
(15)

Given that u1, · · · , uN are distinct, the ker-
nel Gram matrix, K, is nonsingular (Zyla and
De Figueiredo, 1983), providing a unique solution.

α = K−1y (16)

3.1 Numerical consideration

Although the above statement guarantees a unique
solution to Eq.(16) in principle, the fundamental
condition that ui, i = 1, 2, · · · , N, are distinct
elements in RM is not easily achieved numerically
in practice, even in the noise-free situation, espe-
cially when N becomes large. In a fixed hyper-
volume of input space, as N increases, the sample
data will tend to be less well separated, and even-
tually some will be too close to be numerically
distinguishable. Thus, at least two rows/columns
of K will be approximately co-linear, leading
to an ill-conditioned K. However, increasing the
memory length M makes K less likely to be ill-
conditioned. This will be discussed in more detail
in the following section.

In numerical computation, Tikhonov (ridge or
weight decay) regularization (with parameter, ρ)
may be introduced to solve Eq.(16), therefore,
α̃ = (K + ρI)−1y. Since our ultimate purpose
is system identification in a noisy environment,
we adopt regularization and accept the biased
solution α̃.

4. RECOVERY OF ORIGINAL VS

VS models are widely used in analyzing non-
linear systems because they contain important
characteristics of the physical systems and are
qualitatively well-behaved, like linear, finite im-
pulse response models. An infinite degree VS can,
in principle, represent the corresponding fading
memory, non-linear system to arbitrary accuracy,
so the recovery of the VS model may be of impor-
tance in many cases.

The equation to calculate the original Volterra
kernels (coefficients) ĥn (m1, · · · ,mn), correspond-
ing to the LS approximation ŷ(u) in Eq.(13), has
been given in (Wan et al., 2003),

ĥn (m1, · · · , mn) =
1

n!pn

N∑

i=1

αi

n∏

j=1

uimj

(n = 0, 1, . . . ,∞)

which can be rewritten as

ĥl(n,m1,··· ,mn) =
1

n!pn

N∑

i=1

αiφl(n,m1,··· ,mn) (17)

Returning to Eq.(12) and (13): if ŷ represents the
VS accurately, the coefficients, corresponding to ŷ,
are an accurate representation of the coefficients
of the original series because the VS representa-
tion of a non-linear system is unique, if it exists.

A general infinite degree VS, f , which could be
represented in the form of Eq.(12), has an infinite



number of independent coefficients. But a VS, ŷ,
represented in the form of Eq.(13), has only N
independent Volterra coefficients because every
ke(·, ·) has a fixed set of coefficients, corresponding
to the polynomial terms that it contains, i.e., the
polynomial expansion of every αike(·, ·) has only
one independent coefficient.

A simple example follows to make the idea clearer.
Assume two data samples, u1 and u2, are available
for estimation. Without loss of generality, assume
the system is static (no memory). Then we have

ŷ(u) =
N∑

i=1

αike(ui, u) = α1ke(u1, u)+α2ke(u2, u)

(18)
Substituting Eq.(10) into Eq.(18) gives

ŷ(u) = α1 exp
(

u1u

p

)
+ α2 exp

(
u2u

p

)

= α1 + α1

(
u1

p

)
u + α1

(
u2

1

2!p2

)
u2 + · · ·

+ α2 + α2

(
u2

p

)
u + α2

(
u2

2

2!p2

)
u2 + · · · .

Since u1 and u2 are fixed, the number of indepen-
dent coefficients in terms of ui, i = 0, 1, · · · ,∞,
in the series, is two, but the infinite degree VS
should be of the form,

f(u) = β0 + β1u + β2u
2 + · · ·

where β0, β1, β2, · · · are, in general, independent.
If we call the RKHS containing f , H∞, the one
containing ŷ, H2 in this case, then ŷ is the projec-
tion of f in H2. Correspondingly, the Volterra co-
efficients, extracted from ŷ, are LS approximations
of the original coefficients inH2. As the number of
distinct samples, N , increases, the accuracy with
which ŷ represents f increases, and, in the limit, ŷ
becomes f . Obviously, this is not computationally
feasible, so a trade-off must be made between the
accuracy of the approximation and the efficiency
of the computation.

Another important parameter which affects the
accuracy of the estimation is the memory length
M of the VS. First, let’s consider the effect of M
on the numerical condition of K. As M increases,
more elements are involved in u, increasing the
likelihood that the uis are distinct (assuming the
input is sufficiently exciting).

Second, in practice, increasing M reduces the
accuracy of the whole algorithm. Consider the way
we construct K as Eq.(15). Because no practical
measurements are totally free of errors, the larger
M is, the more elements are involved in a single
input vector ui. Thus, more errors, coming from
the measurements of the sample data, are involved
in the computation of Kij . From this step, what
we use is a noisy kernel matrix K, leading to noisy

results in all the following steps. Consequently,
performance deteriorates with M .

5. GENERALIZED FREQUENCY RESPONSE
FUNCTIONS

The nth order GFRF is the n-fold Fourier trans-
form of the nth order Volterra coefficients:

Hn (ω1, · · · , ωn) =
M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · ,mn)

× exp

(
−j

n∑
a=1

ωama

)
(19)

where j is the imaginary unit.

Given ejx = cos x + j sin x, Eq.(19) becomes

Hn (ω1, · · · , ωn)

=
M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · ,mn) cos

(
n∑

a=1

ωama

)

−j

M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · ,mn) sin

(
n∑

a=1

ωama

)

As discussed in the previous sections, by using
the exponential kernel method, any Volterra co-
efficient hn can be estimated, in principle. Then,
through Eq.(19), Hn can be calculated.

