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Abstract. The aim of the paper is to present a conceptual approach to identification of
nonlinear stochastic systems based on information measures of dependence. In the paper,
an identification problem statement using the information criterion under rather general
conditions is proposed. It is based on a parameterized description of the system model
under study combined with a corresponding method of estimation of the mutual
information of the system’s and model’s output variables. Such a problem statement
leads finally to a problem of the finite dimensional optimization. As a result, a
constructive procedure of the model parameter identification is derived. It possesses a
high level of generality and does not involve unreal a priori assumptions degenerating the
entity of the initial identification problem statement like those ones presented in some
referenced literature sources and revised in the present paper.  Copyright © 2005 IFAC
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1. INTRODUCTION

Naturally, solving an identification problem always
imply using a measure of dependence of random
values (processes) both within representation of the
system under study by an input/output relationship
and as a state-space description. Among the measure
of dependence, conventional correlation and
covariance once are the most widely used. Theirs
application is directly implied from the problem
statement itself, based on the mean squared criterion.
A main advantage of the measures is convenience of
theirs use involving both a possibility of deriving
explicit analytical expressions to determine the
required characteristics and relative simplicity of
constructing theirs estimates involving those of
based on observation of dependent data. However,
the main disadvantage of the measures of
dependence based on linear correlation is the fact
that these may vanish even provided that there exist a
deterministic dependence between the pair of the
investigated variables.

Just to overcome such a disadvantage, use of more
complicated, nonlinear, measures of dependence has
been involved into the system identification. A
feature of the technique proposed in the paper is that
it is based on application of a consistent measure of
dependence. Following to Kolmogorov’
terminology, a measure of stochastic dependence
between two random variables is referred as
consistent if it vanishes if and only if the random
variables are stochastically independent (Sarmanov
and Zakharov, 1960). Among the measures, the
maximal correlation coefficient, Shannon mutual
information, contingency coefficient (Rényi, 1959,
Sarmanov and Zakharov, 1960) are commonly
known. Under investigation of the random processes,
the measures (coefficients) are substituted by the
corresponding functions. Among the functions, being
the consistent measures of dependence, the following
ones are the most known:
• the maximal correlation function
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where the supremum is being taken over all the Borel
measurable functions B, C.
• Shannon mutual information (function)
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• the contingency function
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However, calculating the maximal correlation
function is known to be a significantly complicated
iterative procedure. So, as suitable mathematical
tools within the paper, the information/entropy based
measures of dependence are used.

Throughout the paper, the symbols )(•M , )(•D , and
),( ••cov  respectively stand for the mathematical

expectation, variance, conditional expectation, and
covariance. Also, )(),( 21 ypwp , ),,(21 τwyp  stand
respectively for the marginal and joint distribution
densities of the stationary and joint stationary
random processes stswty −=τ),(),( .

Based on the mutual information )(τywI  which

takes its values in [ )∞,0 , the normalized quantity
( )τι yw  proposed originally by {Linfoot, 1957) and

defined as

( ) )(21 ττι ywI
yw e−−=

takes its values in [ ]1,0 , and also is a consistent
measure of dependence. It has been shown by
Chernyshov (2002b) that a problem of statistical
input/output linearization of a nonlinear system
driven by the Gaussian white noise process in
accordance to the criterion of coincidence of the
mutual information of the system output and input
processes and model output and input processes just
leads to using the quantity ( )τι yw  to derive the
weight coefficients of the weight function of the
linearized model.

Application of consistent measures of dependence
possesses some particularities and limitations.
Within the scope, the Shannon mutual information
looks more preferable than the maximal correlation
whose calculation deals with necessity of using a
complex iterative procedure of determining the first
eigenvalue and the pair of the first eigenfunctions of
the stochastic kernel
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In turn, the information theoretic criterion gives rise
to applying the mutual information. Recent examples
of such an approach are presented in (Durgaryan and
Pashchenko, 2001, Pashchenko 2001, Stoorvogel and
van Schuppen, 1996). Identification relevant
problems solved by use of the information criteria
are presented by Basak (2002), Principe et al. (2000),
Uchida and Yoshida (2001).

2. REVISING EXISTING APPROACHES

In the paper of Stoorvogel and van Schuppen (1996),
the identification problem statement is restricted by
consideration of the class of linear Gaussian systems
and naturally leads to applying the following
relationship for the mutual information ( )XYIGauss ,
of the multivariate Gaussian distribution

( ) ( )
( ) ( )





−=

XXYY

ZZ
QQ

Q
XYIGauss detdet

det
ln

2
1, .

In the formula the following notations are
introduced: Z stands for the Gaussian random vector
with the covariance matrix ZZQ , mn +=Zdim ,

with ( )TTT YXZ    = , where n=Xdim ,
m=Ydim , and XXQ , YYQ  are the covariance

matrices of the random vectors X and Y respectively.
In turn, the aim of the paper Stoorvogel and van
Schuppen (1996) is to demonstrate an equivalence of
a number of criteria of identification and control for
the linear Gaussian systems.

