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Abstract: In this paper, we present a new scheme to design adaptive controllers
for uncertain systems containing nonsmooth nonlinearities in the actuator device.
The control design is achieved by introducing certain well defined sign functions
and Neural Networks approximations and by using the backstepping technique.
For the design and implementation of the controller, no knowledge is assumed
on the unknown system parameters and nonlinearity. It is shown that the
proposed controller not only can guarantee global stability, but also transient
performance.Copyright c©2005 IFAC
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1. INTRODUCTION

Adaptive control is becoming popular in many
fields of engineering and science as concepts of
adaptive systems are becoming more attractive in
developing advanced applications. It faces many
important challenges, especially in nontraditional
applications, such as nonsmooth nonlinearities.
Several adaptive control schemes have recently
been proposed, see for examples (Tao and Koko-
tovic, 1995a), (Pare and How, 1998), (Cho and
Bai, 1998), (Ahmad and Khorrami, 1999) and
(Su et al., 2000). In these papers, an adaptive
inverse technique was constructed to deal with
continuous-time model reference adaptive control.
An adaptive inverse cascaded with the plant was
employed to cancel the effects of nonlinearity.
Sometimes, it is not easy to get the inverse of
the nonlinearity, so this scheme cannot be em-
ployed. The compensation scheme is considered in
(Tao and Kokotovic, 1995a) for hysteresis, (Tao
and Kokotovic, 1995b) for backlash, (Lewis et
al., 1999) for dead-zone, (Tang et al., 2003) for ac-
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tuator failure. All the known approaches in deal-
ing with compensation assume that the uncertain
parameters in the system and nonsmooth nonlin-
earities must be inside some known compact sets.
Dead-zone pre-compensation using Neural Net-
works (NNs) have been used extensively in feed-
back control systems (Selmic and Lewis, 2000).
The NN has two layers or weights consisting a NN
estimator and a NN compensator. In the above
mentioned approaches, the uncertain NN weights
must be within a known compact set. Thus, the
disturbance-like term from NN approximation will
be bounded with known bounds. This assump-
tion will make control design simpler. Also, the
developed scheme cannot achieve good transient
performance.
This paper will address the control of nonlin-
ear systems with unknown parameters and non-
smooth nonlinearities in the actuator. The exis-
tence of such nonsmooth nonlinearities imposes
a great challenge for the controller development.
The nonsmooth nonlinearity is not required to be
symmetric. To address such a challenge, NNs will
be adopted to model the plant and the controller



is constructed based on NNs. The NNs, used to
approximate the nonlinearities in the plant, is
adjusted by an adaptive law based on the back-
stepping approach. To compensate for the effect
from the NN approximation, we design a new sign
function, which is continuous and differentiable,
and employs it in the recursive backstepping tech-
nique. The estimators are used to handle such
terms. Owing to the approximation of nonsmooth
nonlinearity, the new function and the backstep-
ping technique, a priori knowledge on system pa-
rameters and nonlinearities is no longer needed.
Besides showing global stability of the system,
transient performance in terms of L2 norm of the
tracking error is derived to be an explicit func-
tion of design parameters and thus the proposed
scheme allows designers to achieve the closed-
loop behavior by tuning design parameters in an
explicit way.
This paper is organized as follows: Section 2 states
the problem of this paper and assumptions on
the nonlinear systems. Section 3 introduces the
approximation of nonlinearity using NNs. Sections
4 presents adaptive control design based on the
backstepping technique and analyzes stability and
performance. Simulation results are presented in
Section 5. Finally, Section 6 concludes the paper.

2. PROBLEM STATEMENT

Consider a single-input single-output nonlinear
system of the form

ẋi(t) = xi+1(t) + θT φi(x̄i(t)) i = 1, . . . , n− 1

ẋn(t) = φ0(x(t)) + θT φn(x(t)) + ω (1)

