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Abstract: This paper presents a two loop optimal control structure for variable speed fixed 
pitch horizontal axis wind turbines (HAWT) having flexible drive trains. That structure, 
formed by a low frequency loop and a high frequency loop, is the result of the frequency 
separation principle adopted in the wind modelling. The optimality of the whole system is 
expressed by the trade-off between the energy conversion maximization and the 
minimization of the total load excitation that induces the drive train’s mechanical stress. 
This optimal problem is treated within a complete linear quadratic stochastic approach, 
whose effectiveness was proved by numerical simulation.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The control problem associated with the wind energy 
conversion systems consists essentially in optimizing 
the energy conversion. In the case of fixed pitch 
horizontal axis wind turbines (HAWT), this is 
equivalent with maximizing the aerodynamic 
efficiency described by the power coefficient, Cp. 
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Fig. 1. The power coefficient vs. the tip speed ratio 
 
This coefficient is a function of the tip speed ratio, λ 
(figure 1), which is defined as a ratio between the 

peripheral speed of the blades and the wind speed, v: 
 

 R vλ = Ω ⋅ , (1) 
 

where Ω is the rotational speed of the blades and R is 
the blade length. The optimal value of this coefficient 
being obtained for a well-determined tip speed ratio, 
λopt (figure 1), the maximization of the energetic 
efficiency was implemented in some approaches 
(e.g., Miller, et al., 1997) by controlling the electrical 
generator in order to track the desired value of the 
shaft speed, ref

optv RΩ = ⋅λ . This is equivalent to 
maintaining the operating point on the so called 
optimal regimes characteristic (ORC) (Nichita, 
1995). But this kind of control can induce mechanical 
reliability problems. 
 
The mechanical fatigue of the drive train can be 
reduced by imposing the minimization of the 
generator torque variations, ∆ΓG(t). Ekelund (1997) 



has expressed the antagonist demands of maximizing 
the energy conversion and minimizing the torque 
variations by a combined optimization criterion: 
 

 ( ){ } { }2 2( ) ( )opt GI E t E t= α ⋅ λ − λ + ∆Γ , (2) 

 
where E{⋅} is the statistical average symbol. The 
positive coefficient α is introduced to adjust the 
trade-off between the two demands above mentioned. 
The resulted LQG optimization problem has been 
solved using an adaptive control structure. Munteanu, 
et al., (2003) developed a new optimal control 
structure, minimizing the combined criterion (2) with 
no use of adaptive structures. Its basic principle relies 
upon separating the turbulence and the seasonal (low 
frequency) wind speed components from the wind 
spectral models (Nichita, et al., 2002). In this paper 
the same structure is used, but for a flexible drive 
train based HAWT, associated with another form of 
the optimization criterion. Moreover, a prediction 
method is used to estimate the seasonal wind speed, 
instead of filtering it from the total wind. 
 
The paper is organized as follows. In the next section 
the modelling issues that justify the proposed two 
loop control structure are presented; this structure is 
detailed in section 3, as composed of a low frequency 
loop and a high frequency loop. These loops are 
designed in sections 4 and 5 respectively. Some 
simulation results are discussed in section 6 and 
section 7 is dedicated to the concluding remarks. 
 
 

2. JUSTIFICATION OF THE TWO LOOP 
CONTROL STRUCTURE 

 
2.1 Wind modelling 
 
The modelling of the wind power system (WPS) 
takes into account the wind speed model, using the 
frequency separation principle. The wind speed is 
modelled as a stochastic process with two 
components (Nichita, et al., 2002): the seasonal, 
slowly variable component, v , and the turbulence, 
rapidly variable component, ∆v(t), as identified on 
the wind model of Van der Hoven (figure 2): 
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Fig. 2. Large band (six decades) Van der Hoven wind 

model (Burton, et al., 2001) 
 
The spectral gap around 0.5 mHz (figure 2), meaning 

negligible wind spectrum energy in the region 
between 2 hours and 10 minutes, allows the 
turbulence component, ∆v(t), be modelled as a zero 
mean random process. This component is obtained as 
the output of a first order low-pass (shaping) filter 
driven by a zero mean white noise, e(t). 
 

