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Abstract: A kernel method has been developed to model finite degree, finite
memory length and infinite degree, finite memory length Volterra series using
polynomial and exponential kernels, respectively. Here, the kernel method is
extended to identify NARX (Nonlinear AutoRegressive with eXogenous inputs)
models. To verify its effectiveness, the proposed approach is used in modeling
friction dynamics, which is an important and complex mechanical process. The
simulation results are compared with those from a physical model and a specialized
neural network, and the advantages and disadvantages of the methods are shown.
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1. INTRODUCTION

Volterra series (VS) are widely used in nonlin-
ear system identification problems. Nevertheless,
their application is frequently restricted by the
computational burden of estimating exponentially
large number of parameters. A kernel method has
been developed to solve this problem and model
finite degree, finite memory length and infinite
degree, finite memory length Volterra series us-
ing polynomial and exponential kernels, respec-
tively (Harrison, 1999; Drezet, 2001; Dodd and
Harrison, 2002a; Dodd and Harrison, 2002b; Wan
et al., 2003). Meanwhile, NARX (Nonlinear Au-
toRegressive with eXogenous inputs) models form
a more general class of important nonlinear mod-
els. By involving the dependent variable, fewer
coefficients are required in NARX models than in
VS to describe the same system and there is no
longer a need for the ”fading memory” assump-
tion. However, because of the feed-back, NARX

models can be unstable. A kernel method is used
in this document to identify finite and infinite
degree NARX models based on data from three
physical friction processes.

Friction is a very important and complex mech-
anism in the real world. It is defined as the re-
sistance which any object meets with when slid-
ing over another object. There are various types
of friction, all of which are highly nonlinear in
displacement and velocity except viscous friction
where friction force is proportional to velocity
(Parlitz et al., 2004). Since friction is ubiquitous,
identification of its behavior is crucial in many
systems and control situations. Three types of
friction process are discussed in this document
including pre-sliding, a regime prior to true slid-
ing, characterized by hysteretic dependence of the
friction force on the displacement, true sliding and
an intermediate process between these two.



In the next section, the kernel method to identify
VS and NARX models is discussed. Introduction
of the friction data generator and the identifi-
cation experiments are proposed in Section 3.
Experimental results are also presented in this
section. Comparison of the kernel method with a
physically derived model, the Dynamic Nonlinear
Regression (DNLR) Maxwell slip model (Rizos
and Fassois, 2004), and an Acceleration Velocity
Displacement (AVD) (Chen and Tomlinson, 1996)
neural network (NN) is presented based on their
prediction performance in the time domain in
Section 4.

2. IDENTIFICATION OF VS AND NARX
MODELS USING THE KERNEL METHOD

The identification of VS using the kernel method
has been presented in (Dodd and Harrison, 2002a;
Dodd and Harrison, 2002b; Wan et al., 2003).

Consider a time-invariant, discrete-time, finite
memory length M , finite or infinite degree D, VS
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where u , [u1, · · · , uM ]T is the vector of lagged
input samples. This series can be written as

y = f (u) = hT φ(u) (2)

in which h is a coefficient vector comprising all
Volterra coefficients in Eq.(1) and φ(u) is a vector
of all possible distinct polynomial combinations of
the inputs, ui with first element 1.

Construct a reproducing kernel Hilbert space
(RKHS) H, equipped with a reproducing kernel
k, that contains every possible f ,

k(ui, uj) =
L∑

l=1

λlφl(ui)φl(uj) = 〈ϕ(ui), ϕ(uj)〉l2
(3)

where L is typically large, possibly infinite, ϕ(·) is
a vector with lth element ϕl(·) =

√
λlφl(·) Define

the corresponding inner product
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in which λ = [λ1, · · · , λN ] is a sequence of positive
numbers, hf , φf are the coefficient and polynomial
vectors of the function f , respectively, and hg, φg

are defined in the same way (Dodd and Harrison,
2002a).