ω = N(u), y(t) = x1(t) (2)

where x̄i(t) = [x1(t), . . . , xi(t)]T , x(t) = [x1(t),
. . . , xn(t)]T ∈ Rn, ω ∈ R and y(t) are state
variables, system input and output respectively,
θ ∈ Rr is unknown constant parameter vector
and φi ∈ Rr, i = 1, . . . , n are known nonlinear
functions. The nonlinear system is assumed to be
preceded by the actuating device ω = N(u), ω
being the actuator output not available for control
and u being the actuator input. Moreover, the
actuator is assumed to be contained a nonsmooth
nonlinearity, such as hysteresis or dead-zone non-
linearity. It should be noted that more general
classes of nonlinear systems can be transformed
into this structure (Tao and Kokotovic, 1996; Tao
and Lewis, 2001).
The control objective is to design an adaptive
control law for u(t) in (2), such that the plant
output y(t) follows the desired reference signal
yr(t).
Assumption 1. The desired trajectory yr(t) and
its (n − 1)th order derivatives are known and

bounded.
The control objectives are to design backstepping
adaptive control laws such that
• The closed loop system is globally stable in the
sense that all the signals in the loop are uniformly
ultimately bounded;
• The tracking error y(t) − yr(t) is adjustable
during the transient period by an explicit choice of
design parameters and limt→∞ |y(t)− yr(t)| ≤ δ1

for an arbitrary specified bound δ1.

3. FUNCTION APPROXIMATION USING
NEURAL NETWORKS

In this section, we present NN approximation of
a piecewise continuous function. For the neural
networks, the theoretical ability to uniformly ap-
proximate functions with a specified degree of
accuracy has been demonstrated in (Tao and
Lewis, 2001; Cybenko, 1989).

3.1 NN Approximation of Continuous Functions

Any function can be approximated by a two-layer
NN mapping with appropriate weights (Cybenko,
1989) on a compact set. In other words, any
function f(x) ∈ C(S), with S a compact subset
of Rn, there exists

f(x) =
L∑

k=0

wkσk(mT
k x + nk) + ε(x)

= WT σ(M, x,N) + ε(x) (3)

where W = [w0, . . . , wL]T , M = [m0, . . . , mL]T ,
N = [n0, . . . , nL]T , σ(·) = [σ0(·), . . . , σL(·)]T , ε(x)
is the NN approximation error, which is bounded
by ‖ ε(x) ‖< εN . Moreover, for any εN , one can
find a NN such that ‖ ε(x) ‖< εN , for all x ∈ S.
The weights mk in the first layer are selected
randomly and will not be tuned. The weights
wk in the second layer are tunable. The function
σ(·) could be any continuous sigmoid function
(Cybenko, 1989). Here, we choose σ(·) as

σ(t) =
1

1 + exp−t
(4)

This result shows that any continuous function
can be approximated arbitrarily well using a linear
combination of sigmoidal functions. This is well
known as the NN universal approximation prop-
erty.

3.2 Compensation of Nonlinearity

In this section, an NN precompensator for a gen-
eral model is given. It is not required to be sym-



metric. The generality of the method and appli-
cability to a broad range of nonlinear functions
make this approach a potentially useful tool for
compensation of backlash, hysteresis, and other
nonlinearities.
For any unknown nonlinear function N(u), we
have the following assumption.
Assumption 2: The function N(u) is invertible
and continuous.
By assumption, there exists N−1(v), such that

N(N−1(v)) = v (5)

The function N−1(v) can be expressed in equiva-
lent form as

N−1(v) = v + ωNN (v) (6)

where ωNN (v) = N−1(v) − v. Equation (6) can
be viewed as a direct feedforward term plus a
correction term.
Based on the NN approximation property, one can
approximate the nonlinear function by

N(u) = WT σ(M, u,N) + ε(u) (7)

Also, we can design an NN for the approximation
of the modified inverse function given in (6) by

ωNN (v) = WT
0 σ(M0, v, N0) + ε0(v) (8)

In these equations ε(u), ε0(v) are the NN recon-
struction error and W,W0 are ideal target weights.
The reconstruction error is bounded by ‖ ε ‖<
εN (u) and ‖ ε0 ‖< εN0(v). The weights in the
first layer M, M0, N,N0 in both (7) and (8) are
fixed.
Define Ŵ , Ŵ0 as the estimates of the ideal NN
weights, which are given by updating laws. Fur-
thermore, define the weight estimation errors as

W̃ = W − Ŵ , W̃0 = W0 − Ŵ0 (9)

and estimations of the nonlinearity and modified
inverse function as

N̂(u) = ŴT σ(M, u,N) (10)

ω̂NN (v) = ŴT
0 σ(M0, v, N0) (11)

The expressions (10) and (11) represent, respec-
tively, an NN approximation of the nonlinearity
N(u) and of the modified inverse (6). Note that

u = v + ω̂NN (v) (12)

Note that we use two NNs. The first NN is used
as an estimator of nonlinearity, while the second
is used as a compensator. The structure of the
NN precompensator and estimator are shown in
Figure 1.
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Fig. 1. NN Compensation Scheme

