

CELLULAR AUTOMATA BASED PATH-PLANNING ALGORITHM FOR
AUTONOMOUS MOBILE ROBOTS

Rami Al-Hmouz, Tauseef Gulrez & Adel Al-Jumaily

Information and Communications Group
ARC Centre of Excellence in Autonomous Systems

University of Technology Sydney, Australia
ralhmouz | tgulrez | adel @eng.uts.edu.au

Abstract: This paper presents the application of Cellular Automata (CA) model in
solving the problem of path planning. It is shown that a CA allows the efficient
computation of a path from an initial to a goal configuration on a physical space
cluttered with obstacles. The cellular space represents a discrete version of the
workspace. The method was experimentally tested on an autonomous mobile robot
on real-time software player/stage, in all cases very good paths were obtained with
negligible computer effort. These simulation results indicate that the Cellular
Automata approach is a very promising method for real time path planning.
Copyright © 2005 IFAC.

Keywords: Cellular Automata, path planning.

1. INTRODUCTION

Path planning is essential problem need to be solved
in autonomous mobile robot. Automatic motion
planning has application in many areas such as
robotics, virtual reality systems, and computer-aided
design. Although many different motion planning
methods have been proposed, most are not used in
practice since they are computationally infeasible
except for some restricted cases like the case of
mobile robots Many researchers have proposed
different solutions during the last 20 years. Since
(1979, Lozano-Pérez et.al) first proposed a path-
planning algorithm among polyhedral obstacles
based on the visibility graph, then extended to the
Configuration Space approach (T. Lozano-Pérez et.al
1983). These types of approach require a geometrical
description of the environment. The reconstruction of
geometrical primitives from sensorial data is usually

difficult and time-consuming when in the real life the
environment is changing.

Therefore the updating phase of the world model
becomes a relevant part of the navigation algorithm.
The path-planners working on these models generate
very precise optimal trajectories and can solve really
difficult problems, especially in cluttered worlds,
also taking into account non-holonomic constraints,
but they are very time consuming, too. In the
literature diverse algorithms have been proposed to
tackle this problem: Some of them, such as the
randomized potential field methods (H. Chang et.al
1995) represent the robot as a particle moving under
the influence of an artificial potential field produced
by the sum of a repulsive potential, generated by the
obstacles, and an attractive potential, generated by
the goal configuration. The path is obtained by a
descent along the negative gradient of the total
potential. Other researcher’s work is based on

roadmaps (D. Hsu, 2000) and (L. Kavraki, et.al
1995) in which a network of one-dimensional curves,
called the roadmap, lying in the free space of the
workspace is constructed. The final path results from
the concatenation of three sub-paths, one connecting
the initial configuration to the roadmap, another
belonging to the roadmap and a final one from the
roadmap to the goal configuration. Another general
approach is based on a division of the free space into
a set of exact or approximate cells (E. Anshelevich,
et.al 2000) and (H. Gutowitz, et.al 1990).

This paper describes a very fast, safe and complete
routing method for a cluttered environment based on
the very simple rules of cellular automata. The task is
to build a robot navigation system that works in real-
time, while interacting with the environment and
reacting as fast as possible to its dynamical events.
 The organization of the paper is as follows: In the
next two sections introductions to the configuration
space formalism and Cellular Automata are
presented. In the fourth section the proposed path
planning algorithm is described. In the fifth section
the complexity of the algorithm is examined and in
the last section some experimental results are
discussed, with the concluded remarks and the future
work.

2. CONFIGURATION SPACE

Path Planning problem can generally be considered
as a search in a configuration space: Let A be a single
rigid object, moving in a Euclidean space W= NR ,
N = 2 or 3 , Let nBB1 be fixed rigid bodies

distributed in W. The sBi ' are called as obstacles in

workspace W, and the obstacles nBB1 are the
closed subsets of W, a configuration of A is a
specification of the position of every point in A with
respect to WF , where WF is a Cartesian coordinate
system. The configuration space of A is the space
denoted by C, with all possible configurations of A.
The subset of W occupied by A at configuration q is
denoted by A(q). A path from an initial configuration

initq to a goal configuration goalq is a continuous

map C→]1,0[:τ with =)0(τ initq and

=)1(τ goalq . The workspace contains a finite

number of obstacles denoted by iB with i = 1…N.