Every function f in H, corresponding to a partic-
ular VS, can be expressed as

f(·) =
∑

i

αik(ui, ·), αi ∈ R (5)

Theoretically, to reveal f , the number of αi

must be the same as the number of independent
Volterra kernels in f , giving no computational
advantage. However, given a sample of size N ,
the least squares approximation ŷ of f can be
evaluated by

ŷ(u) =
N∑

i=1

αik(ui, u) (6)

In the limit, as N approaches the number of
independent Volterra kernels in f , ŷ tends to f .
This is not generally computationally feasible.

Although Eq.(6) is computationally feasible, i.e.
a trade-off can be made between accuracy and
efficiency of the computation, the evaluation of k
involves the inner product of ϕ(·), which is again
a computational burden.

It can be shown that

kp (u, v) = (1 + 〈u, v〉)D =
L∑

l=1

λlφl(u)φl(v) (7)

ke (u, v) = exp
( 〈u, v〉l2

p

)
=
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l=1

λlφl(u)φl(v)(8)

kp and ke are the polynomial and exponential ker-
nels, respectively and D, p are positive constants.

By replacing k in Eq.(6) with kp or ke in the
case of finite or infinite degree VS identification,
the calculation can be significantly reduced (Dodd
and Harrison, 2002a; Wan et al., 2003).

Now let us consider a polynomial NARX model
(Peyton-Jones and Billings, 1989),

y(t) =
D∑

n=1

yn(t) (9)

yn(t) =
n∑

ny=0

M∑
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with ny + nu = n and mj = 1, · · · ,M , j =
1, · · · , n. When ny = 0 this describes a VS.

If we introduce a new “general” input vector U ,

U = [U1, · · · , UMy , UMy+1, · · · , UMy+Mu ] (11)

with Ui = y(t− i), UMy+i = u(t− i), we get

y (U(t)) = 0+
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which is of the same form as Eq.(1) with h0 = 0.
Eq.(12) can be representesd by the kernel method.

3. FRICTION DATA EXPERIMENTS

The data from three consecutive friction mech-
anisms are measured, including pre-sliding, true
sliding and the intermediate regime. The detailed
description of these physical processes is given in
(Parlitz et al., 2004). Friction behaviors may be
divided into two main regimes: pre-sliding and
true or gross sliding. Considering a general friction
process, a displacement is always present between
two physically contacted objects, given a force
tending to cause their relative motion, unless the
contact surface is infinitely stiff. Below some force
threshold, as long as the force remains constant,
the displacement will also remain constant, which
is the pre-sliding regime. Once the force exceeds
the threshold, the objects will have “obvious” rel-
ative motion, which is the true sliding process. In
addition, there is an intermediate regime between
these two processes, whose physical description is
beyond our scope.

What is approximated here is the relationship be-
tween the displacement, as input, and the friction
force, as output, in three friction regimes based
on VS and NARX models, respectively, using the
kernel method. The experimental model and the
practical device, from which the data are gener-
ated, are shown in (Parlitz et al., 2004). The ex-
periment is performed for three levels of increasing
excitation. In the lowest level of excitation, the
rig is operating mostly in the presliding regime,
slightly overlapping into the true sliding regime.
The highest level of excitation exhibits predom-
inantly true sliding behaviour, with the medium
level of excitation showing reasonable degree of
behaviour for both regimes. This is done to ensure
that the models identified could work well for
the varying levels of different operating regimes.
The corresponding three measured time series for
testing the different models are shown in Fig.1 1 .

3.1 VS Identification

The identification of the three friction behaviors
is presented based on both finite and infinite de-
gree VS models. To avoid “large” kernel matrix
inversion, whose size is N × N , the original data

1 The apparent anomaly whereby the output (force) am-
plitude seems hardly to vary even under approximately a
doubling of input amplitude is a feature of the transition
from pre-sliding to gross sliding regimes. In pre-sliding the
effective stiffness is relatively high but reduces substan-
tially when the surfaces are in motion so that the measured
force does not change very much in amplitude.
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Fig. 1. Measured time series, from the low,
medium and high excitation regimes, respec-
tively – displacement (solid), force (broken)

are downsampled by a factor of five to be N/5. 2

Cross validation is used to find the optimal regu-
larization parameter 3 ρ and p or D as applicable.

