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Abstract: This paper proposes an extension of neural network identification capabilities 
for on-line identification of a nonlinear closed-loop control system. The neural network 
(NN) is trained on-line using the backpropagation optimization algorithm with an 
adaptive learning rate. The optimization algorithm is performed at each sample time to 
compute the optimal control input. The results confirm the effectiveness of the proposed 
neural network based identification scheme and control architecture. Copyright © 2005 
IFAC. 
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1. INTRODUCTION 
 

In the last few years, a growing interest in the study 
of nonlinear systems in control theory has been 
observed. This interest stems from the need to give 
new solutions to some long standing necessities of 
automatic control; to work with more and more 
complex systems, to satisfy stricter design criteria, 
and to fulfill previous points with less and less a 
priori knowledge of the plant. The example of a 
nonlinear system is robot manipulator.   
Robotic manipulator systems are nonlinear, high 
coupled, and time varying. Robots have to face many 
uncertainties in their dynamics, in particular 
structured uncertainties, which are caused by 
imprecision in the manipulator link properties, 
unknown loads, and unstructured one, such as 
nonlinear friction, disturbances, and the high-
frequency part of the dynamics (Peng. and Woo, 
2002). The control performance of the robotic 
manipulator is influenced by the mentioned 
uncertainties of the plant. From these reasons, 
identification and control of the robot manipulators 
are challenges.  
Recently, much research has been done on 
applications of NNs for identification of nonlinear 
dynamic processes (Narenda and Pathasarathy, 1990; 
Nguyen and Widrow, 1990). These works are 

supported by two of the most important capabilities 
of neural networks; their ability to learn and their 
good performance for the approximation of nonlinear 
functions (Hornik, et al., 1989). At present, most of 
the works on system identification using neural 
networks are based on multilayer feedforward neural 
networks with backpropogation learning or more 
efficient variations of this algorithm (Narenda and 
Pathasarathy, 1990). It has been shown (Hornik, et 
al., 1990; Stinchombe and White, 1989) that a neural 
network with one hidden layer with an arbitrarily 
large number of neurons in the hidden layer can be 
approximate any continuous functions over a 
compact subnet of nℜ . The objective of this paper is 
identification of a robot dynamics with NN based on 
backpropagation learning algorithm with adaptive 
learning rate in open and cloosed loop control 
systems. For this purpose, the supervised learning 
capabilities of  NNs can be used for identifying 
process models from input/output data. These data 
are the training set for the network.    
For controlling the robot manipulator in this paper 
we used fuzzy logic controller (FLC).  The usage of 
FLC is justified from the following reasons: the 
dynamics of robot is modeled by nonlinear and 
coupled differential equations, it gives high 
flexibility, that is it has many degrees of freedom 



(shape and number of membership functions, 
aggregation methods, fuzzification and 
defuzzification methods, etc.). Also, fuzzy systems 
are suitable for uncertain and approximate reasoning, 
especially for the system with a mathematical model 
that is difficult to derive. Applying fuzzy logic to 
robotic control is currently a popular topic (Peng. 
and Woo, 2002; Byung and Woon, 2000; Neo and 
Er, 1996; Velagic, et al., 2003). 
 
 

2. NEURAL NETWORK IDENTIFICATION 
STRUCTURE UNDER CONTROL SYSTEM 

 
The designed system consists of two major 
components: fuzzy control system and neural 
network identification structure of the plant (Fig. 1). 
To control the motion of the manipulator means to 
determine the n components of generalized joint 
torques that allow execution of a motion )(tq  so that 
 
                                   )()( tt dqq = ,                        (1) 
 
as close as possible, where )(tdq denotes the vector 
of desired joint trajectory variables. Tracking control 
is needed to make each joint track a desired 
trajectory. 
The manipulator we will be describing consist of a 
two links joined by rotary joints. Derivation of the 
dynamic model of a manipulator is based on the 
Lagrange formulation. It is used a FLC for joint 
position control. The output of position controller is 
the reference signal to be applied to the actuator. A 
dc servomotor used to actuate a robot joint. The 
outputs of control system are signals, which are 
directly measured (e.g., joint angles or velocity). At 
the same time on-line identification of robot 
manipulator is performed. In this section, we briefly 
describe components of the control system joint 
position. The FLC and NN plant model will be 
designed in Sections 3 and 4, respectively.    
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Fig. 1. The structure of the fuzzy/neural model-based 

robotic system. 
 
