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Abstract: In this note we described the robustness properties of optimal risk-
sensitive controllers for quantum systems. We consider a quantum generalization
of risk-sensitive criteria using the framework of (James, 2004). The robustness
properties are derived by evaluating certain Radon-Nikodym derivatives of the
quantum models and of the cost criteria. In addition to induced perturbations in
the quantum statistics, perturbations in the cost function are allowed—evidently
a non-classical feature. Copyright c©2005 IFAC
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1. INTRODUCTION

In recent years, a number of papers have appeared
concerning the feedback control of quantum sys-
tems; e.g., see (Wiseman and Milburn, 1994; Do-
herty et al., 2000; Doherty and Jacobs, 1999).
As is well known in the control theory literature,
robustness is a critical issue in the design of feed-
back control systems. In particular, a feedback
controller is commonly designed on the basis of a
nominal model which only approximates the true
behaviour of the system being controlled. If the
robustness issue is not taken into account when
designing a feedback controller, this may result
in a significant degredation of the performance of
the feedback control system or even instability.
The importance of robustness in feedback con-
trol system design applies equally in the control
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of quantum systems as in the control of classi-
cal systems. Furthermore, when considering the
feedback control of quantum systems, stochastic
models naturally arise and thus it is useful to con-
sider problems of robust stochastic optimal con-
trol for quantum systems. These considerations
motivated the results of (James, 2004) which are
concerned with the risk sensitive optimal control
of quantum systems.

The use of a risk sensitive cost criterion in design-
ing optimal feedback controllers is known to lead
to useful robustness properties for the resulting
controller; e.g., see (Boel et al., 2002; Dupuis et
al., 2000). Indeed, in the paper (Boel et al., 2002),
it is shown that the use of a risk sensitive op-
timal controller enables an upper bound to be
obtained for a certain (risk neutral) cost function
for a class of true system dynamics which differ
from the nominal system model which is used
to design the risk sensitive controller. The main



result to be presented in this paper shows that
for a class of risk sensitive optimal controllers for
quantum systems (designed using the approach of
(James, 2004)) a bound on a corresponding risk
neutral cost function can also be obtained. This
result represents a quantum version of the result of
(Boel et al., 2002; Dupuis et al., 2000). This result
provides motivation for the risk sensitive optimal
control procedure as providing a suitable method-
ology for designing robust feedback controllers for
quantum systems. The main result of the paper is
illustrated with an example involving a two level
quantum system. Complete details will be given
in the full version of this paper.

2. THE CONTROLLED QUANTUM SYSTEM

As in (James, 2004), we consider a controlled
quantum system whose dynamics are described in
discrete-time by the recursion

ωk+1 = ΛΓ(uk, yk+1)ωk, (1)

where

ΛΓ(u, y)ω =
Γ(u, y)ω

pΓ(y|u, ω)
. (2)

Here, Γ(u, y) is a quantum operation that is used
to model (via (1)) the state transfer if a control
value u is applied and a measurement value y

is observed. The probability of a measurement
outcome y (assumed discrete-valued) is given by

pΓ(y|u, ω) = 〈Γ(u, y)ω, I〉, (3)

where I is the identity operator. The operator
Γ(u, y) is assumed to be normalized.

Thus if the quantum system is in state ωk at time
k, and at this time the control value uk is applied,
a measurement outcome yk+1 will be recorded,
and the system will transfer to a new state ωk+1.
The probability of yk+1 is pΓ(yk+1|uk, ωk). Equa-
tion (1) is a discrete time stochastic master equa-
tion (SME); e.g., see (Nielsen and Chuang, 2000;
James, 2004).

On a time interval 0 ≤ k ≤ M − 1 a feed-
back controller is specified by a control law
u = K(y), where K = {K0,K1, . . . ,KM−1}.
To simplify notation, we often write sequences
uk1

, uk1+1, . . . , uk2
as uk1,k2

. Then we can write
uk = Kk(y1,k). We denote by K the class of all
such feedback controllers.

