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Abstract: Digital mobile telecommunication networks are complex systems and thus their management and 
optimization are challenging tasks. The subscriber expectations constitute the Quality of Service (QoS). The 
operating personnel have to measure the network in terms of the QoS. By analyzing the information in the 
measurements, they can manage and improve the QoS. Two data mining methods were applied to actual GSM 
network performance measurements. The personnel's prior knowledge of the network and their possible 
inexperience of the theory behind the methods was taken into account. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Telecommunications have developed into cellular 
radio networks, which enable subscribers to connect 
and communicate regardless of their location and 
movement. The second-generation networks (2G) 
digital mobile telecommunication networks, whose 
most widely spread realizations are based on the 
Global System for Mobile communications standard 
(GSM). 
 
The subscribers, connected to the network via their 
mobile stations, expect network availability, 
connection throughput, and affordability. Moreover, 
the connection should not degrade or be lost abruptly 
as the user moves within the network area. The user 
expectations constitute Quality of Service (QoS), 
specified as ‘the collective effect of service 
performances, which determine the degree of 
satisfaction of a user of a service’ (ITU-T E.800). 
The operating personnel have to measure the network 
in terms of QoS. By analyzing the information of 
their measurements, they can manage and improve 
the quality of their services. 
 
However, because the operating staff is easily 
overwhelmed by hundreds of measurements, the 
measurements are aggregated Key Performance 
Indicators (KPI). 
 
Personnel expertise with the KPIs and the problems 
occurring in the cells of the network vary widely, but 
at least the personnel know the desirable KPI value 
range. Their knowledge may be based on simple 
rules such as ‘if any of the KPIs is unacceptable, then 
the state of a cell is unacceptable.’ The acceptance 
limits of the KPIs and the labeling rules are part of 
the a priori knowledge for analysis. 

Information needed to analyze QoS issues exists in 
KPI data, but sometimes it is not easy to recognize. 
The techniques of Knowledge Discovery in 
Databases (KDD) and data mining help to find useful 
information in the data. 
 
The most important criterion for selecting data 
mining methods was their suitability as tools for the 
operating staff of a digital mobile tele-
communications network to alleviate their task of 
interpreting QoS-related information from measured 
data. For this paper, two methods were chosen that 
fulfilled the criterion: classification trees and self- 
organizing map type neural networks. 
 
In particular, the automatic inclusion of prior 
knowledge in preparing the data is a novelty because 
a priori knowledge has so far been overlooked in any 
previous work on the subject (Vehviläinen 2004). 
 
 
2. KNOWLEDGE DISCOVERY IN DATABASES 

AND DATA MINING 
 

Knowledge Discovery in Databases (KDD), a multi-
step, interactive, and iterative process requiring 
human involvement (Fayyad et al. 1996), aims to 
find new knowledge about an application domain. 
 
 
2.1 Knowledge Discovery in Databases. 
 
The KDD process (figure 2) consists of consecutive 
tasks, out of which data mining produces the patterns 
of information for interpretation. The results of data 
mining then have to be evaluated and interpreted in 
the result interpretation phase before we can decide 
whether the mined information qualifies as 
knowledge (Fayyad et al. 1996). The discovery 

     



Figure 1. Data mining for QoS analysis of mobile telecommunications networks (Vehviläinen 2004). 
 
process is repeated until new knowledge is extracted 
from the data. Iteration distinguishes KDD from the 
straightforward knowledge acquisition by 
measurement. 
 
 
2.2 Data Mining 
 
Data mining is a partially automated KDD 
subprocess, whose purpose is to nontrivially extract 
implicit and potentially useful patterns of information 
from large data sets (Vehviläinen 2004). 
Specifically, data mining for QoS analysis of mobile 
telecommunications networks involves five 
consecutive steps (figure 1), four of them closely 
related to the use of data mining methods: attribute 
construction, method selection, preprocessing and 
preparation. 
 