Theorem 1. Given the NN approximation func-
tion (11), (12) and the NN observer (10), the
approximation of N(u) is given by

N (u) = v + W̃T σ(M, u,N)MT ω̂NN + d(t)

− ŴT σ(M, u,N)MT W̃T
0 σ(M0, v, N0) (13)

where the modelling mismatch term d(t) is given
by

d(t) = −W̃T σ(M, u,N)MT WT
0 ·

σ(M0, v, N0)− b(t) + ε(u) (14)

b(t) = WT σ
[
M, v + ŴT

0 σ(M0, v, N0), N
]

·MT ε0 (v) + WT R1(W̃0, v) + ε(v + ωNN )(15)

Proof: See (Selmic and Lewis, 2000).
In (13), the first term has known factors mul-
tiplying W̃ , the second term has known factors
multiplying W̃0, and a suitable bound term can
be found for d(t).
The Theorem 1 shows the effectiveness of the pro-
posed NN structure. It shows that the estimates
Ŵ , Ŵ0 approach the actual neural network pa-
rameters W,W0, and the NN effectively provides a
pre-inverse for the nonlinearity. It is shown in Sec-
tion 4 in deriving the NN update laws for Ŵ , Ŵ0

that closed-loop stability can be guaranteed.

Remark 1. Note that the form of (13) is cru-
cial in controller design in deriving the adaptive
laws that guarantee closed-loop stability. More-
over, the residual term is bounded by a constant
vector multiplied by a known function vector as
in (16). Thus, adaptive control techniques can be
applied to deal with this residual term. A sim-
ilar technique has also been used in (Selmic and
Lewis, 2000; Tao and Lewis, 2001; Su et al., 2003),
where the approximator was constructed by neu-
ral networks or fuzzy logic. In general, this neu-
ral network scheme or fuzzy logic scheme could
be used for any continuous invertible functions.
Therefor, it is a powerful result to deal with gen-
eral nonlinearities in motion control systems.



Firstly, we define ‖‖ as any suitable vector norm.
Given A = [aij ], the Frobenius norm is defined by
‖ A ‖2= tr(AT A) =

∑
i,j a2

ij , with tr() denoting
the trace.
The following result gives the upper bound of the
norm d(t). This is an important result to be used
in the stability proof.

Lemma 1. The norm of the modelling mis-
matching term d(t) in (13) is bounded by

‖ d(t) ‖≤ βT Y (t) (16)

where β ∈ R4×1 is an unknown constant vector,
being composed of optimal weight matrices and
some bounded constants, and Y (t) = [1, ‖ Ŵ ‖,
‖ Ŵ0 ‖2, ‖ Ŵ0 ‖]T is a known function vector.

Remark 2. Note that β is not assumed to be
known. So, the residual term d(t) is bounded
by an unknown parameter vector with a known
function vector as in (16). Unlike the normal NN
approximation using the restricted assumption,
the residual term is bounded by a known bound.
All these uncertain parameter vectors will be
estimated by the proposed adaptive update laws.

4. DESIGN OF ADAPTIVE CONTROLLERS

Before presenting the adaptive control design us-
ing the backstepping technique to achieve the
desired control objectives, the following change of
coordinates is necessary.

z1 = y − yr (17)

zi = xi − y(i−1)
r − αi−1, i = 2, 3, . . . , n(18)

where αi−1 is the virtual control at the ith step
and will be determined in later discussions. We
define functions sgi(zi) and ηi(zi) as in (Zhou et
al., 2004).

sgi(zi) =





zi

|zi| |zi| ≥ δi

zi

(δ2
i − z2

i )n−i+2 + |zi|
|zi| < δi

(19)

ηi(zi) =
{

1 |zi| ≥ δi

0 |zi| < δi
(20)

where δi(i = 1, . . . , n) is a positive design param-
eter. This ensures that the resulting functions are
differentiable. We now illustrate the backstepping
design procedures with details given for the last
step.
• Step i (i = 1, . . . , n − 1): For zi = xi − αi−1 −
y
(i−1)
r and Vi = Vi−1 + 1

n−i+2 (|zi|−δi)n−i+2ηi(zi),
we choose

α1 = −(c1 +
1
4
)(|z1| − δ1)nsg1(z1)− θ̂T φ1

−(δ2 + 1)sg1(z1) (21)