The controller K therefore determines controlled
stochastic processes ωk, uk and yk on the interval
0 ≤ k ≤ M . The resulting probability distribu-
tion PK

ω0,0 of the measurement process y1,M =
y1, . . . , yM is given by

PK
ω0,0(y1, . . . , yM ) =

M−1
∏

k=0

pΓ(yk+1|uk, ωk)

= 〈

M−1,←
∏

k=0

Γ(uk, yk+1)ω0, I〉(4)

where pΓ is defined in (3),

uk = Kk(y1, . . . , yk) (5)

and ωk is defined by the recursion (1). In the
second line of (4), the product denotes a time-
ordered composition with the most recent opera-
tor applied first.

3. RISK-SENSITIVE OPTIMAL CONTROL

We consider a risk-sensitive criterion which gen-
eralizes the well-known classical LEQG criterion.
For each control value u, let L(u) be a non-
negative observable. Let N be a non-negative ob-
servable. These cost observables are used to define
the following performance criterion (James, 2004):

J
µ
ω,0(K)

∆
= EK

ω,0[

M−1
∏

k=0

〈ωk, eµL(uk)〉〈ωM , eµN 〉](6)

Here, µ > 0 is a positive risk parameter. In this
expression, the conditional states ωk are given by
the quantum system model (1) and the expecta-
tion is evaluated with respect to the probability
distribution PK

ω0,0 determined by a feedback con-
troller K. Each term in the expression corresponds
to a quantum average of an exponential cost, and
when multiplied together provide a generalization
of the LEQG criterion.

We wish to find a controller that minimizes this
criterion. This was done in (James, 2004) for a
class of multiplicative criteria that includes (6).
We now explain how the risk-sensitive criterion (6)
can be cast in this general form, and then describe
the solution.

Define the operator

R(u)ω̂
∆
=

〈ω̂, eµL(u)〉

〈ω̂, 1〉
ω̂. (7)

This operator maps possibly unnormalized states
to possibly unnormalized states, and is in general
nonlinear but satisfies the real multiplicative ho-
mogeneity property R(u)rω̂ = rR(u)ω̂ for any real
number r and any ω̂, u.

Define ΓR(u, y) = Γ(u, y)R(u) and

ΛΓ,R(u, y)ω̂ =
ΓR(u, y)ω̂

pR(y|u, ω̂)
(8)



where

pR(y|u, ω̂) =
〈ΓR(u, y)ω̂, I〉

〈R(u)ω̂, I〉
. (9)

Associated with the operator ΛΓ,R are the dynam-
ics

ω̂k+1 = ΛΓ,R(uk, yk+1)ω̂k, (10)

where yk+1 is distributed according to the prob-
ability distribution pR(yk+1|uk, ω̂k) given by (9).
This is a controlled Markov chain, with unnor-
malized states ω̂k. It is a modified stochastic mas-
ter equation corresponding to the operator ΓR.
Under the action of a controller K ∈ K the
stochastic process ω̂k is determined by (10) and
uk = Kk(y1,k).

Let M be a positive integer indicating a finite
time interval k = 0, . . . ,M . For each k, given a
sequence of control values uk,M−1 = uk, . . . , um−1

and measurement values yk+1,M = yk+1, . . . , yM ,
define random cost observables Gk by the recur-
sion

Gk = R†(uk)Γ†(uk, yk+1)Gk+1,

GM = F
(11)

where 0 ≤ k ≤ M − 1 and F is a non-negative
linear observable. Here, R† denotes that adjoint
of R, etc.

We next define the general risk-sensitive cost
functional

J
µ
ω̂,0(K) =

∑

y1,M∈YM

〈ω̂, G0〉. (12)

In (James, 2004, Example 7) it is shown that the
risk-sensitive criterion (6) can be expressed in the
form (12), and by (James, 2004, Lemma 1) we
have

J
µ
ω̂,0(K) = EK

ω̂,0[〈ω̂M , F 〉] (13)

where ω̂i, i = k, . . . ,M is the solution of the
recursion (10) with initial state ω̂0 = ω̂ under the
action of the controller K.