 
3. QUALITY PERFORMANCE MEASUREMENTS 

 
A Key Performance Indicator (KPI) is considered an 
important performance measurement. In GSM 
network management, KPIs may be used for several 
purposes; thus selecting KPIs for analysis is a 
subjective matter (Laiho et al. 2002). The QoS 
related KPIs in this paper are based on the 
measurement of SDCCH and TCH logical channels 
and handovers (HO). 

Figure 2. KDD for QoS analysis of network is an 
interactive and iterative process in five 
consecutive steps (Vehviläinen 2004). 

Intrinsic QoS analysis depends on quality-related 
KPI measurements available from the network 
elements. In the GSM network, the most important 
services are bearer and teleservices. The intrinsic 
QoS of a bearer service means that the network’s 
radio coverage is available for the subscriber 
outdoors and indoors. However, availability of the 
network is necessary for teleservices; therefore, KPI 
data contains information about those cells where the 
bearer service is degraded. 
 
Teleservices require a functional bearer service and a 
successful connection. Speech, short message 
service, fax, and data depend on the bearer service, 
and the subscriber’s need for teleservices has to be 
filled in most cases. 
 
Five of the KPIs related to QoS refer to the use of the 
logical channels of the GSM network that require 
physical channels. The radio interface of the GSM 
network uses both Time Division Multiple Access 
(TDMA) and Frequency Division Multiple Access 
(FDMA) for receiving and transmitting information 
(Penttinen 2001). TDMA means that each frequency 
channel is divided into eight repeated time slots, see 
figure 3. A separate time slot is a physical channel, 
and one physical channel can contain logical 
channels defined as Traffic CHannels (TCH) for call 
data and Control CHannels (CCH) for transmitting 
service data between the nodes of the network, see 
figure 4. 

Figure 3. GSM radio interface uses both TDMA and 
FDMA for transmission of information. The 
picture shows an example of three TDMA frames 
comprising eight time slots on three frequencies. 

     



Figure 4. Logical channels like SDCCH and TCH are 
carried within physical channels (time slots). 

 
CCHs are used to signal or synchronize data and can 
be divided into four categories: broadcast, common, 
dedicated and Cordless Telephony System (CTS) 
CCHs (GSM 05.02). The performance measurement 
data set in this paper contains measurements only 
about a Stand-alone Dedicated Control CHannel 
(SDCCH). 
 
A SDCCH serves many communication purposes 
between the network and a mobile station. First of 
all, it is used when a call is initiated. Secondly, radio 
interface protection signalling, used for encryption, is 
carried in the SDCCH. Furthermore, a SDCCH is 
also needed to deliver short messages, when a mobile 
station is not involved in a call (Penttinen 2001). 
 
Finally, successful handovers are an important 
element of a mobile network. Handover (HO) means 
switching a connection from a physical channel to 
another. Handovers are divided into intra-cell and 
inter-cell handovers. 
 
KPI Limits Based on A Priori Knowledge. The 
analyst knows roughly the good, normal, bad, and 
unacceptable range of KPI values. For instance, his a 
priori knowledge of SDCCH Success is that it is 
normal for KPI values to be close to 100. He also 
knows that if the value drops below 100, a problem 
ensues because the signaling channels should be 
available all the time. To ensure that his a priori 
knowledge is justified, the analyst can plot the KPIs’ 
Probability Density Function (PDF) estimates, 
assuming that the data is acquired from a network 
that has been under normal operational control. PDF 
estimates are plotted so that variable data is divided 
into slots along the horizontal axis, which represents 
a KPI’s value. Each slot has an equal number of data 
points, which means that the height of the slot is 
proportional to the density of data points over the 
range of one slot. 

Figure 5. A priori limits of value ranges of KPI 
SDCCH Success. 

Based on the limits and his a priori knowledge, the 
operator can then write out his rules to interpret the 
data as a labeling function. 
 
When the analyst scrutinizes the plotted KPI PDF-
distributions, he can justify and possibly refine the 
limits of a good, normal, bad and unacceptable. 
 