3.1.1. Low Level Excitation Identification The
system identification based on a finite degree VS
model using the polynomial kernel is discussed at
first. There are 2400 sample data for training and
testing, respectively. The VS model is of mem-
ory length 24 and degree 3, which gives the best
multi-step ahead prediction performance in terms
of normalized mean square error (NMSE) with

NMSE(ŷ) =
100
Nσ2

y

N∑

i=1

(yi − ŷi)2% . Regularization

is used to avoid numerical problems and to re-
duce the effects of noise, with the regularization
parameter ρ = 1 × 10−7. We then use an infinite
degree VS to identify the pre-sliding dynamics.
Based on the NMSE, the parameters are set to
be M = 23, p = 9.9, ρ = 1 × 10−7. The resulting
estimation errors from finite and infinite degree
VS models, respectively, are shown in Fig.2 (top).

3.1.2. Medium Level Excitation Identification
The medium level excitation regime is first mod-
eled by a finite degree VS. There are 2600 sample
data for training and testing, respectively. The
simulation parameters are chosen to be M =
25, D = 3, ρ = 1 × 10−7. This regime is then
estimated by an infinite degree VS with the same
training and testing sample data. The parameters

2 Because of the oversampling from the experimental rig,
no significant information loss results from this downsam-
pling.
3 According to Eqs.(6), (7) and (8), α can be solved
thus α = K−1y, with α = [α1, · · · , αN ]T , y =

[y(u1), · · · , y(uN )]T , Kij = kp(ui, uj) or ke(ui, uj). But
in “real” situations, where numerical and noise problems
are present, α is given by α = (K + ρI)−1y to provide a
biased solution. ρ is called the regularization parameter.
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Fig. 2. Multi-step ahead prediction errors in the
time domain by the finite (solid) and infinite
(broken) degree VS models.

are M = 23, p = 9.9 and ρ = 1 × 10−8. The cor-
responding estimation errors are shown in Fig.2
(middle).

3.1.3. High Level Excitation Identification Again,
a finite degree VS model is used to identify the
high level excitation dynamics. The number of
both training and testing data is 2234. The pa-
rameters are M = 23, D = 3 and ρ = 1 ×
10−8. An infinite degree VS model is then used
to identify the same regime. The same sample
data are used and the simulation parameters are
M = 22, p = 9.7 and ρ = 1×10−8. The prediction
errors are shown in Fig.2 (bottom).

In each case the infinite and finite degree cases are
barely distinguishable.

3.2 NARX Identification

NARX models are used to identify the three fric-
tion regimes by using the same downsampled data
as those in VS identification. One more parameter
is involved to describe the NARX model, which is
the number of AR terms, represented by NAR. All
the estimation error series are shown in Fig.3.

3.2.1. Low Level Excitation Identification A fi-
nite degree NARX model is identified to simu-
late the low level excitation regime. In terms of
NMSE of testing data prediction, the parameters
are chosen to be M = 12, NAR = 3, D = 4 and
ρ = 1×10−5. From Fig.3, clearly, the performance
is much better than the comparable VS, which
means NARX models can capture the dynamics
more completely than the VS in this case. We then
use an infinite degree NARX model to identify
the same dynamics with M = 11, NAR = 3, p =
1.3, ρ = 1× 10−4.
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Fig. 3. Multi-step ahead prediction errors in the
time domain by the finite (solid) and infinite
(broken) degree NARX models.

3.2.2. Medium Level Excitation Identification
To identify the medium level excitation process,
a finite degree NARX model is computed, M =
11, NAR = 2, D = 3, ρ = 1 × 10−6. An infinite
degree NARX model is then identified to model
the medium level excitation regime with M =
11, NAR = 2, p = 1.7 and ρ = 1× 10−6.

3.2.3. High Level Excitation Identification A
finite degree NARX model is used to simulate
the high level excitation dynamics with M =
11, NAR = 1, D = 3 and ρ = 1×10−5. Then an in-
finite degree NARX model is computed to identify
this same regime. The corresponding parameters
are M = 11, NAR = 1, p = 1.5, ρ = 1× 10−5.

4. COMPARISON OF PREDICTION
PERFORMANCES

From the figures in the last section, it is clear that
the NARX models are much closer to the friction
dynamics than VS. To evaluate the prediction
performance further, identification, based on the
same downsampled training/testing sample by the
DNLR Maxwell slip and the AVD NN models, are
demonstrated.