Each obstacle iB maps in C to a region

{ }0)()(≠∩∈= ii BqACqBC which is called

as obstacleC . The Union of all obstacleC is the

regionobstacleC , U
n

i
iBC

1

)(
=

and the set

−= CC free U
n

i
iBC

1

)(
=

. A free collision path

between two configurations is any continuous
path freeC→]1,0[:τ . The configuration space is a
powerful conceptual tool because it seems to be the
natural space where the path-planning problem lies.
This is mainly because any transformation of a rigid
or articulated body becomes a point in the
configuration space.

3. CELLULAR AUTOMATA

The proposed path planning method, consists on the
successive application of two simple local Cellular
Automata (CA) transition rules (H. Gutowitz, et.al
1990). CA is a decentralized extended system
consisting of a large number of identical entities with
local connectivity arranged on a regular array. It
consists of the following components: (1) A cellular
space: a regular lattice of cells each with identical
finite state machines and the same local pattern of
connectivity along with definite boundary conditions.
Here a square 2 D bitmap lattice. (2) A set of
statesΣ with cardinality state k = Σ over which the
finite-state machines takes values. Each cell of the
lattice is denoted by an index i and its state at time t
is represented by t

iS . The neighborhood t
iη ,

transition rule φ=+1t
iS (t

iη) which establishes the
way in which each cell of the automata is to be
updated. The transition rule is applied synchronously
to each cell in the CA, defining an intrinsic parallel
dynamic.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ =∈∃∧=

=+

otherwiseS
SxifSS

t
i

t
x

t
i

t
it

i
1011 η

with Si

t as the state of the automata i at time t and ηi
t

Moore neighborhood of cell i. The objective of this
initial dynamics is the growth of each obstacle a
number of cells to account for the physical size of the
path point. The number of iterations will depend on
the size of the path gap (safest path’s conditions) this
number is up to four. The schematic diagram in
figure 1 shows this process.

Fig. 1.Cellular Automata Process. (a) The abstract of

environment showing free space and bounded
space shows obstacle region, (b) After applying

(1)

the transition rules on the environment the
obstacles grow.

In the third phase, the final configuration resulting
from phase 2 is used as initial state for a second CA
dynamics that computes the shortest distance
between the initial and goal positions. In this second
cellular automata the possible states for the cells are
the following: (0) free, (1) obstacle, (2) initial
position, (3) goal position, (4) distance l to the goal...
(3+l) distance l to the goal. The transition rule
applied to evolve this cellular automata is:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ≥∈∃∧=+

=+

otherwiseS
SxifSSS

t
i

t
x

t
i

t
i

t
xt

i
3011 η

This process that resembles a flood from the goal to
the initial position is shown in figure 2. The flood
dynamics is stopped either when the cell with the
initial position is reached or when all cells in the
cellular space are different from 0 in which case no
path is possible. In the former case a path is
calculated by going backwards from the goal to the
start in a descending manner. Due the existence of
saddle points in the navigation function, the shortest
path between an initial and goal position is not well
defined.

Fig.2. Flood Dynamics through CA. (a) First CA

iteration (expansion starts), (b) The sides collide
shown in black, (c) The result from third
iteration and more collisions shown in black, (d)
The fourth and last iteration and more collisions
recorded.

Some times a cell has more than one neighbor with
the same shortest distance to the goal. To follow
always the steepest descend of the function may not
work because there could be cases where the gradient
may have the same value in several directions. In
order to select a reasonable good path two heuristics
are applied among the neighbors of a cell: (1) The
cells that fulfill the condition of being in direction of
the steepest descend and allows the conservation of
the direction of movement for the route are selected
in the path with the highest priority or (2) the next
priority is for those cells in direction North, South,
West and East and have the smallest angle to the

moving direction of the robot are selected. In general
it is found experimentally that these two heuristics
efficiently produces reasonable good paths with few
minimal changes of the direction of movement
(commands for the route). The knowledge of the
sequence of cells that constitute a path together with
the initial direction of movement of the route allows
in a straightforward manner the production of a list of
commands which guides the route along the path to
its goal.