αi = −(ci +
5
4
)(|zi| − δi)n−i+1sgi(zi)

+
i−1∑

j=1

[∂αi−1

∂xj
xj+1 +

∂αi−1

∂y
(j−1)
r

y(j)
r

]
+

∂αi−1

∂θ̂
Γτi

− (
θ̂T −

i−1∑

k=2

(|zk| − δk)n−i+1ηksgk
∂αk−1

∂θ̂

) ·

(
φi −

i−1∑

k=1

∂αi−1

∂xk
φk

)− (δi+1 + 1)sgi(zi) (22)

τ1 = φ1(|z1| − δ1)nη1sg1(z1) (23)

τi = (φi −
i−1∑

k=1

∂αi−1

∂xk
φk)(|zi| − δi)n+1−iηisgi(zi)

+τi−1 (24)

where ci is a positive design parameter. The
derivative of Vi is given by

V̇i ≤−
i∑

i=1

ci(|zi| − δi)2(n−i+1)ηi + θ̃T (τi − Γ−1 ˙̂
θ)

+
( i−1∑

k=2

(|zk| − δk)n−k+1sgk
∂αk−1

∂θ̂

)
(Γτn − ˙̂

θ)

+(|zi| − δi)n−i+1(|zi+1| − δi+1 − 1)ηi (25)

• Step n:
The derivative of zn can be written as

żn = φ0(x(t)) + θT φn(x(t)) + N(u)− y(n)
r − α̇n−1

(26)

Using (13), we get

żn = v − ŴT σ(MT u + V )MT W̃T
0 σ(M0, v, N0)

+W̃T σ(M, u, V )MT ω̂NN + φ0(x(t))

+θT φn(x(t))− y(n)
r − α̇n−1 + d(t) (27)

The control law is designed as follows:

v = −(cn + 1)(|zn| − δn)sgn(zn)− θ̂T φn − φ0

− sgn(zn)β̂Y +
n−1∑

j=1

∂αi−1

∂xj
xj+1 +

∂αi−1

∂θ̂

˙̂
θ

+
n−1∑

j=1

∂αi−1

∂y
(j−1)
r

y(j)
r − (

φn −
n−1∑

k=1

∂αi−1

∂xk
φk

)

(
θ̂T −

n−1∑

k=2

(|zk| − δk)n−k+1sgkηk · ∂αk−1

∂θ̂

)
(28)

and

u(t) = v + ω̂NN (v) (29)

ω̂NN (v) = ŴT
0 σ(M0, v, N0) (30)



The parameter update laws are designed as follows

˙̂
θ = Γτn (31)
˙̂
β = Γ1(|zn| − δn)ηnY (32)
˙̂

W = Γ2(|zn| − δn)ηnsgnσ(M, u,N)MT ω̂NN

(33)
˙̂

W 0 =−Γ3(|zn| − δn)ηnsgnŴT σ(M, u,N) ·
MT σ(M0, v, N0) (34)

where cn is a positive parameter, and Γ,Γ1,Γ2,Γ3

are positive definite matrices. We choose the Lya-
punov function as follows:

Vn =
n∑

i=1

1
n− i + 2

(|zi| − δi)n−i+2ηi +
1
2
θ̃T Γ−1θ̃

+
1
2
W̃T Γ−1

2 W̃ +
1
2
W̃T

0 Γ−1
3 W̃0 +

1
2
β̃T Γ−1

1 β̃ (35)

Since |d(t)| ≤ βT Y , by using adaptive laws (31-
32), the derivative of Vn along (35) is given by

V̇n ≤−
n∑

i=1

ci(|zi| − δi)2(n−i+1)ηi + θ̃T (τn − Γ−1 ˙̂
θ)

+
( n−1∑

k=2

(|zk| − δk)n−k+1sgk
∂αk−1

∂θ̂

)
(Γτn − ˙̂

θ)

+W̃T
[
(|zn| − δn)ηnsgnσ(M, u,N)MT ω̂NN

−Γ−1
2

˙̂
W

]− W̃T
0

[
Γ−1

3
˙̂

W 0 + (|zn| − δn)ηnsgn

·ŴT σ(M, u,N)MT σ(M0, v, N0)
]

+β̃T
[
(|zn| − δn)ηnY − Γ−1

1
˙̂
β
]

=−
n∑

i=1

ci(|zi| − δi)2(n−i+1)ηi (36)

The boundedness of Vn can now be established.
Integrating both sides of (36) gives