Papers of Durgaryan and Pashchenko (2001),
Pashchenko (2001) consider the mutual Shannon
information )}(),({ tytyI M  of model output variable
YM and system output variable Y as an identification
criterion to derive the required model. Such a
criterion is to be maximized, and the model’s output
variable is just considered as the maximization
argument:
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The approach proposed by Durgaryan and
Pashchenko (2001), Pashchenko (2001) thus cannot
be considered as a constructive one, because it
initially is based either on a requirement that the joint
distribution density ),( MSM yyp  of the model
output process )(tyM  and system output process

)(ty  are to be preliminary known or the above
model and system output processes are able to be
observed (Chernyshov, 2002a, 2002b, 2003a,
2003b). But this can not be the case. In fact, one may
advert to a widely used representation of the
stochastic system identification criterion in the form
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where as above M stands for the mathematical
expectation, and ρ is a priori given loss function.
Then, in the papers of Durgaryan and Pashchenko
(2001), Pashchenko (2001) such a loss function ρ is
just not given, since, for the case, it is of the form
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and involves both marginal ( ) ( )MMS ypyp   ,  and
(what is of especial importance) joint ( )MSM yyp ,
distribution densities of the system and model output
processes respectively.

At the same time, the fact, that this joint distribution
density is initially known within the problem
statement, assumes such an amount of a priori
knowledge under which the identification problem is
already to loose its sense: the joint distribution of the
model and system output processes is a final result of
many factors (system and model structure, statistical
properties of the inputs processes, etc.) (Chernyshov,
2002a, 2002b, 2003a, 2003b). In particular, one can
write the following formal expression for the joint
distribution density ( )MSM YYp ,  of the system’s
and model’s output variables, which is implied by
the relationship for the joint distribution density of a
transformation of a random vector (Korolyuk et al.,
1985):
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The above formula is written for the system model
represented as

( )nM XXY ,,1 Kϕ=

where nXX ,,1 K  are the (generalized) system input
variables, Y is the system output variable,

( )11,,, ,,,
1 +nnYXX zzzp

n
KK  is the joint distribution

density of the system input and output variables. In
the right hand side the integration is over the ( )1−n -
dimensional surface determined by the system of
equations
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is the Jacobian of the functions ϕ,1+nz  over the
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However, just postulating a concrete kind of the joint
distribution density of the output variables of model
and system has been used as a basis for analytical
inferences of Durgaryan and Pashchenko (2001),
Pashchenko (2001). Specifically, Durgaryan and
Pashchenko (2001), Pashchenko (2001) assume the
joint distribution of the model and system output
processes to be the Gaussian one, what directly gives
rice the initial identification problem to the problem
of maximizing the correlation coefficient of the
output processes of the model and system. From a
substantial point of view, the assumption that the

joint distribution of output variables of the model
and system to be Gaussian is equivalent to that, for
instance, if there would be proposed a new method
of matrix inversion followed by an assumption that
the matrix subject to inversion to be the diagonal one
(Chernyshov, 2002a, 2002b, 2003a, 2003b).

In particular, from the two above formulae the well-
known fact follows that the joint distribution of the
system’s and model’s output variables is the
Gaussian one if the distribution of

( )11,,, ,,,
1 +nnYXX zzzp

n
KK  is the Gaussian one and

the function ( )nXX ,,1 Kϕ  describing the system
model is linear. So, at any more general case there is
no basement for a priori assumption the joint
distribution of the system input and output processes
to be the Gaussian one. Such an assumption would
be just an artificial simplification of the initial
identification problem statement, leading to
emasculation of its entity. One also should be noted
that the assumption the joint distribution to be
Gaussian is always not valid, for instance, under
identification of the identity transformer. In fact, let
the input X have the standard Gaussian distribution,
i.e.

)(}{ xxXP Φ=< ,

the system’s output variable XY ≡ ; the model’s
output variable XYM ≡ ; the joint distribution of
the system’s and model’s output variables is of the
form:

{ } { }=<<=<< MMM yXyXPyYyYP  ; ;
( ){ } ( )( )MM yyyyXP ,min,min Φ=<= .

Hence, the joint distribution density ( )MSM yyp ,  of
the system’s and model’s output variables is not the
Gaussian one (Chernyshov, 2003a, 2003b).



As to those seldom partial cases, when the
assumption that the joint distribution density is
Gaussian is valid (if the property is implied by the
system and model structure, probabilistic properties
of the input signal, etc.) reasonability of such is
approach is quite questionable since, for the case, it
is enough to apply ordinary least squared criterion
(for the joint Gaussian distribution, the maximal
correlation is well known to be linear and to coincide
with the ordinary one) (Chernyshov, 2002a, 2002b,
2003a, 2003b).

3. PROBLEM STATEMENT

Thus, a natural question arises, if there exist a
constructive way of using the information criterion,
which wouldn’t be based on the restrictive
assumptions of the kind considered. If so, obviously
such an approach can not be based on direct
analytical involving the information criterion since it
is a functional of the unknown marginal

( ) ( ))(, θMMS ypyp  and joint ( ))(, θMSM yyp
distribution densities of the system’s )(ty  and
model’s );( θtyM  output processes. Hence, a feature
of the constructive method is to apply some

appropriate sample data estimates of the information
criterion instead of the analytical one.