 
2.1 Dynamic model of robot manipulator and  

actuators 
 
A robot manipulator is defined as an open kinematics 
chain of rigid links. The dynamic model describing 
the motion of an n-joint robot is a set of n highly 

nonlinear and coupled differential equations, which 
relate the actuating, joint forces/torques with the joint 
positions, velocities, and accelerations respectively. 
Using Lagrange formulation, the equations of an n-
degree-of-freedom manipulator can be written as 
(Sciavicco and Siciliano, 2000)  
 

      ττqGqFqqqCqqD =++++ dr )()(),()( &&&&& ,      (2) 
 

where  
nR∈q  is the generalized coordinates, nnR ×∈)(qD is 

the symmetric, positive definite inertia matrix, 
nR∈),( qqC & presents the centripetal and coriolis 

torques; n
d

n
r

n RRR ∈∈∈ τqFqG  ,)( ,)( &  and nR∈τ  
represent the gravitational torques, friction, 
disturbance, and applied joint torques, respectively. 
We used the two-link planar manipulator shown in 
Fig. 2. 
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Fig. 2. Two-link planar arm. 
 
The dynamic equation of a two-link planar robot 
manipulator is derived by using Euler-Lagrange 
method as follows: 
 

(3)                                                                      
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where 21 , ll  are the distances of the centers of mass 
of the two links from the respective joint axes, 

21
, ll mm  are the masses of two links and 

21
, mm mm  

are the masses of the rotors of the two joints motors. 
The moments of inertia with respect to the axes of 
the two rotors and the moments of inertia relative to 
the centers of mass of the two links are denoted by 

21
, mm II  and 

21
, ll II , respectively. Also, it is assumed 

that the motors are located on the joints axes with 
centers of mass located at the origins of the 
respective frames.      



2.2 Direct and inverse kinematics 
 
A manipulator can be represented as an open 
kinematic chain of the links connected by means of 
revolute or prismatic joints which constitute the 
degrees of mobility of the structure. The resulting 
motion of the structure is obtained by composition of 
the elementary motions of each link with respect to 
the previous one. Direct kinematics problem 
describes the end effector position and orientation as 
a function of the joint variables of the mechanical 
structure with respect to a reference frame. The result 
of direct kinematics function is expressed by the 
homogeneous transformation matrix: 
 

             ⎥
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where q is the (nx1) vector of joint variables, n, s, a 
are the unit vectors of a frame attached to the end-
effector, and p is the position vector of the origin of 
such frame with respect to the origin of the reference 
frame. The solution for two planar manipulator is: 
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On the contrary, the inverse kinematics algorithm 
consists of the determination of joint variables 
corresponding to a given end-effector. The solution 
of the inverse kinematics problem for two-link planar 
manipulator (Fig. 3) is  
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where  
              22 yxd += .                            (7) 
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Fig. 3. Two-link planar arm for the inverse problem 
solving. 

 
 

3. STRUCTURE OF THE FUZZY LOGIC  
CONTROLLER 

 
In this paper we used the Mamdani fuzzy logic 
controller with two control inputs: error position of 
the links and their derivations (e, de), and the output 
is the joint torque derivative dτ/dt. This controller 
has only seven rules and obtained good trajectory 
tracking performance in the both joint and 
operational spaces (Velagic, et al., 2003; Velagic and 
Hebibovic, 2004). Fuzzy controller is used for each 
link, separately, with the same inputs and output, 
membership functions and control rules. More details 
about this controller can be shown in (Velagic, et al., 
2003; Velagic and Hebibovic, 2004).  

4. NEURAL NETWORK DESIGN 
 
Neural networks have been applied very successfully 
in the identification of dynamic systems. The 
universal approximation capabilities of the multilayer 
neural network make it popular choice for modeling 
nonlinear systems. For this purpose a neural network 
for representing the forward dynamics of the plant 
was trained.   
 
 
4.1 Learning in Neural Network 
 
The neural network used in this paper is composed of 
one hidden static layer with feedback (Fig. 4). The 
feedback signals are robot manipulator outputs (joint 
angles). This network is trained using the 
backpropagation algorithm. In the training phase the 
network is presented with a series of (input, answer) 
pairs. The network’s current output ko  is compared 
with the desired input kd , and the error is used to 
correct the weights so as to reduced the network’s 
error on this input. 
 