Table 1 Ranged KPI values with corresponding label 
range limits. The a priori limits given by a domain 

expert are greyed out 
 

KPI unacceptable bad normal good 

SDCCH Access ≤ 99.00% - > 99.00% - 

SDCCH Success ≤ 98.00% ≤ 99.10% ≤ 99.56% > 99.56% 

TCH Access ≤ 99.00% - > 99.00% - 

TCH Success ≤ 98.00% ≤ 98.75% ≤ 99.35% > 99.35% 

HO Failure ≥  5.00% ≥  2.08% ≥  0.91% <  0.91% 

HO Failure Due 
to Blocking ≥  5.00% ≥  0.23% ≥  0.08% <  0.08% 

TCH Drops ≥  2.00% ≥  0.57% ≥  0.19% <  0.19% 

 
 
3.1 Labelling Function 
 
A labeling function is necessary for labeling 
observations with a decision indicator value, which 
in turn is necessary for a supervised learning 
algorithm. The function can be thought of as a 
formulated inference rule of the operator judging the 
behavior of the network. The inference and its limits 
(see table 1) are the operator’s a priori knowledge. 
The values of the rest of the limits resulted from 
subjective inference from the PDF estimate 
distributions of real operator data set.  The measured 
data set had 3069 observations (93 days of 
cumulative measurements from 33 GSM network 
cells) of the seven KPIs. 
 
The function makes use of logical inference based on 
predetermined limits of the performance indicators. 
As a result, it labels each observation as good, 
normal, bad, or unacceptable. It does not include 
information about the causes of changes in the 
observations but indicates simply whether a cell is in 
a more or less acceptable state (good, normal, bad) or 
whether a state requires immediate attention 
(unacceptable). The labeling function is a set of four 
rules on the seven quality related KPIs, that is, 
SDCCH Access, SDCCH Success, TCH Access, TCH 
Success, HO Failure, HO Failure Due to Blocking 
and TCH Drops. 
 
The labeling function labels the observations in the 
KPI data set according the following four rules, 
which are applied in descending order so that the 
label is the one that first applies. Thus the state of the 
network is 
 

 unacceptable if any quality-related KPI is rated 
as unacceptable, 

 bad if any quality-related KPI is rated bad, 

     



 good if KPIs SDCCH Access and TCH Access 
are classified as normal and KPIs SDCCH 
Success, TCH Success, HO Failure, HO Failure 
Due to Blocking and TCH Drops are rated good, 

 normal if KPIs SDCCH Access and TCH Access 
are classified as normal and KPIs SDCCH 
Success, TCH Success, HO Failure, HO Failure 
Due to Blocking, and TCH Drops are rated either 
normal or good. 

 
The labels can be coded numerically as in table 2. 
 

Table 2 Labels of the decision class indicator 
 

State of a cell Decision class indicator 
good 1 
normal 2 
bad 3 
unacceptable 4 

 
 

4. CLASSIFICATION TREES 
 
In data mining, a common classification method is 
the identification of a classification tree (Han & 
Kamber 2001), which suits both classification and 
prediction. In this paper the application of 
Classification And Regression Trees (CART) 
algorithm is applied to the QoS KPIs. 
 
The benefits of binary splitting, a simple splitting 
condition, and the CART’s being able to process both 
numerical (KPI data) and nominal values, were the 
main criteria why the CART was chosen for the 
classification tree algorithm for this paper. 
 
Application. Before analysis with the CART, the KPI 
data set was preprocessed by removing observations 
with missing values and prepared by subjecting the 
data to the labeling function (see section 3.1). 
 
With the aid of the tree growing theory (Breiman et 
al. 1984), the whole KPI data set of 3069 
observations was analyzed with the CART algorithm. 
The Gini index of diversity (equation 1) was chosen 
as the score function, and tree growing was set to 
terminate if any further growth reduced the 
observations in a node to less than 20 observations. 

 2( ) 1 ( | )
v

gini t p v t= − ∑  (1) 

where p(v|t) is the estimated probability that an KPI 
observation is of class v (good, normal, bad, 
unacceptable), given that it falls into node t. 
 
The CART algorithm resulted in the tree structure 
shown in figure 6. The tree has nine levels and 27 
nodes, 14 of which are terminal nodes and 13 
splitting nodes. The nodes are numbered from 1 to 27  
with their identification number increasing from left 
to right and moving up to the next level after passing 
the rightmost node on a level. 