It is the low frequency component, v , that 
establishes the average position of the operating point 
on the wind turbine characteristic (the static 
operating point), whereas ∆v(t) generates the high 
frequency variations around this point. Two kinds of 
dynamics of the WPS may thus be identified: a low 
frequency one, excited by the seasonal component, 
v , and described by a steady-state nonlinear model, 
and a high frequency one, driven by the turbulence, 
∆v(t), described by a linearized model in normalized 
variations around the static operating point. 
 
2.2 The WPS model 
 
To model a variable speed WPS means essentially to 
describe the interaction (figure 3) between the 
aerodynamic subsystem (the rotor of the wind turbine 
– subsystem S1) and the electromechanical 
subsystem, EMS (the asynchronous machine and the 
static converter – subsystem S2), through the drive 
train (subsystem S3). 
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Fig. 3. The structure of the considered WPS 
 
The aerodynamic subsystem is modelled by the nonlinear 
wind torque characteristic (Wilkie, et al., 1990): 
 

 2 3
1 10.5 ( ) ( , )wt p wtR v C vΓ = ⋅ π ⋅ρ ⋅ ⋅ ⋅ λ Ω = Γ Ω ,(3) 

 

where ρ is the air density, Ω1 is the rotational speed 
of the low-speed shaft and Cp(λ) is a polynomial of 
the tip speed (Nichita, 1995). The asynchronous 
machine is torque controlled by a vector control 
scheme, producing the generator torque, ( )G tΓ , in 

response to a reference, ( )G t∗Γ . The dynamics of the 
EMS can be approximated by those of a first order 
filter having a time constant, which is negligible 
versus that of the drive train; therefore ( )G tΓ  equals 

( )G t∗Γ . The electromagnetic torque reference results 
from the combined action of the two control loops, as 
shown in the next section. 
 
The mechanical stress induced by the wind 
turbulences is usually alleviated if the turbine rotor 
interacts with the EMS through an elastic coupling 
based drive train (figure 4). Differently from the rigid 



coupling, the two parts of the high-speed shaft, axB 
and axC in figure 4, are now turning at different 
speeds, n⋅Ω1 and Ω2 respectively, where n is the 
transmission ratio of the gearbox. The elastic energy 
variations yield a new state variable, the internal 
torque, Γ. Denoting by Jg axC’s inertia and by JB 
axB’s inertia, it holds that: 
 

 2
B wtJ n J= η ⋅ , 

 

where η is the transmission efficiency and Jwt is the 
low-speed shaft inertia. 
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Fig. 4. Flexible drive train 
 
The flexible drive train’s model is composed of the 
axB and axC movement equations and the dynamic 
of the internal torque (De Battista and Mantz, 1998): 
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where Ks and Bs are respectively the stiffness and the 
damping coefficients of the spring. 
 
2.3 The linearized model 
 
In the sequel, for a generic variable y of the model, 
the following notations are adopted: 
 

 
operating point

y y= ; y y y∆ = − ; y y y∆ = ∆  (5) 
 

Being defined in a static operating point, y  is called 
steady-state value. The nonlinear characteristic of the 
turbine (3) is linearized around such an operating 
point, yielding (Ekelund, 1997): 
 

 ( )1 2wt v∆Γ = γ ⋅ ∆Ω + − γ ⋅ ∆ , (6) 
 

where γ depends on the chosen operating point: 
 

 
d ( ) d ( )

( )
( )

p p

p

C C

C

λ ⋅ λ λ − λ
γ = γ λ =

λ
, (7) 

 
As the turbulence component results from low-pass 
filtering a white noise, e(t), its linearized model is: 
 

 ( ) 1 ( ) 1 ( )w wv t T v t T e t∆ = − ⋅ ∆ + ⋅
i

, (8) 
 
where Tw is the time constant of the shaping filter. 
The generator torque, ΓG, acts as the control input in 
relations (4), which are linearized too. If 

