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Abstract: In this paper, we propose two level control system for a mobile robot. The first 
level subsystem deals with the control of the linear and angular volocities using a 
multivariable PI controller described with a full  matrix. The position control of the 
mobile robot represents the second level control, which is nonlinear. The nonlinear 
control design is implemented by a modified backstepping algorithm whose parameters 
are adjusted by a genetic algorithm, which is a robust nonlinear optimization method. 
The performance of the proposed system is investigated using a dynamic model of a 
nonholonomic mobile robot with friction. We present a new dynamic model in which the 
angular velocities of wheels are main variables. Simulation results show the good quality 
of position tracking capabilities a mobile robot with the various viscous friction torques. 
Copyright © 2005 IFAC. 
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1. INTRODUCTION 
 

In the field of mobile robotics, it is an accepted 
practice to work with kinematical models to obtain 
stable motion control laws for trajectory following or 
goal reaching (Fierro and Lewis, 1997; Khatib, et al., 
1997). Some authors have proposed dynamic models 
relating the setpoints to the servos and the robot 
linear and angular velocities (Fukao, et al., 2000; Hu 
and Yang, 2001; Oriolo, et al., 2002; Rajagopalan 
and Barakat, 1997). Topalov, et al. (1998) use a 
model in which the torques of the servos appear as 
the input vector. Similarly, Yun and Yamamoto 
(1997) link the robot coordinates and the turned 
angle of each wheel with the servo’s torques. In our 
paper a new dynamic model for differential drive 
mobile robots is presented.  
The central problem in this paper is position 
tracking. In this case of dynamic mobile robot 
model, the position control law ought to be nonlinear 
in order to ensure the stability of the error, that is its 
convergence to zero (Hu and Yang, 2001; Oriolo, et 
al., 2002). Usually the backstepping method (Hu and 

Yang, 2001; Tanner and Kyriakopoulos, 2003) was 
used for obtaining a constructive quality nonlinear 
control. In order to achieve the optimal values of 
parameters that take place we used a genetic 
algorithm. Genetic algorithms provide non-linear 
robust search for spaces having many local minima 
and maxima. Holland (1992) established genetic 
algorithms as a viable technique that can be applied 
to a broad spectrum of problems. Genetic algorithms 
have been applied to various robotic control 
applications (Chin and Qi, 1996). This paper 
discusses the application of genetic algorithms to the 
tuning of nonlinear position tracking controller 
parameters. 
The paper is organized as follows. In Section 2 the 
control system of mobile robot and its dynamic 
model are described. Section 3 contains the position 
and velocity control designs using a PI controller and 
nonlinear position control structure, respectively. 
Simulation results are presented and discussed in 
section 4. Some conclusions are given at the end of 
the paper. 
 



2. CONTROL SYSTEM OF MOBILE ROBOT 
 

The proposed control system with two-level controls 
is shown in Fig. 1. The low level velocity control 
system is composed of a multivariable PI controller 
and dynamic model of mobile robots and actuators. 
The medium level position control system generates 
a non-linear control law whose parameters are 
obtained using a genetic algorithm.     
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Fig. 1. Mobile robot position and velocity control . 
 
Next, the basic motion analysis of the mobile robot 
will be performed. 
 
 
2.1. Dynamics of Mobile Robot 
 
In this section, a dynamic model of a nonholonomic 
mobile robot will be derived. A typical 
representation of a nonholonomic mobile robot is 
shown in Fig. 2.  
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Fig. 2. The representation of a nonholonomic mobile 
robot. 