Although Hn can be derived through hn, all the
errors in the estimated hn are transferred to Hn,
making the result relatively less reliable. So a
method to compute Hn directly through a kernel
method similar to that used in the time domain,
is introduced in the next subsection.

5.1 Direct GFRF Computation

In the probing method (Bedrosian and Rice,
1971), the input signal

u(t) =
R∑

i=1

exp(jωit) (20)

is invoked to probe the system to reveal informa-
tion in the frequency domain.

The output of a VS, given by Eq.(1), given the

input u(t) =
R∑

i=1

exp(jωit), is

y(t; H,ω) =
∞∑

n=1

∑ n!
n1! · · ·nc!

Hn(jω1, · · · , jωn)

× exp(j(ω1 + · · ·+ ωn)t) (21)

where the second summation is over all combina-
tions of R frequencies taken n at a time, H is the



column vector consisting of individual frequency
responses 2 , ω is the column vector consisting of
every frequency component in the input signal,
c is the number of distinct frequencies in the
combination, ni is the number of repetitions of
the ith distinct frequency, and n1 + n2 + ... +
nc = n (Peyton-Jones and Billings, 1989).

Eq.(21) can be rewritten as

y(t; H,ω) = HT (ω)φ(t;ω) (22)

where φ(t;ω) is the column vector of all pos-
sible polynomial terms of the elements in x(t),
x(t) = [x1(t), · · · , xN (t)]T , xa(t) = exp(jωat), a =
1, · · · , N .

Given Eq.(20), ω is a constant vector. Considering
x(t) as an independent variable, we have

y(x) = HT φ(x) (23)

Noting that the form of Eq.(23) is the same as that
of Eq.(3), it is natural to apply the same approach
to Eq.(23) to find the LS approximation Ĥ of H,
in a RKHS Hf , as we did for ĥ in Eq.(17).

Replacing u and h with x and H, respectively, we
have the following, using the same derivations as
in Sections 2, 3 and 4,

ŷ(x) =
Nf∑

i=1

β̃ike(xi, x) (24)

β̃ = (K + ρfI)−1ŷ (25)

Ĥl(n,ω1,··· ,ωn) =
1

n!pn
f

Nf∑

i=1

β̃iφl(n,ω1,··· ,ωn) (26)

6. EXAMPLE

A synthetic Wiener-type model (Fig.1) is consid-
ered in this section. This is a finite memory length,

G(z) f(v)

u(t) v(t) y(t)

Fig. 1. Synthetic Wiener model.

infinite degree nonlinear dynamical system:

v(t) = 1.5u(t) + 2.5u(t− 1) + 2u(t− 2) (27)

y(t) =
1

1 + e−v(t)
(28)

To reveal the even order Volterra terms, Eq.(28)
is expanded on the point 1.2226, the mean value
of v(t), which makes us choose input signal u(t) to
be uniformly distributed on [−0.8, 1.2]. We have

2 Assume the Hn(jω1, · · · , jwn) is symmetric.

y(t) = 0.7725 + 0.1757 (v(t)− 1.2226)− 0.0479

× (v(t)− 1.2226)2 +O (
v(t)3

)
(29)

Substituting Eq.(27) into (29), it follows that

y(t) = 0.7725 + 0.1757

[
1.5

(
u(t)− 1.2226

6

)

+ 2.5

(
u(t− 1)− 1.2226

6

)
+ 2

(
u(t− 2)− 1.2226

6

)]

− 0.0479

[
1.5

(
u(t)− 1.2226

6

)

+ 2.5

(
u(t− 1)− 1.2226

6

)
+ 2

(
u(t− 2)− 1.2226

6

)]2

+O
(
v(t)3

)

To excite the even order terms we bias u(t) by
− 1.2226

6 giving the first and second order Volterra
coefficients:

h1 =
[
0.2636 0.4392 0.3514

]

h2 = −



0.1078 0.1796 0.1437
0.1796 0.2994 0.2395
0.1437 0.2395 0.1916




Assuming M(= 3) is known, a kernel model is
constructed to identify the system, in the noise
free case, with the kernel constant p = 0.1 and
the regularization ρ = 1 × 10−12. We generate
1998 + 2M input/output pairs and divide them
for training and validation, respectively 3 .

The l2-norms of the first and second order Volterra
coefficients estimation errors are 1.2583×10−4 and
7.6693 × 10−5, respectively. Identification perfor-
mance in the frequency domain is shown in Figs.2
and 3.
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Fig. 2. Gain and phase of the first order GFRF.
The true and estimated values are too close
to distinguish.

The difference between the true and estimated
GFRFs is too trivial to be identified by eyes. The
maximum absolute errors in the gain and phase
are 0.07 dB and 0.7 degrees, respectively.

3 Half of the data are used for training and the remainder
for testing, ensuring 1000 samples regardless of M .
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Fig. 3. True gain and phase of the second order
GFRF.

7. CONCLUSION

By using the exponential kernel method we can,
in principle, estimate any system that can be rep-
resented by time-invariant, infinite degree, finite
memory length VS to arbitrary accuracy. The
accuracy of the model output depends on sample
size, memory length and noise level. The Volterra
coefficients of the estimated system can also be
recovered from the kernel model. By extending
the method into the frequency domain, GFRFs
can be estimated directly via a kernel method.

Although the number of sample data available for
estimation restricts the precision of the approx-
imation, the kernel method significantly reduces
the computational burden in estimating “large”
VS models, hence, expanding the application of
VS in both time and frequency domains.

The application of our estimation method is un-
derway in radio frequency power amplifier dis-
tortion cancelation and friction process identifi-
cation. Early results have shown its promise in
these non-linear dynamical system identification
problems, which are difficult to address using con-
ventional formulations.
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