1 2( )
T

wtt
 

= ∆Ω ∆Ω ∆Γ ∆Γ 
 

x
i i i i

 is the state vector, 

( ) Gu t = ∆Γ  is the control input and the normalized 

variation of the tip speed ratio, ( ) ( )z t tλ= ∆ , is the 
output (measure) variable, relation (6) and relations 
(4) linearized lead to the state space matrix equation: 
 

 ( ) ( ) ( ) ( )
( ) ( )
t t u t e t

z t t

 = ⋅ + ⋅ + ⋅
= ⋅

x A x B L
C x

i

, (9) 
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 (10) 
where 1T wt wtJ J= Ω ⋅ Γ  and 2

1G g wtJ n J= Ω ⋅ Γ  are 

time constants, whereas 2
1A s wtK K n= Ω ⋅ Γ  is the 

inverse of a time constant. Note that JT, JG and KA 
depend on the static operating point, ( 1Ω , wtΓ ). 
Relations (9) and (10) represent the linearized model 
of the WPS, describing the dynamics of high 
frequency variations around the static operating 
point, impressed by the turbulence component of the 
wind speed, ∆v(t). The parameters of the model are 
depending on this point, so the linearized model of 
the wind turbine depends on the wind speed. 
 
 

3. THE PROPOSED CONTROL STRUCTURE 
 

The proposed modelling approach leads to the 
separate compensation of the two dynamics of the 
WPS, by means of a two loop control structure. 
 

Due to the high inertia of the turbine versus the wind 
speed variation, an exclusively based on the energetic 
optimization control generates large torque variations 
at the generator’s shaft, which are harmful for the 
mechanical subsystems (the gear-box for example). 
The global goal of the control aims at achieving a 
trade-off between the energetic efficiency and 
reliability, by means of a combined control action 
obtained in a two loop structure: a low frequency 
loop (LFL), driven by the seasonal wind speed, v , 
and a high frequency loop (HFL), driven by the 
turbulence, ∆v(t). As the maximum energetic 
efficiency is obtained for a well defined value of the 
tip speed ratio, optλ , in the proposed approach the 
control goal is achieved as follows: 
- the steady-state tip speed is maintained at its 
optimal value, optλ = λ , which describes the 



maximum energetic efficiency; this goal is achieved 
by the LFL, using a classical PI controller for 
tracking the corresponding rotational speed, 1Ω ; 
- the variations of the tip speed around its mean value 
are minimized while maintaining the mechanical 
stress level at reasonable values; this behaviour is 
optimized in the HFL, using a LQG controller. 
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Fig. 5. The proposed control structure 
 
The two components of the wind speed are separated 
by filtering and they act separately within the two 
loops of the proposed control structure (figure 5). 
The same figure shows that the total control law is 
the sum of the two control inputs of the two loops: 
 

 G G GΓ = Γ + ∆Γ  (11) 
 
 

4. STEADY-STATE OPTIMIZATION: THE LFL 
 

The control problem associated with the LFL 
concerns the steady-state optimization, which 
consists in operating a wind turbine at variable speed 
such that its static operating point remains on the 
ORC. It is proposed that this goal be achieved by 
tracking the rotor’s speed corresponding to λopt: 
 

 1
ref

opt R vΩ = λ ⋅  (12) 
 
The LFL (figure 6) generates the static component of 
the electromagnetic torque, GΓ  (applied to the high 
speed shaft), necessary to drive the operating point of 
the low speed shaft on the ORC. 
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Fig. 6. Low frequency loop 
 
In relation (12) it is the seasonal component of the 
wind speed, v , that occurs, as this one determines the 
(slow) variation of the operating point. In principle, 
this component can be extracted from the (total) wind 
speed, v(t), by a high order low-pass filter, whose 
cut-off frequency must be at most the turbine’s 
bandwidth. But this solution cannot be used in 
practice without experiencing stability problems due 
to large phase lags, no matter the chosen control 
method is. It could happen that the reference torque 

level be significantly higher than the wind torque, 
thus compromising the operation of the wind turbine. 
Different ways have been adopted in order to avoid 
this problem: to increase the cut-off frequency of the 
low-pass filter, then making use of the filtering 
properties of a classical PI controller (Munteanu, et 
al., 2003), or implementing an on-off controller to 
zeroing the difference optλ − λ  (Munteanu, et al., 
2004). In the present paper, a more accurate 
estimation of v  is obtained by combining a reduced 
order low-pass filtering (LPF) of the total wind with 
an ARMA model based prediction. 
 