 
The robot has two driving wheels mounted on the 
same axis and a free front wheel. The two driving 
wheels are independently driven by two actuators to 
achieve the motion and orientation. The position of 
the mobile robot in the global frame {X,O,Y} can be 
defined by the position of the mass center of the 
mobile robot system, denoted by C, or alternatively 
by position A, which is the center of mobile robot 
gear, and the orientation between robot local frame 
{xm,C,ym} and global frame. The kinetic energy of 
the whole structure is given by the following 
equation: 
 
                              krrl TTTT ++= ,                       (1) 
 
where Tl is a kinetic energy that is consequence of 
pure translation of the entire vehicle, Tr is a kinetic 
energy of rotation of the vehicle in XOY plane, and 
Tkr is the kinetic energy of rotation of wheels and 

rotors of DC motors. The values of introduced 
energy terms can be expressed by  
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where M is the mass of the entire vehicle, vc is linear 
velocity of the vehicle's center of mass C, IA is the 
moment of inertia of the entire vehicle considering 
point A, θ is the angle that represents the orientation 
af the vehicle (Fig. 2), I0 is the moment of inertia of 
the rotor/wheel complex and dθR/dt and dθL/dt are 
angular velocities of the right and left wheel 
respectively.  
Further, the components of the velocity of the point 
A, can be expressed in terms of dθR/dt and dθL/dt  
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Since θθ sin&&& dxx AC −=  and θθ cos&&& dyy AC += , 
where d is distance between points A and C, it is 
obvious that following equations follow: 
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By substituting terms in Eq.1 with expressions in 
equations (2-9), total kinetic energy of the vehicle 
can be calculated in terms of dθR/dt and dθL/dt:  
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where  
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Now, the Lagrange equations (L ≡ T) can be written: 
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where τ R  and τ L are the actuation torques (right and 
left) and KdθR/dt and KdθL/dt are the viscous friction 
torques of right and left wheel-motor systems, 
respectively.  
Finally, the dynamic equations of motion can be 
expressed as: 
    

                       RRLR KBA θτθθ &&&&& −=+ ,                (14) 

                       LLLR KAB θτθθ &&&&& −=+ ,                (15)  



3. POSITION AND VELOCITY CONTROL 
DESIGNS 

 
The function of controller is to implement a mapping 
between the known information (e.g. reference 
position, velocity and sensor information) and the 
actuator commands designed to achieve the robot 
task. For a mobile robot, the controller design 
problem can be described as follows: given the 
reference position qr(t) and velocity )(trq& , design a 
control law for the actuator torques, which drive the 
mobile robot, so that the mobile robot velocity tracks 
a smooth velocity control input and the reference 
position. Let the velocity and position of the 
reference robot (Fig. 3) be given as: 
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where vr is the reference linear velocity and ωr is the 
reference angular velocity.   
 
 
3.1 Position Control 
 
The trajectory tracking problem for a mobile robot is 
formulated with the introduction of a virtual 
reference robot (Egerstedt, et al., 2001) to be tracked 
(Fig. 3). The tracking position error between the 
reference robot and the actual robot can be expressed 
in the robot frame as: 
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where T
yxq eee ]  [ θ=e . 
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Fig. 3. The concept of tracking of a virtual reference 

robot. 
  

The position error dynamics can be obtained from 
the time derivative of the (17) as: 

                     121 uee += ω& , 
                      312 sin evee r+−= ω& ,                       (18)
                          23 ue =& , 
 
where inputs  u1 and u2 are introduced.                                                       
In this paper we propose the following nonlinear 

control inputs as the servos for velocity control loop: 
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where k1, k2, k3, k4, k5 and k6 are positive parameters. 
Equations (19) represent modified backstepping 
control law from (Hu and Yang, 2001), where 
denominators do not appear (they take value "1"). In 
(Hu and Yang, 2001), Lyapunov's stability theory 
was used to prove that the considered control law 
provides uniformly bounded norm of error ||ep(t)||. 
The issue of rigorous proof of stability for introduced 
control law (19) remains open. 
The key problem in such control design is to obtain 
control coefficients k1 to k6. To solve this problem, a 
genetic algorithm is used to find the optimal values 
of those coefficients. To apply this method a low-
level velocity controller has to be designed first.  
 