The optimal control problem is solved using dy-
namic programming in terms of the cost to go:

J
µ
ω̂,k(K)

∆
=

∑

yk+1,M∈YM−k

〈ω̂, Gk〉 (14)

The dynamic programming equation is

W (ω̂, k) = inf
u∈U







∑

y∈Y

W (ΛΓ,R(u, y)ω̂, k + 1).

.pR(y|u, ω̂)







W (ω̂,M) = 〈ω̂, F 〉 (15)

where 0 ≤ k ≤ M − 1.

Theorem 3.1. (James, 2004, Theorem 1) Let W (ω̂, k),
0 ≤ k ≤ M , be the solution of the dynamic
programming equation (15).

(i) Then for any K ∈ K we have

W (ω̂, k) ≤ J
µ
ω̂,k(K) (16)

(ii) Assume in addition that the minimizer

û∗(ω̂, k) ∈ argmin
u∈U







∑

y∈Y

W (ΛΓ,R(u, y)ω̂, k + 1)

.pR(y|u, ω̂)







(17)

exists for all ω̂, 0 ≤ k ≤ M − 1. Then the
separation structure controller Kû∗

ω̂0
defined by

(17) is optimal for problem (12); i.e. J
µ
ω̂0,0(K) ≥

J
µ
ω̂0,0(K

û∗

ω̂0
) for all K ∈ K.

4. ROBUSTNESS PROPERTIES

We seek a bound on the (risk-neutral) perfor-
mance of the control system

Jω,0(K) = EK
ω,0[

M−1
∑

k=0

〈ωk, L(uk)〉 + 〈ωM , N〉](18)

where the state ωk = ωtrue
k evolves according to

the true model (see (22) below) and the control is
determined by the nominal model

uk = û∗
nom(ω̂k, k) (19)

via (17) with Γ = Γnom and

ω̂k+1 = ΛΓnom,R(uk, yk+1)ω̂k. (20)

This controller is denoted K∗
nom = K

û∗

nom

ω̂0
.

A bound for (18) is sought in terms of a measure
of the “distance” between Γnom(u) and Γtrue(u).
The way in which we measure the “distance”
between Γnom(u) and Γtrue(u) is to consider the
“distance” between the probability distributions
Pnom and Ptrue defined on the space of obser-
vation paths and determined by Γnom(u) and
Γtrue(u) respectively, under the controller K∗

nom.
This distance is defined in terms of the relative en-
tropy (e.g., see (Nielsen and Chuang, 2000, Chap-
ter 11)):

R(Ptrue ‖ Pnom)
∆
= EPtrue

[log
dPtrue

dPnom

] (21)

provided Ptrue is absolutely continuous with re-
spect to Pnom.

From (4), the distributions Ptrue and Pnom are
given explicitly by



Ptrue(y1, . . . , yM ) =
M−1
∏

k=0

pΓtrue
(yk+1|uk, ωtrue

k )

and

Pnom(y1, . . . , yM ) =

M−1
∏

k=0

pΓnom
(yk+1|uk, ωnom

k )

where pΓ(·) is defined by (3), uk is determined by
K∗

nom, and

ωtrue
k+1 = ΛΓtrue

(uk, yk+1)ω
true
k (22)

and

ωnom
k+1 = ΛΓnom

(uk, yk+1)ω
nom
k (23)

respectively under these distributions. The next
lemma computes the Radon-Nikodym derivative
of these distributions.

Lemma 4.1. Suppose Ptrue is absolutely contin-
uous with respect to Pnom. Then the Radon-
Nikodym derivative dPtrue

dPnom
can be written in the

form

dPtrue

dPnom

(y1, . . . , yM ) =
M−1
∏

k=0

fk+1(yk+1|y1, . . . , yk)

where

fk+1(yk+1|y1, . . . , yk) =
pΓtrue

(yk+1|uk, ωtrue
k )

pΓnom
(yk+1|uk, ωnom

k )
≥ 0

and

∑

yk+1

fk+1(yk+1|y1, . . . , yk)pΓnom
(yk+1|uk, ωnom

k ) = 1.