Figure 7 shows the superiority of the presented 
method versus simple low-pass filtering. Let 

f
v  be 

the output of the LPF and 
p

v  the estimation of v  by 
filtering and prediction. The speed references 
computed using either 

f
v  or 

p
v  in relation (12) will 

make the system turn at two tip speed ratios, 
f

λ  and 
p

λ , as the turbine experiences the real seasonal wind 
speed, v . For example, at time 9800 v  is much less 

than 
f

v ; a reference computed using 
f

v  would be 
difficult to track, because the real power available is 
much below. Meanwhile, the predicted value, 

p
v , is 

closer to v . One can compare the following standard 

deviations: ( ) 0.72
f

optσ λ λ− = , ( ) 0.44
p

optσ λ λ− = . 
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Fig. 7. Predicted versus filtered seasonal wind speed 
 
The ARMA model is recursively implemented for the 
prediction of the k-th sample of 

p
v  from 

f
v : 

 

 ( )
1 1

k j

n mp f p f
k k i k ji j

i j
v a v b v v−− −

= =
= ⋅ + ⋅ −∑ ∑  (13) 

 
where m=3, n=6 and ai, bj result from a recursive 
least mean squares procedure (Levine, 1996). 
 
The LFL is based upon a PI controller, as to the 
Ziegler-Nichols empirical method (Hautier and Caron, 
1997), to compensate the (weak) nonlinearities in the 
neighborhood of an usual operating point. The control 
practice shows that the PI choice is not critical, even 
more in the LFL, where the seasonal wind speed 
varies sufficiently slowly in relation to the wind 
turbine dynamics. The LFL makes that the mostly 
variable parameter of the linearized system, γ, be 
maintained constant with respect to the seasonal wind 
speed at 1γ = − , and the system (9) be invariant in 
relation to this parameter (Munteanu, et al., 2003). 



5. DYNAMIC OPTIMIZATION: THE HFL 
 
5.1 Problem formulation 
 
The most stressed mechanical part of the WPS is the 
drive train, supporting both the wind torque 
variations, wt∆Γ , and those of the electromagnetic 
torque, G∆Γ . The reliability aspects implying the 
limitation of the mechanical stress justify the 
introduction of an optimization criterion expressing a 
trade–off between the minimization of the tip speed 
variations around λopt and the minimization of the 
total load excitations, that is, ( ) ( )wt Gt t∆Γ + ∆Γ . This 
means to track the wind torque variations 
(Maximization of Energy with wind torque tracking – 
MEwtt); the optimization criterion (2) becomes: 
 

 ( ){ } ( ){ }
1 2

2 2
( ) ( ) minwt G

I I

I E E t t= α ∆λ + ∆Γ + ∆Γ →  

  (14) 
 
where the weighting coefficient, α , adjusts the 
energy-reliability trade-off. The first component 
results as a quadratic form of the state variable: 
 

 { }
{ }

2
1

1

( ) min

( ) ( ) minT T

I E t

I E t tα α

= α ⋅ ∆λ → ⇔

= ⋅ ⋅ →x C C x
, (15) 

 

where α = α ⋅C C . The global performance 
criterion may be put into the form: 
 

 
( ) ( )( ) ( )

     2 ( ) ( ) ( ) ( ) min

T T T

T T T

I E t t

t u t u t u t

α α


  = ⋅ ⋅ + ⋅ ⋅ +  



+ ⋅ ⋅ ⋅ + ⋅ ⋅ →


xx

xu

R

uu
R

x M M C C x

x M R

 

 (16) 
where M = [0 0 0 1] and Ruu = 1. 
 