                    ∑ −=
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The backpropagation is probably the most commonly 
used method for updating synaptic weights (Werbos, 
1995). The propagation learning algorithm is briefly 
described with the following:   
1. Weight initialization 
Set all weights to some initial random value. 
2. Activation calculation 
Given an input kd  compute an output computation of 
the network ky  and compute the output of each 
hidden units of the network. That is, each individual 
unit computes an output )( jhg , where 

∑=
i

iijj xwh , . 

3. Weight training    
Start at the output units and work backwards to the 
hidden layers recursively. Synaptic weights are 
update by  
 

                      ijijij otwtw ηδ+=+ )()1( ,, ,             (9)
  
where η  is the learning rate, jδ  is the error gradient 
at unit j, and io  is the output of unit i. 
The gradient of the error jδ  is given by 
a) For an output unit: 
 

                       )()( jjjj hgod ′−=δ ,                   (10) 
  

where jd  is the activation for output unit j that is 
required for output k. 
b) For a hidden unit: 
 

                        ∑′=
k

jkkjj whg ,)( δδ ,                 (11) 
 

where kδ  is the error at unit k to which a connection 
points from hidden unit j. 
4. Iterate until the units converge. 
 

The input and output data of the neural network (Fig. 
4) are driving torques (τ1,τ2) and joint angles (q1, q2). 
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Fig. 4. The simulink model of dynamic NN. 
 
 
4.2 On-line Identification of Process with Neural 

Networks 
 

The main idea of this paper is design a neural 
network that emulates process (robot manipulator + 
actuators). For this purpose we used identification 
with neural network. The supervised learning 
capabilities of neural networks can be used for 
identifying process models from input/output data. 
A unifying framework for neural networks that 
encompasses process identification concept is to 
view neural network training as a nonlinear 
optimization problem: 
                               )(min w

w
J .                             (12) 

 
That is, we need to find values for neural network 
parameters w (weight vector) for which some cost 
function )(wJ is minimized.  
Let us assume that the process (robot) is described by 
the following nonlinear discrete time difference 
equation: 
 
  ))(),...,();(),...,1(()( mttntqtqftq −−−= ττ ,    (13) 
 
where q(t) is the process output at time t depends on 
the past n output values and on the past m values of 
the input τ. For identification plant model the neural 
network is used in the following form: 
 

))(),...,();(),...,1((),( mttntqtqftq wn −−−= ττw , (14) 
 
where mn ≥ for physically realizable systems. 
Here )(⋅wf  represents the nonlinear input-output 
map of the neural network which aproximates the 
process mapping )(⋅f . Note that the input to the 
neural network includes the past values of the 
process output but not the past values of the network 
output, because the neural network has no feedback.  
The training process for neural network 
nonparametric modeling can be expressed uniformly 
as the minimization of an error measure, typically 
sum-squared error, between the neural network 
output and the process output. If the sampled process 
data are collected over a period [0,t], the cost 
function )(wJ  in equation (12) is the following: 

                  ∑
=
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T
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The minimization is effected with backpropagation 
algorithm through time, which is needed for the 
parallel identification  form. For this purpose we 
define  relationship between ),( t∆J w and ),( tJ w as 
the relative factor )(tχ :  
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and then, we determine how to adjust learning rate 
term according to this relative factor χ. The  
adjustments of the learning rate is given as following: 
         

)1,0(   ],))(sgn(1)[()1( )( ∈⋅−=+ − υυχηη χ tettt . (17)  
                                                              
The proposed algorithm is based on the conventional 
BP algorithm by employing an adaptive learning rate, 
where the learning rate is adjusted at each iteration 
(Eq. 9).  
The algorithm proceeds as follows. First, we select 
the number of neurons in hidden and output layers, 
initial value of learning rate and the parameter υ. 
Then, the training process in the closed control loop 
is performed for various values of parameter υ, 
υ∈[0,1]. We adopt the value of υ for which a 
satisfactory identification performance is achieved.  