 
3.2 Velocity Control  
 
The dynamics of the velocity controller is given by 
the following equations in Laplace domain: 
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where ev(s) is the linear velocity error, and eω(s) is 
the angular velocity error. This structure differs from 
previously used diagonal structures. Transfer 
functions Gij(s) are chosen to represent PI controllers: 
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The velocity control loop structure is shown in Fig. 
1, as an inner loop. From the simulation results 
obtained (Figs. 4 and 5), it can be seen that the 
proposed PI controller successfully tracks the given 
linear and angular velocity profiles. These results 
justify the use of four controllers instead of two. The 
values for PI controller parameters are: K1=100, 
K2=60, Ti1=Ti2=20. 
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Fig. 4. Sine response of linear velocity and linear 

velocity error. 
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Fig. 5. Sine response of angular velocity and angular 

velocity error. 
 
 

3.3 Evolution of the Coefficients 
 
In this paper a simple genetic algorithm is used for 
parameter evolution. Coefficients k1 to k6 are 
encoded into a binary chromosome (Fig. 6).  
 

 
 
Fig. 6. Chromosome structure. 
 
If ex(t), ey(t), and eθ(t) (0 < t < ts) are error functions, 
the objective function is calculated as in (22). 
Parameters ax, ay and aθ are some positive real 
numbers. N is the number of error samples. The 
mapping between the objective and the fitness 
function has not been done, so it is obvious that the 
better individual has the smaller value of the 
objective function (fitness). In order to evaluate the 
fitness of the individual it is necessary to run the 
simulation. 
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Values of the objective function parameters are: ax= 
aθ=1, ay=2,  N=1000 and ts=10 sec.  
In (22) we chosen the following criterion: 
 

                             ( )∑
=

+=
N

i
ieJ

1
1 1ln ,                   (23) 

rather than usually used ones, given by (24) and (25) 
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The criterion J1 penalizes smaller errors (expected in 
the stationary state) more (Fig. 7) and consequently it 
ensures the better position tracking.  
Error eθ(t) is calculated as follows: 
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This type of error is suitable since it prevents 
unnecessary full circle rotation.  
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Fig. 7. Graphical illustration of different criteria.  
 

The coefficient evolution is performed using a 
lemniscate as suitable complex trajectory: 
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where a=α=1.The evolution process (population size 
is 40) is depicted in Fig. 8.  
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Fig. 8. Change of the best fitness in the population 
through generations.  

 
This evolution yielded the following values for 
considered coefficients: K1=6.2457, K2=221.2306, 
K3=2.3433, K4=13.5117,   K5=3.1933, K6=8.3361. 
 
 

4. SIMULATION RESULTS 
 

In this section, the above controller is applied to the 
dynamic model of the robot derived in this paper. 
The Simulink model of the mobile robot control 
system is shown in Fig. 7. The used mobile robot 
parameters are M=10kg, IA=1kgm2, r=0.035 m, 
R=0.175 m, d=0.05 m, m0=0.2 kg , J0=0.0001 kgm2, 
K/A=0.1, and are the same that have been during the 
evolution.  



Two trajectories are selected to verify the 
performance of the proposed control system: a 
circular and a lemniscate path. The results of the 
trajectory tracking task in both cases are shown in 
Figs. 9-11 and Figs. 12-14, respectively. From these 
figures, it can be concluded that satisfactory tracking 
results are obtained using the proposed control 
system. 
Finally, the comparison of Cartesian error norm 
profiles has been presented for different friction 
coefficients in Fig. 15. This experiment has been 
done for a lemniscate path. It is obvious that the 
friction increase causes degradation of control 
system performance. 
 