5.2 LQR design 
 
Supposing that the LFL is working, form (16) 
corresponds to a linear quadratic invariant stochastic 
(Gaussian) optimization problem. The existence and 
the uniqueness of the problem’s solution are 
guaranteed, as a well-known set of conditions on the 
structural properties of the controlled system (Levine, 
1996) is verified (the justifications are here skipped). 
The unique optimal control input minimizing the 
index expressed in (16) for the dynamic system given 
by relations (9) and (10) is the full-state feedback 
law, ( ) ( )u t t= − ⋅K x , with ( )1 T T−= ⋅ + ⋅uu xuK R R B S , 
where S is the unique, symmetric and positive semi-
defined matrix satisfying the Riccati matrix equation: 
 

 
( )1

1                             0

T T

T

−

−

⋅ + ⋅ + − ⋅ ⋅ −

− ⋅ ⋅ ⋅ ⋅ =

r r xx xu uu xu

uu

S A A S R R R R

S B R B S
, 

where 1 T−= − ⋅ ⋅r uu xuA A B R R . The asymptotic 
stability of the closed loop, described by 

( )( ) ( )t t= − ⋅ ⋅x A B K x
i

, is guaranteed. 
 
 

6. SIMULATION RESULTS 
 
The simulated system is a low power (5.5 kW) high 
speed fixed pitch HAWT. Its parameters are: R=2.5 
m, 7optλ = , ( ) 0.47p optC λ = , n=6, Jwt=3 kg·m2, 
Jg=0.05 kg·m2, Ks=75 Nm/rad, Bs=0.5 kg·m2/s. 
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Fig. 8. HFL: the steady-state tip speed ratio kept optimal 
 
Concerning the HFL, any practical implementation of 
a full-state feedback control requires that all the 
states be available for measuring. In this case, only 
the generator’s shaft speed, Ω2, can be directly 
measured; the other three states need to be estimated. 
An observer has been computed based upon a pole 
placement procedure, imposing a time response five 
times faster than that of the plant (Nise, 2000), and 
has been used in simulations. Below are briefed some 
Simulink simulation results on the functioning of each 
of the two loops and on their combined functioning. 
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variation for two values of α 
 
Figure 8 presents the LFL functioning: the steady-
state value of λ is maintained around its optimal 
value (in this case λopt=7). Figures 9 and 10 show 
how the normalized variations of the tip speed ratio, 
∆λ , and of the sum of torques, ( ) ( )wt Gt t∆Γ + ∆Γ , 
depend on α for the same wind sequence. As it was 
expected, the amplitude of the tip speed normalized 
variation decreases with α (figure 9), while that of 
the sum of torques variations increases (figure 10). 



One can note that, when α increases from 0.1 to 10, 
the standard deviation of ∆λ  decreases from 

0.23λσ =  to 0.09, while the standard deviation of 

( ) ( )wt Gt t∆Γ + ∆Γ  increases from 0.03Γσ =  to 0.53. 
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Fig. 10. The evolution of the sum of torques 

normalized variations for the same two values of α 
 
Figure 11 shows the combined functioning of the two 
loops, namely the position’s variations of the 
operating point around the ORC for two values of α. 
One can note that, for small α (top), these variations 
are significantly larger than those for large α 
(bottom). Also, it can be noted that these variations 
increase as the seasonal wind speed increases. 
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Fig 11. The evolution of the operating point: tracking the ORC 
 
 

7. CONCLUDING REMARKS 
 
In this paper the synthesis of an optimal control 
structure for variable speed fixed pitch flexible drive 
train HAWT is presented. It was used a particular 
configuration of the control structure – yielded by the 
frequency separation principle adopted in the wind 
modelling – consisting of two different loops: the 
maximum energetic efficiency loop, governed by the 
low frequency wind speed component, and an 
optimal control loop, ensuring an energy-reliability 
trade-off, governed by the turbulence component. 

The LFL harvests the maximum energy available in 
the seasonal wind speed, being built around a PI 
controller, whose reference is computed using a 
predicted value of the seasonal wind speed. The HFL 
is based upon a LQG controller, such that the 
available turbulence energy is captured more or less, 
depending on the admissible mechanical stress level. 
The possibility of variation of the weighting 
coefficient, α, confers flexibility to the system, so 
that the wind harvested energy be significantly 
increased when the particular conditions of the site 
allow it (that is, when the turbulences are not large). 
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