4.1 The DNLR Maxwell Slip Model

The generalized Maxwell slip model is a well-
known physics-based model for simulating hys-
teretic behaviors that is a significant feature
in friction systems. By connecting Maxwell slip
models in series with a Multiple Input Single
Output-Finite Impulse Response filter, the DNLR
Maxwell slip model, used here, can be formed.

Based on the same training and testing sample
data, the prediction errors on the testing data are
shown in Fig.4.
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Fig. 4. Multi-step ahead prediction errors in the
time domain by the DNLR models.
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Fig. 5. Multi-step ahead prediction errors in the
time domain by the AVD NNs.

4.2 The AVD NN model

It has been argued (Chen and Tomlinson, 1996)
that most dynamical engineering systems can be
explained by second order differential equations.
Therefore, it is worthwhile to “capture” temporal
information of systems directly via their 0th,
1st and 2nd derivatives, which are displacement,
velocity and acceleration, respectively, in the case
of the friction system. To do that, an infinite
impulse response (IIR) differentiator/integrator is
used (Chen and Tomlinson, 1996).

The prediction errors are shown in Fig.5.

4.3 Comparisons

Visually comparing all the experimental figures
in Section 3 with the corresponding ones in this
section, except for the prediction results from
VS, the others are not far from each other. In
terms of the NMSEs, the performances of the
physics-based DNLR Maxwell slip models for all
three friction behaviors are the best. The AVD
NN models’ performances are slightly better than
RKHS-based finite degree NARX models.

The NMSEs for all the modeling processes are
summarized in Table (1).

Table 1. NMSEs for the three friction
regimes for all models(%).

Low Medium High

Finite VS 14.09 18.71 18.25
Infinite VS 14.13 20.67 18.40
Finite NARX 0.68 1.49 1.76
Infinite NARX 9.41 1.70 2.95
DNLR Slip 0.41 0.28 0.37
AVD NNs 0.41 0.38 0.66

From these results, some conclusions can be
drawn:

(1) From Table (1), clearly, the VS models are
relatively much worse than the others in
modeling the friction dynamics. This is not
surprising because the VS’ basic fading mem-
ory limitation is violated by these friction
processes’ hysteric properties.

(2) What we can see from the experimental re-
sults in Section 3 is that, for both VS and
NARX models, the finite degree models work
better than the infinite degree models. Ad-
ditionally, the degrees of the finite models
are not high (3–4). All these suggest that the
infinite degree models are over-fitting on this
problem, despite the “optimal” choice of ρ.

(3) The difference in the performances of the
finite degree NARX, DNLR Maxwell slip and
AVD NN models is small, which may come
from the models’ dynamics, the algorithms
and the normalizations 4 .

(4) In terms of NMSE, RKHS-based NARX
models perform slightly worse than the phys-
ically derived models and the AVD NNs.
But the kernel-based algorithm makes the
evaluation of Volterra and NARX coefficients
natural. Reasonably high order coefficients
can be extracted efficiently with the practi-
cal situation depending on M and NAR (if
applicable) 5 . The restriction mainly comes
from the inversion of large kernel matrices of
dimension N×N . This can be resolved using
an iterative algorithm.

(5) The physics-based DNLR Maxwell model is
very suited to the identification of these par-
ticular systems, which can not only provide
accurate multi-step ahead prediction but also
reveal the physical nature of the nonlinear
dynamics. Its disadvantage is that it is very
difficult to extract even low order Volterra

4 All the sample data are normalized to avoid numerical
problems.
5 According to the authors’ experiments, e.g. if the VS
evaluated is of infinite degree and M = 12 (or M +
NAR = 12 for a NARX model evaluation), it takes about
2 minutes to compute all the fourth order Volterra kernels
using a Pentiumr4 1.8GHz computer.



coefficients (hence generalized frequency re-
sponse functions). In addition, it cannot be
used as a general model for the control of
friction systems with other forms of unknown
nonlinearity, e.g. backlash.