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x(m)

y(
m

)

Desired and actual trajectory

 
 
Fig. 9. Tracking a circular path. 
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Fig. 10. Time diagrams for important variables 

(circular trajectory) 
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Fig. 11.  Velocity profiles (circular trajectory). 
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Fig. 12. Tracking a lemniscate path. 
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Fig. 13. Time diagrams for important variables 

(lemniscate trajectory) 
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Fig. 14. Velocity profiles (lemniscate trajectory) 
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Fig. 15. Norms of Cartesian error for various friction 

coefficients 
 
 

5. CONCLUSIONS 
 

In this paper a new dynamic model of a mobile robot 
with nonholonomic constraints is derived first. The 
special feature of this model is that main variables 
are angular velocities of wheels. Due to this 
approach the impossibility of the lateral motion is 
embedded into the model. In addition such a model 
is easily simulated.    
The overall control system has an inner velocity loop 
based on PI controllers. The coefficients of the outer 
nonlinear modified backstepping position control 
loop are adjusted by a genetic algorithm. The 
efficiency of obtained controller is demonstrated on 
various trajectory tracking.  
The future work will explore some other methods of 
nonlinear position control laws. One alternative 
approach may be replacing the backstepping control 
law with a feedforward neural network, learned with 
a genetic algorithm. 
 
 

REFERENCES  
 

Fierro, R. and F.L. Lewis (1997). Control of a 
Nonholonomic Mobile Robot: Backstepping 
Kinematics into Dynamics. Journal of Robotics 
Systems, Vol. 14, pp. 149–163. 

Khatib, M., H. Jaouni, R. Chatila, and J.P. Laumond 
(1997). Dynamic Path Modification for Car-Like 
Nonholonomic Mobile Robots. In: Proceedings 
of the IEEE International Conference on 
Robotics and Automation, pp. 2920–2925. 

Fukao, T, H. Nakagawa, and N. Adachi (2000). 
Adaptive Tracking Control of a Nonholonomic 
Mobile Robot, IEEE Transaction on Robotics 
and Automation, Vol. 16, pp. 609-615. 

Hu, T. and S.X. Yang (2001). Real-time Motion 
Control of a Nonholonomic Mobile Robot with 
Unknown Dynamics. In: Proceedings of the 
Computational Kinematics Conference, Seoul.  

Oriolo, G., A. De Luca and M. Vendittelli (2002). 
WMR control via dynamic feedback 
linearization: Design,  implementation and 
experimental validation. IEEE Transactions on 
Control System Technology, Vol. 10, pp. 835-
852. 

Rajagopalan, R. and N. Barakat (1997). Velocity 
Control of Wheeled Mobile Robots Using 
Computed Torque Control and Its Performance        
for a Differentially Driven Robot. Journal of 
Robotic Systems, Vol. 14, pp. 325-340. 

Topalov, A.V., D.D. Tsankova, M.G. Petrov, and T. 
Proychev (1998). Intelligent Sensor-Based 
Navigation and Control of Mobile Robot in a 
Partially Known Environment. In: Proceedings 
of the 3rd IFAC Symposium on Intelligent 
Autonomous Vehicles, pp. 439–444. 

Yun, X. and Y. Yamamoto (1997). Stability Analysis 
of the Internal Dynamics of a Wheeled Mobile 
Robot. Journal of Robotics Systems, Vol. 14,  
pp. 698–709. 

Tanner, H.G. and K.J. Kyriakopoulos (2003).  
Backstepping for nonsmooth systems. 
Automatica, Vol. 39, pp. 1259-1265.  

 Holland, J.H. (1992). Adaptation in Natural 
Artificial Systems, University of Michigan Press, 
Michigen. 

Chin, T.C. and X.M. Qi, (1996). Integrated Genetic 
Algorithms based Optimal Fuzzy Logic 
Controller Design. In: Proceedings of the Fourth 
International Conference on Control, 
Automation, Robotics and Vision, pp. 563-567. 

 Egerstedt, M., X. Hu, and A. Stotsky (2001). Control 
of Mobile Platforms Using a Virtual Vehicle 
Approach. IEEE Transaction on Automatic 
Control, Vol. 46, pp. 1777-1882. 