4. THE ALGORITHM

The workspace space is an Euclidean space in 2D,
and it is decomposed in a finite collection of convex
polygons, squares in this case, called cells such that
their interiors do not intercept. These constitute the
cellular space of the CA. The configuration space is
hence represented by a set of these discrete square
cells, with the obstacles occupying a certain number
of cells. Assuming a grid of given size, the discrete
configuration space can be defined by:

() { } { }{ }maxmax ,...,0,,...,0, yyxxyxC ∈∈=

Every configuration qi corresponds to a point (x,y),
each obstacle is a set :

 ()U
iq

j
jji yxB

1
,

=
=

If each of the n obstacles of size r, is decomposed
into a set of rBi of size one each, then

()U
nxr

j
jjobstacle yxC

1
,

=
=

The free space is defined by Cfree = C-Cobstacle.

The computational cost for cellular automata, with a
simple transition rule, is proportional to the number
of updates executed on the cells. Hence for a two
dimensional automata with a cellular space of
(iyx ×× maxmax) where i is the number of update
iterations. In the application of the transition rule
each cell executes two operations: reading and
writing, of the state of the cell itself and of those cells
in its neighborhood. In consequence, in a complete
evolution, the number accessed cell is:
 (iyx ×× maxmax)× (2+η)

where η is the size of neighborhood. The first CA
dynamics in the proposed algorithm produces a
growth of the congestions (obstacles) in ω cells,
therefore each cell will be visited:
(iyx ×× maxmax)× (2+η)×ω
 times. The upper bound for the order of this CA
process is : O (maxmax yx ×).

Start
1. Preprocessing of the Environment

(2)

(4)

(3)

(5)

(6)

(7)

2. Compute the configuration space
 Free, obstacle ,initial-position & Goal-position
3. Update the computed configuration space with CA

No of update iterations (iyx ×× maxmax)
Transition rule each (Blob) cell executes two
operations: reading and writing
(iyx ×× maxmax)× (2+η), where η is the size
of neighborhood.

4. Compute the Shortest distance
 The expansion till the edges meet with each other.
 Read and write
 If Not Goto 3
Else if the map fully cellularly automated
 Compute the shortest path from initial to goal
Finish

The second CA dynamics computes the distance and
the basic number of cell accessed is:
(iyx ×× maxmax)× (2+η)× l, where l is the
Shortest distance from initial to goal position. The
worst case occurs when the path contains nearly half
of the cells, so the number of cell accesses is given
by (iyx ×× maxmax)× (2+η) × l ×

(
2

maxmax yx ×
). The order of this process is

O(max
2

max
2 yx ×).In the best case the initial and

goal positions are neighbors, with a number of
accesses equal to (maxmax yx ×)× (2+η). The final
phase of the algorithm deals with the calculation of
the optimal route path: each neighbor of a cell on the
path has to be visited in order to select the best
heuristic path. Then (2+η) × l visits have to be
performed and depending on one of the following

cases: worst case (2+η) × l × (
2

maxmax yx ×
), and

best case (2+η).
Finally when the algorithm determines the path,
commands for each cell of the path has to be
examined along the entire path length, therefore the
upper bound is of order O(l).

5. SIMULATION AND RESULTS

After running the program, the occupied space
obstacles might expand and collide with each other;
the collision lines produced by the expansion of
obstacles could be joined to make a path. This path is
so far the safest path as far as the present scenario is
concerned. Afterward, the collision lines are
connected to each other as shown in figure 3.

Fig. 3. The final environmental extraction with CA,

and many paths has been created which are
maintaining the safe distance from the obstacles.