Vn(t) +

t∫

0

n∑

i=1

ci(|zi| − δi)2(n−i+1)ηidτ

≤ V (0) (37)

It implies Vn(t) is bounded. The boundedness
of Vn further implies that zi, i = 1, . . . , n,
θ̃, W̃ , W̃0, β̃ are bounded. From the Barbalat’s
lemma, we can conclude that for 1 ≤ i ≤
n, limt→∞(|zi| − δi)n−i+1fi = 0, which implies

that limt→∞
˙̂
θ = 0, limt→∞

˙̂
W = 0, limt→∞

˙̂
W 0 =

0, and limt→∞
˙̂
β = 0, and in particular, y − yr

converges to [−δ1, δ1].
These results obtained for the above analysis are
now summarized in the following theorem.

Theorem 2. Consider the uncertain nonlinear
system (1) satisfying Assumptions 1-2. With the

application of controller (29) and the parameter
update laws (31) to (34), the following statements
hold:
• The resulting closed loop system is globally
stable.
• The tracking error approaches δ1 asymptotically,
i.e.,

lim
t→∞

|y(t)− yr(t)| = δ1 (38)

• The transient tracking error performance is
given by

‖ y(t)− yr(t) ‖2≤ δ1 + c
−1/2n
1

( ‖ θ(0) ‖2Γ−1 +

‖ β(0) ‖2
Γ−1

1
+ ‖ W (0) ‖2

Γ−1
2

+ ‖ W0(0) ‖2
Γ−1

3

)1/2n

with zi(0) = δi, i = 1, . . . , n,

Proof: From (37), we have

‖ |z1| − δ1 ‖2n
2 =

∞∫

0

|(|z1| − δ1)|2ndτ ≤ 1
c1

V (0)

Be setting zi(0) = δi, i = 1, . . . , n,, the bound is
given by

‖ z1 ‖2≤ c
−1/2n
1

( ‖ θ(0) ‖2Γ−1 + ‖ W (0) ‖2
Γ−1

2

+ ‖ W0(0) ‖2
Γ−1

3
+ ‖ β(0) ‖2

Γ−1
1

)1/2n + δ1

Remark 3. From Theorem 2, the following con-
clusions can be obtained:
• The transient performance depends on the ini-
tial estimate errors θ̃(0), W̃ (0), W̃0(0), β̃(0) and
explicit design parameters. The closer the initial
estimates θ̂(0), Ŵ (0), Ŵ0(0), β̂(0) to the true
values θ, W,W0 and β, the better the transient
performance.
• The bound for ‖ y(t) − yr(t) ‖2 is an explicit
function of design parameters and thus is com-
putable. We can decrease the effects of the initial
error estimates on the transient performance by
increasing the adaptation gains Γ,Γ1,Γ2,Γ3.
• The reduction of the error is at the expense of
increasing the control signal.

5. SIMULATION STUDIES

In this section, we illustrate the above methodol-
ogy on a system which is described by

ẋ = a
1− e−x(t)

1 + e−x(t)
+ w (39)

w = N(u) =





m(u(t)− br) u(t) ≥ br

0 bl < v(t) < br

m(u(t)− bl) u(t) ≤ bl

(40)



where w represents the output of the dead-zone
nonlinearity. The actual parameter value is a = 1.
The parameters of the dead-zone are br = 0.5, bl =
−0.6 and m = 1. The objective is to control
the system state x to follow a desired trajectory
yr(t) = 2.5sin(t).
In the simulation study, the robust adaptive con-
trol law (29) and the parameter update laws (31)
to (34) were used. NN I and NN II have L = 10
layer nodes. The parameters are chosen as c1 =
0.8,Γ = 0.1,Γ1 = 0.2I3,Γ2 = 2I11,Γ3 = I11.
Simulation results presented in Fig. 2 and Fig. 3
are the system tracking error and input. Clearly,
all the results verify our theoretical findings and
demonstrate the effectiveness of the proposed con-
trol scheme.
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6. CONCLUSION

In this paper, a new adaptive control architec-
ture is proposed for a class of nonlinear uncertain
systems containing nonsmooth nonlinearity in the
actuator device. Using backstepping technique,
the control is designed by introducing certain well
defined sign functions and NN approximations.
The proposed adaptive control law not only can
guarantee global stability, but also transient per-
formance. For the design and implementation of
the controller, no restricted assumptions are as-
sumed on the unknown system parameters and
nonlinearity.
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