 
 

5. SIMULATION RESULTS 
 

In the previous sections, we have described how to 
design fuzzy logic controller and neural network for 
robot trajectory tracking and on-line identification of 
robot manipulator. Efficiency of them will be 
demonstrated in this section. Consider two joint 
planar manipulator as shown in Fig. 2. The 
kinematics and inertial parameters of the manipulator 
and actuators are (Velagic, et al., 2003): 
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The simulation study is organized into three parts. 
Part 5.1 focuses on fuzzy control of the robot 
manipulator. Tracking performance in both 
operational and joint spaces are considered . Parts 5.2 
and 5.3 of the study are concerned with the on-line 
identification of the robot manipulator using 
feedforward neural network in open loop and closed 
loops, respectively. In both cases all disturbances are 
considered, instead of friction.          
 
 
5.1 Fuzzy motion control system of robotic 

manipulator 
 
The desired trajectory in operational space is given 
by way points, as shown in Fig. 5. Actual robotic 
trajectory achieved by fuzzy logic controller is 
presented in the same figure with a solid line.  
Transition between two intermediate way points is 
governed by trapezoidal joint velocity profile.  
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Fig. 5. Desired and actual position trajectory. 
 
Corresponding joint position errors are negligible, 
which are presented in Fig. 6. Small deviations are 
presented in the case of joint 1, because the joint 1 
senses the joint 2 as payload. 
From the above figures it can be seen that a quite 
satisfactory control result is obtained, even though 
only seven rules are used to design the fuzzy control 
law. The proposed fuzzy controller is able to track 
well any paths. Also, this fuzzy controller 
demonstrates robustness in performance against 
adverse effects such as structured and unstructured 
uncertainties (e.g., robot inertia, Coriolis effect, and 
gravity). These effects influence the velocity, 
position, and acceleration of the robotic joints and 
thus negatively impact the controller’s performance 
and the life span of the manipulator itself. 
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Fig. 6. Joints position errors. 
 
 
5.2 On-line identification of manipulator using 
neural network 
 
The identification of the robot manipulator is 
performed in on-line mode under uncontrolled plant 
(Fig. 7). The input signal is sinusoidal shaped. 
Neural network contains 10 tansig neurons in hidden 
layer and 5 purelin neurons in its output layer. The 
proposed algorithm started from the same initial 

learning rate η=0.04 for both layers (hidden and 
output). The satisfactory results were obtained with 
υ=0.8. 
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Fig. 7. Identification structure. 
 
Comparison between actual and reference trajectory 
for both joints are shown in Figures 8 and 9.  
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Fig. 8. On-line learning process of the joint angle 1. 

Solid line: actual values; dotted line: desired 
values. 
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Fig. 9. On-line learning process of the joint angle 2. 

Solid line: actual values; dotted line: desired 
values. 



The errors tracking have bigger values in the starting 
faze. The reason for this lies in initialization of the 
neural network with random number values. 
However, after short time (about 10 s) the neural 
network output follows the robot trajectory with 
small error. The neural network parameters (weights 
and biases) can be extracted during the on-line 
learning process.      
 
 
5.3 On-line identification of manipulator using 

neural network in closed-loop control system  
 
The identification structure under fuzzy closed 
control system is depicted in Fig. 10.  
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Fig.10. On-line Identification NN structure under 

closed loop control system. 
 
On-line identification of the robot manipulator and 
actuators is performed by using the same neural 
network with the same parameters, which is 
mentioned described. The satisfactory results is also 
obtained with υ=0.8. The outputs of neural network 
plant model and robot manipulator are shown and 
compared in Fig. 11. From the obtained results can 
be concluded that the neural network mimics the 
robot and actuators complex system very well under 
control system in closed loop.     

 
Fig. 11. Comparison among desired trajectory, neural 

network(--) and robot manipulator(  ) outputs.  
 
 

6. CONLUSIONS 
 

This paper has successfully demonstrated the 
applications of neural network and fuzzy logic 
system to the identification and control of a robot 
manipulator. First, the fuzzy logic controller was 

used to robot position control. Then, a neural 
network was proposed to on-line identification of the 
robotic manipulator dynamics during the motion 
control. On-line parameter training is derived using 
the backpropagation method with adaptive learning 
rate. The effectiveness of the proposed hybrid 
identification and control scheme has been confirmed 
by simulated results. The conclusion is that the 
designed fuzzy controller and neural network are able 
to provide satisfactory performance for both 
trajectory tracking and identification capabilities.  
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