Once the lines generated are joined, this will create
many paths within the same map, the selection of
path starts when the ‘start’ and ‘goal’ destination are
added to the environment as shown in figure 4. These
points will determine the real safest and shortest path
selection for the robot. Based upon the start and goal
points finally a real path is obtained as in figure 4.

Fig. 4. The shortest path has been selected from the

predefined start and goal position, resulting in
the distance l.

The algorithm was tested using real-time software
player/stage see (R. Vaughan et.al 2004) on
autonomous robot. The results were first tested on
the real-time simulation environment, where the map
was created with arbitrary obstacles, computer
generates a very fine path for the robot and robot
traveled very safely as in figure 5,6.

Fig. 5. The map sent to the software for robot to

move, right hand side robot (red) is moving and
on the left hand side its movement can be seen
on the window in grey movement.

Fig. 6. The robot successfully reaches its destination.

The results show the possibility in a real time path
palnning scenario using the proposed CA based
algorithm. In experimental trials with a Pentium III
1.6 GHz. machine, and using an input image with
160*120 pixels resolution, an average response of
399 ms per path was obtained. When using images of
80*60 pixels resolution, a 112 ms average response
per path was measured. The results are a true picture
of real time Pioneer 2DX autonomous robot (fig 7),
while using CA based planner; hence robot can be
moved fast among the cluttered obstacle
environment.

Fig. 7. Pioneer 2DX Robot.

6. CONCLUSIONS

A cellular automata approach for solving the path
planning problem yields very efficient experimental
performance in real time situations. The cellular
automata algorithms were tested with different
workspace configurations and cellular space sizes
over real time images from a digital camera. The

computer effort depends on the size of the cellular
space and the length of the resulting path. This
reduced time complexity together with the simplicity
of the cellular automata simulation allows the
algorithm to perform quite well on serial machines.
Some of the key practical advantages of the method
are: it does not require parameter tuning, real time
performance for any kind of workspace scene,
consistent behavior over repeated experiments; it can
handle path-planning in dynamic environment. In
conclusion the practical performance is very
satisfactory however further study involving many
more benchmarking examples are necessary.

7. FUTURE WORK

The next step is to use CA in a cluttered
environment, while using probabilistic roadmaps
methods as a shortest path method, while trying to
implement the same theory on the distributed
wireless networks project as well, where many
unforeseen problems arise.

REFERENCES

Anshelevich. E, S. Owens, F. Lamiraux, and L.

Kavraki, “Deformablevolumes in path planning
applications,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2000, pp. 2290–2295.

Chang. H and T. Y. Li, “Assembly maintainability
study with motionplanning,” in Proc. IEEE Int.
Conf. Robotics and Automation, 1995, pp.1012–
1019.

Donald. B, K. Lynch, and D. Rus, New Directions in
Algorithmic and Computational Robotics .
Natick, MA: A. K. Peters, 2000.

Finn P.W and L. E. Kavraki, “Computational
approaches to drug design,” Algorithmica, vol.
25, pp. 347–371, 1999.

Gutowitz H, Cellular Automata. The Mit. Press,.
Cambridge, 1990.

Hsu D, “Randomized single-query motion planning
in expansive spaces,” Ph.D. dissertation, Dept.
Comput. Sci., Stanford Univ., Stanford, CA,
2000.

Kavraki L, J. Latombe, R. Motwani, and P.
Raghavan, “Randomized query processing in
robot motion planning,” in Proc. ACMSymp.
Theory of Computing, 1995, pp. 353–362.

Lozano-Pérez T, M.A. Wesley, An algorithm for
planning collision-free paths among polyhedral
obstacles, Commun. ACM 22 (10) (1979) 560–
570.

Lozano-Pérez T, Spatial planning: a configuration
space approach, IEEE Trans. Comput. C 32 (2)
(1983) 108–120.

Vaughan R and B. Gerkey, “Player Version
1.4rc2Manual”, http://playerstage.sourceforge.
net/doc/Player-manual-1.4-html/node1.html.
(2004).