 
Figure 6. Classification tree of KPI data. 
 
The higher the split node number of the KPI, the less 
important the KPI is in separating large pure groups 
of observations within the data set. 
 
Examining the 14 terminal nodes, we notice that they 
are all pure nodes (with 100% class probability in 
each terminal node). Seven of the nodes are classified 
as unacceptable (nodes 2, 4, 6, 13, 16, 21, 24, and 
27), five bad (nodes 10, 14, 20, 23, and 26), and one 
normal (node 22). The tree had no good terminal 
nodes. 
 
Examination of the oval-shaped split nodes in figure 
3 reveals that most splits (8 out of 13) are based on 
KPI PDF-estimates’ label range boundaries (see table 
1). This is not surprising because the tree is 
structured based on the decision indicator, which in 
turn is based on the labeling function (section 3.1), 
which again preclassifies observations according to 
label range boundaries. 
 
Is this circular reasoning? Yes, if we are interested 
only in boundary values, but no, if we seek to 
identify those KPIs and their corresponding 
boundaries that separate observation groups in the 
data set. Splits along the label range boundaries have 
been added in table 3 (derived from table 1), and the 
alignment is indicated with a node number in 
parenthesis. 
 
Table 3 Splits of a pruned tree vs. KPI discretization 

limits. 
 

KPI Unacceptable Bad Normal Good 

SDCCH Access ≤ 99.00% 
(node 3) - > 99.00% - 

SDCCH Success ≤ 98.00% 
(node 5) 

≤ 99.10% 
(node 8) ≤ 99.56% > 99.56%

TCH Access ≤ 99.00% - > 99.00% - 

TCH Success ≤ 98.00% 
(node 1) 

≤ 98.75% 
(node 11) ≤ 99.35% > 99.35%

HO Failure ≥  5.00% 
(node 9) 

≥  2.08% 
(node 7) ≥  0.91% <  0.91%

HO Failure Due 
to Blocking ≥  5.00% ≥  0.23% 

(node 15) ≥  0.08% <  0.08%

TCH Drops ≥  2.00% ≥  0.57% ≥  0.19% <  0.19%

     



5. SELF-ORGANIZING MAP 
 

If we have only limited a priori knowledge, or we 
need to check our prior knowledge on the data, we 
have to apply an unsupervised or self-organized 
learning method to look for features that are not 
known before our analysis but that describe our data. 
One such method is the Self-Organizing Map (SOM), 
an unsupervised neural network, introduced by 
Professor Teuvo Kohonen in 1982. 
 
Concepts. The SOM is used mainly to visualize data. 
The SOM algorithm creates a set of prototype 
vectors, which represent a training data set, and 
projects the prototype vectors from n-dimensional 
input space - n being the number of variables in the 
data set - onto a low-dimensional grid. The resulting 
grid structure is then used as a visualization surface 
to show features in the data (Vesanto & Alhoniemi 
2000). 
 
The created prototype vectors are called neurons, 
connected via neighborhood relations. The training 
phase of a SOM exploits the neighborhood relation in 
that parameters are updated for a neuron and its 
neighboring units. 
 
The neurons of a SOM are organized in a low-
dimensional grid with a local lattice topology. The 
most common combination of local and global 
structures is the two-dimensional hexagonal lattice 
sheet, which is preferred in this paper as well. 
 
Theory. Let  be a randomly chosen 
observation from data set X. Now, the SOM can be 
thought of as a nonlinear mapping of the probability 
density function p(x) in the observation vector space 
on a lower (two in our case) dimensional support 
space. Observation x is compared with all the weight 
vectors w

n∈ ℜx

i of the map’s neurons, using the Euclidian 
distance measure ||x - wi ||. 
 