2

We consider Γnom(u, y) in Kraus (operator sum)
form (Nielsen and Chuang, 2000, Chapter 8),

Γnom(u, y)ω =
∑

a∈A

γnom,a(u, y)ωγ†
nom,a(u, y)(24)

for suitable operators γnom,a(u, y), a ∈ A satisfy-
ing

∑

a∈A,y∈Y

γ†
nom,a(u, y)γnom,a(u, y) = I. (25)

Here A is a finite index set. The true model is
assumed to be given by

Γtrue(u, y)ω

=
∑

a∈A

λa(u, y)γnom,a(u, y)ωγ†
nom,a(u, y) (26)

where λa(u, y) are real numbers satisfying 0 ≤
λa(u, y) ≤ d(u, y) for all a. Since Γtrue(u, y) is

required to be a normalized quantum operation,
we also require

∑

a∈A,y∈Y

λa(u, y)γ†
nom,a(u, y)γnom,a(u, y) = I.(27)

Thus we can think of the true model as a perturba-
tion of the nominal model in the sense that the op-
erator γnom,a(u, y) is multiplicatively perturbed
to ra(u, y)γnom,a(u, y), where ra(u, y) are complex
numbers such that |ra(u, y)|2 = λa(u, y). In the
terminology of (Belavkin and Staszewski, 1986),
(Raginsky, 2003), we say that Γtrue(u, y) is com-
pletely dominated by d(u, y)Γnom(u, y).

Lemma 4.2. Let Γtrue(u, y) be completely dom-
inated by d(u, y)Γnom(u, y) as described above.
Then Ptrue is absolutely continuous with respect
to Pnom. 2

We will need the following general convex duality
formula (e.g., see (Boel et al., 2002)):

log EP[ef ] = sup
Q

{EQ[f ] − R(Q ‖ P)} (28)

where P and Q are probability distributions.

Let X be a non-negative observable (e.g. L(u) or
N), and let PX(dx) denote the projection-valued
measure corresponding to the observable X.

Lemma 4.3. We have

log 〈ω, eµX〉 = sup
g(·|X,ω)

{µ〈ω, X̃〉 − C(X̃ ‖ X)}(29)

where g(·|X,ω) ≥ 0,
∫

g(x|X,ω)〈ω, PX(dx)〉 = 1, (30)

X̃ = Xg(X|u, ω),

and

C(X ‖ X) = 〈ω, g(X|X,ω) log g(X|X,ω)〉.(31)

2

Theorem 4.4. Suppose Γtrue(u, y) is completely
dominated by d(u, y)Γnom(u, y) as described above.
Consider the controller K∗

nom determined by the
nominal model for the risk-sensitive criteria (6).
Then

Etrue
ω,0 [

M−1
∑

k=0

〈ωk, L̃k(uk)〉 + 〈ωM , ÑM 〉]

≤
1

µ
log J

µ
ω,0(K

û∗,µ
ω̂0

)

+
1

µ
R(Ptrue ‖ Pnom) +

1

µ
C(L̃ ‖ L) (32)



where L̃k(uk) = L(uk)gk(L(uk)|L(uk), ωk), ÑM =
NgM (N |N,ωM ) , gk is as in Lemma 4.3, and

C(L̃ ‖ L) (33)

= Etrue
ω,0 [

M−1
∑

k=0

Cωk
(L̃(uk) ‖ L(uk)) + CωM

(Ñ ‖ N)].

2

Note that the result of this Theorem provides for
uncertainty in the induced measurement probabil-
ity distribution and in the cost that is specified.

5. EXAMPLE

We consider an example from (James, 2004) of a
two-level system on H = C2. For this system, we
consider a risk sensitive controller using criteria
(6). Let | − 1〉 and |1〉 denote the orthonormal
basis of eigenvectors of the spin observable

A =

(

−1 0
0 1

)

(34)

corresponding to ideal measurement values a =
−1 and a = 1 (e.g. spin down and spin up
respectively). The actual measurement values y ∈
{−1, 1} recorded are imperfect, being subject to
an error probability 0 < α < 1. The control
actions available are to either do nothing, or to
flip the state. Given an initial mixed state

ω =

(

ω11 ω12

ω∗
12 ω22

)

, (35)

it is desired to put the system into the up state

|1〉 =

(

0
1

)

, or |1〉〈1| =

(

0 0
0 1

)

through a series of measurements and feedback
control actions (say over a time horizon M = 2).