Consider for sake of simplicity commonly used in
system identification class of nonlinear discrete-time
input/output systems which are linear in theirs
parameters ( )Tnθθθ ,,1 K=

)();( tty T
M φθθ = .

Components of the column-vector
( )Tn ttt )(,),()( 1 φφφ K=  are some known functions

of the preceding values of the system’s input process
as well as (generically) those of the system’s output
process. Within the problem statement, the system’s
parameters, i.e. the components of the column-vector
θ , are subject to identification in accordance to the
above information criterion

{ } sup);(),( →
θ

θtytyI M

with simultaneous substitution of the analytical
expression of the mutual information
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obtained by observation of the sample values
)()1( ,, Nφφ K , )()1( ,, Nyy K  of the system’s

(generalized) input )(tφ  and output )(ty  processes.

Here ( )Ti
n

ii )()(
1

)( ,, φφφ K= , Ni ,,1K= . Then, under
such an approach, the initial stochastic system
identification problem with the information criterion,
given a sample of the input and output data, leads to
a final dimensional deterministic optimization
problem

sup)( →
θ

θf

to solve which an explicit analytical representation of
the function )(θf  is to be derived first of all. The
function derivation is based on applying on a suitable
technique of the mutual entropy estimation.

4. REDUCING TO FINITE-DIMENSIONAL
OPTIMIZATION

Obtaining the function )(θf  may be implemented in
various manners relating to estimation of the joint
and marginal distribution densities of the output and
input processes of system by sampled data; and
Rosenblatt (1956b) kernel-type density estimates are
commonly used within the problem. Generically,

estimating mutual information is implemented via
estimation of the corresponding mutual entropy and
the marginal ones. As well known, the mutual
information of any two random processes, under the
present consideration, the system’s and model’s
output processes )(ty  and );( θtyM  respectively, is
expressed via their marginal and mutual entropies in
the following manner:

{ } )()();(),( θθθ SMMSM HHHtytyI −+= ,
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are the marginal and mutual entropies of )(ty  and
);( θtyM . Then, following to the approach of the

paper of Mokkadem (1989) to obtain an estimate
{ } )(ˆ )()1()()1( ,,;,, θθφφ fI NNyy =

KK
 of the mutual

information { });(),( θtytyI M  using N pairs of
sampled observations of the random processes )(ty



and )(tφ  kernel-type density estimates which are
commonly used within such a kind of problems) the
following relationships (in general) are natural to be
applied (hereafter the super script (N) will stand for
the corresponding estimate of a function over a
sample of the length N):
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In Equations (2) to (7), { }Nh  is a sequence of
positive real numbers converging to zero; in
Equations (5) to (7), ( )⋅jK , 2,1=j  are positive
bounded kernels on R1.

In turn, within the identification problem statement,
Equations (2) and (5) are not required since the
marginal entropy of the system’s output process

)(ty  does not involve the unknown column-vector
of the model parameters θ , what directly implies the
following relationship
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Thus, the required information type performance
index subject to maximization is of the form
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to be supplemented by a scheme of numerical
integration.

Under assumption on the initial system subject to
identification of the form that ( ));(),( θtyty M  to be
strongly mixing random processes (Rosenblatt,
1956a), and suitable integrability conditions imposed
on the kernels ( )⋅jK , 2,1=j , and densities

( ) ( ))(, θMMS ypyp  ( ))(, θMSM yyp  (formulae
(3) to (7) in Mokkadem (1989)), estimate (1) has the
following mean squared risk

{ } { }( ) =−
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Of course, from an analytical point of view,
expression (8) for the function )(~ θf  looks rather
complex and the function may have several local
maximums; and the natural way to solve such an
optimization problem is applying the genetic

algorithms (e.g. Baeck et al. (1997)) being an
efficient tool for numerical function optimization.

5. CONCLUSIONS

A conceptual approach to input/output identification
of nonlinear stochastic systems based on information
measures of dependence has been presented. Within
such an approach, an identification problem
statement using a criterion consisting in
maximization of mutual information of the system’s
and model’s output variables under rather general
conditions is proposed. In contrast to the approach
derived, an alternative approach to application of the
information methods of identification recently
presented by Durgaryan and Pashchenko (2001),
Pashchenko (2001) has been analyzed. The approach
of these authors has been shown to be both
nonconstructive and unrealistic due to imposing
degenerating assumptions on the joint distribution
density of the system’s and model’s output variables.



The present paper problem statement has been based
on a parameterized description of the system model
under study combined with a corresponding method
of estimating the mutual information of the system
and model output variables. Such a problem
statement leads finally to a problem of the finite
dimensional optimization. As a result, a constructive
procedure of the model parameter identification is
derived. It possesses a high level of generality and
does not involve unreal a priori assumptions
degenerating the entity of the initial identification
problem statement like those ones presented in some
referenced literature sources revised in the present
paper.
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