Among all the weight vectors, the closest match wc is 
chosen based on Euclidian distance, to observation x 
and call neuron c (c is the neuron’s identification 
number on the map grid) related to wc the Best-
Matching Unit (BMU): 
 min

c
i

− = −x w x w
i

 (2) 

After the BMU is found, denoted by c, its weight 
vector wc is updated so that it moves closer to 
observation x in the input space. The update rule for 
the all the weights of the SOM is 
 ( ) ( ) ( ) ( )[ ]1 ( )

i i ci i
t t t h tα+ = + −w w x w t  (3) 

where t is an integer-discrete time index, α ( t)  the 
learning rate function, and hci(t) the neighborhood 
function, and x a randomly drawn observation from 
the input data set. Note that hci(t) is calculated 
separately in map the dimension (two), whereas x 
and weight vectors wi have the dimension of the 
input space (seven in our case). 

The learning rate is chosen so that the update effect 
decreases during the SOM’s training phase. One such 
rate is 

 0( )
1 ( ) /

t
kt T

α
α =

+
 (4) 

where α0 is the initial value of the learning rate, k 
some arbitrarily chosen coefficient, and T the training 
length. 
 
The neighborhood kernel around the BMU can be 
defined in several ways, one possibility is the 
Gaussian function denoted by 

 
22( )

c i

t

cih t e σ

−
−

=

r r

 (5) 

where σt is the kernel radius at time t,  the 

map coordinates of the BMU, and  the map 
coordinates of the nodes in the neighborhood. 

2

c
∈ ℜr

2

i
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Application. Like with the CART, the data set was 
preprocessed by removing the missing values since 
they are problematic in the SOM algorithm (Kohonen 
1995). The variables in the training data set must be 
rescaled. Should the data have very different scales, 
the variables with high values are likely to dominate 
training when the SOM algorithm minimizes the 
Euclidian distance measure between weight vectors 
and observations (Vesanto et al. 2000). 
 
The variables are commonly scaled so that the 
variance of each variable is one. But since the ranges 
of the variables were known a priori, that 
information was used for scaling (Vehviläinen 2004). 
 
To present SOM information in an easily 
interpretable form, the value of each variable is 
shown on the map in a variable-specific figure 
instead of showing all variables in one figure. Such 
separate figures are called component planes. 
 
Each component plane has a relative distribution of 
one KPI. The values in component planes are 
visualized in shades of gray. These values were 
scaled so that white or light shading represents 
preferable KPI values and black or dark shading 
unwanted KPI values. On the side of each component 
plane, we placed a colorbar to link the shading and 
actual KPI values. Note that the shading is specific to 
each component plane. The component planes of the 
trained SOM are shown in figure 7. In addition, the 
component planes show the a priori information of 
the labeling function, that is, the value of the decision 
variable of observations with most occurrences in the 
node. 
 
We can immediately see that the unwanted values of 
SDCCH   Success, TCH Success, and TCH Drops of 
the right side of the component planes are almost 
black. 
 

     



SDCCH Success may also take unwanted values 
separately from TCH Success and TCH Drops, since 
the nodes in the top left corner are dark, whereas the 
component plans of TCH Success and TCH Drops 
are light in those nodes. 
 
Furthermore, we can see that TCH Access correlates 
with HO Failure due to Blocking, since the nodes in 
the low left corner are dark in both planes. 
 
HO Failure has its worst values in the nodes in the 
bottom right corner, which are dark. HO Failure is 
somewhat connected to SDCCH Access, because its 
component plane is gray in the same nodes. SDCCH 
Access has its worst values quite independent of the 
rest of the KPIs. 
 
Hit hexagons show that most observations were 
distributed among the top and bottom rows of the 
map and in the middle. The a priori knowledge 
seems to match the component planes well, for the 
nodes that match normal states are located in the top 
middle section of the map. The worst observations 
fall on the left and right sides and in the bottom 
corners of the map. 
 
 

6. CONCLUSION 
 

In this paper, data mining was presented as a tool to 
manage quality of service in digital 
telecommunications networks. Two data mining 
methods and a priori knowledge were applied to a 
real QoS data set to interpret and summarize the 
information content of KPIs. These methods - CART 
and SOM - were found well matured and suited for 
the data mining application. 
 
According to the results, the CART is best suited for 
ruling out the most important KPIs and detecting 
potential outliers in the data, and the SOM for 
visualizing data features and checking a priori 
decision making. 
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