The controlled dynamics are determined by a
controlled quantum operation, with nominal value

Γnom(u, y)ω (36)

= q(y| − 1)P−1T
uωTu †P−1 + q(y|1)P1T

uωTu †P1,

where

Tu =















(

1 0
0 1

)

if u = 0
(

0 1
1 0

)

if u = 1,

P−1 =

(

1 0
0 0

)

, P1 =

(

0 0
0 1

)

,

and
q(−1| − 1) = q(1|1) = 1 − α

q(−1|1) = q(1| − 1) = α.

The cost function is specified by

L(u) = C2 + c(u)I

and

N = C2

where C = 1
2 (A − I) and c(0) = 0, c(1) = p, with

p ≥ 0. Note that the expected value of C2 is

〈1|C2|1〉 = tr[C2|1〉〈1|] = 0
〈 − 1|C2| − 1〉 = tr[C2| − 1〉〈 − 1|] = 1

giving zero cost in the desired state and non-zero
cost otherwise.

From (37), the Kraus operators are

γnom,a(u, y) =
√

q(y|a)PaTu

where a ∈ {−1, 1}. We now suppose that the error
probability α is not known exactly. Let 0 < α̃ < 1
be the true value of this parameter and set

q̃(−1| − 1) = q̃(1|1) = 1 − α̃

q̃(−1|1) = q̃(1| − 1) = α̃.

Then the probability distribution q̃(y|a) is ab-
solutely continuous with respect to q(y|a), with
Radon-Nikodym derivative

λa(u, y) =
q̃(y|a)

q(y|a)
.

Hence robustness can be considered relative to
the class of “true” models with error parameter
α̃ described by

Γtrue(u, y)ω (37)

= q̃(y| − 1)P−1T
uωTu †P−1 + q̃(y|1)P1T

uωTu †P1.

Note that by construction Γtrue(u, y) is normal-
ized.

This means that if the true error probability
differs from the nominal value, the bound (32)
leads to a corresponding bound on the risk-neutral
cost.

The cost observables L(u) and N are both diago-
nal with respect to the basis | − 1〉, |1〉. Thus we
have the spectral formulas

L(u) = (1+ c(u))P−1 + c(u)P1, N = 1P−1 +0P1.

Consider the terminal cost observable N . Then
〈ω,N〉 = ω11, and 〈ω, Ñ)〉 = g2(1|N,ω)ω11 where
Ñ = Ng2(N |N,ω); cf. Theorem 4.4. If we let

g2(1|N,ω) = ñ2, g2(0|N,ω) =
1 − ñ2ω11

ω22
,

for some ñ2 ≥ 0, then

g2(1|N,ω)〈ω, P−1〉 + g2(0|N,ω)〈ω, P1〉 = 1

and so (30) is satisfied. Note that ñ2 can be chosen
arbitrarily subject to the constraint 0 ≤ ñ2 ≤ 1

ω11
.

Also 〈ω, Ñ〉 = ñ2ω11.



Now consider the running cost observable L(u).
Since L(0) = N , 〈ω,L(0)〉 = ω11, and we set

g1(1|L(0), ω) = ñ1, g1(0|L(0), ω) =
1 − ñ1ω11

ω22
,

for some 0 ≤ ñ1 ≤ 1
ω11

.

Now
〈ω,L(1)〉 = (1 + p)ω11 + pω22.

Let p̃ ≥ 0, and define

g1(1 + p |L(1), ω) =
1 + p̃

1 + p
,

g1(p |L(1), ω) =
1 − 1+p̃

1+p
ω11

ω22

Then (30) is satisfied, and

〈ω, L̃(1)〉 = (1 + p̃)ω11 + p(1 −
1 + p̃

1 + p
ω11).

where

L̃(1) = L(1)g1(L(1)|L(1), ω).

From the expressions (31) and (34), the quantity
C(L̃||L) can be calculated in terms of ñ1 and
ñ2 which leads to a corresponding bound on the
risk neutral cost. Hence we have performance
bounds for a class of cost functions and a class
of uncertainty.
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