(6) The AVD NNs also provide good prediction
performances in this case. However, they are
beset by the problem of non-convex opti-
mization. It is also hard to extract physical
information from them. To acquire low order
Volterra kernels is possible, but to acquire
high order ones is difficult.

5. CONCLUSION

Friction dynamics are important and complex
nonlinear systems. Generally speaking, a physics-
based model is the first choice for nonlinear sys-
tem identification provided it can be revealed.
But for many complex nonlinear systems, their
physically derived models are extremely difficult
to identify. Also, some physical models are difficult
to analyze.

VS and NARX models are attractive alternatives
to physical models since they contain systems
information of interest and, to compute them, one
does not need to know much about target systems.
In the experiments demonstrated in this paper,
VS perform poorly because their basic fading
memory requirement is violated by the hysteric
properties of typical friction processes.

A common problem with the evaluation of VS and
NARX models is the determination of large num-
bers of parameters. The kernel method addresses
this problem by representing VS and NARX mod-
els in a compact kernel form and provides a fea-
sible approximation of the models with much less
computation.

Note that, in this particular friction identification
problem, albeit that finite NARX models perform
slightly worse than DNLR Maxwell slip models
and AVD NNs, they are still promising, consid-
ering they are pure black-box, compared with
white-box DNLR Maxwell slip models and grey-
box AVD NNs. After all, systems’ physical nature,
which is the prerequisite for white and grey-box
models identification, is not always available.

Whether VS or NARX models should be used
in a particular problem depends on the practical
situation. NARX models account for a wider range
of nonlinear characteristics and involve fewer co-
efficients to evaluate. But, because of the involve-
ment of previous outputs, prediction errors are
always accumulated and fedback to NARX models
through inputs. This makes them susceptible to
bias and, in addition, they can be unstable. In con-
trast, VS provide a flexible and stable nonlinear

model which is linear in its parameters and which
has shown its power in many other applications.

ACKNOWLEDGEMENT

YW would like to thank The University of
Sheffield for its financial support. CXW acknowl-
edges the Volkswagenstiftung for financial sup-
port under grant no. 1/76938. The authors are
also grateful to Dr. F. al-Bender and Mr. T.
Tjahjowidodo of Katholieke Universiteit, Leuven
for providing details of the rig and the experimen-
tal data used in the modeling.

REFERENCES

Chen, Q. and G. R. Tomlinson (1996). Parametric
identification of systems with dry friction
and nonlinear stiffness using a time series
model. Transactions of the ASME - Journal
of Vibration and Acoustic 118, 252–263.

Dodd, T. J. and R. F. Harrison (2002a). A new
solution to Volterra series estimation. In: CD-
ROM Proceedings of the 2002 IFAC World
Congress. Barcelona.

Dodd, T. J. and R. F. Harrison (2002b). Esti-
mating Volterra filters in Hilbert space. In:
Proceedings of IFAC International Confer-
ence on Intelligent Control Systems and Sig-
nal Processing. University of Algarve, Faro.
pp. 538–543.

Drezet, P. M. L. (2001). Kernel Methods and
Their Application to Systems Identification
and Signal Processing. Phd thesis. The Uni-
versity of Sheffield. Sheffield.

Harrison, R. F. (1999). Computable Volterra fil-
ters of arbitrary degree. MAE Technical Re-
port 3060. Princeton University. Princeton.

Parlitz, U., A. Hornstein, D. Engster, F. Al-
Bender, V. Lampaert, T. Tjahjowidodo, S. D.
Fassois, D. Rizos, C. X. Wong, K. Worden
and G. Manson (2004). Identification of pre-
sliding friction dynamics. Chaos 14, 420–430.

Peyton-Jones, J. C. and S. A. Billings (1989).
Recursive algorithm for computing the fre-
quency response of a class of non-linear differ-
ence equation models. International Journal
of Control 50, 1925–1940.

Rizos, D. D. and S. D. Fassois (2004). Presliding
friction identification based upon the maxwell
slip model structure. Chaos 14, 431–445.

Wan, Y., T. J. Dodd and R. F. Harrison (2003).
Infinite degree Volterra series estimation. In:
CD-ROM Proceedings of the Second Inter-
national Conference on Computational Intel-
ligence, Robotics and Autonomous Systems.
Singapore.


