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Abstract:  A stochastic optimal control strategy for partially observable nonlinear
systems is proposed. The optimal control force consists of two parts. The first part is
determined by the conditions under which the stochastic optimal control problem of a
partially observable nonlinear system is converted into that of a completely observable
linear system. The second part is determined by solving the dynamical programming
equation derived by applying the stochastic averaging method and stochastic dynamical
programming principle to the completely observable linear control system. For
controlled quasi Hamiltonian systems, the response is predicted by solving the FPK
equation and the Riccati equation. Copyright 2005 IFAC
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1. INTRODUCTION

Stochastic optimal control is a research subject of
much significance since many actual control systems
such as those in engineering structures are subjected
to random excitations and the system states are
estimated from the measurements with random
noises (Housner, et al., 1997). For a long period of
time, only the linear quadratic Gaussian (LQG)
control strategy was used in engineering applications.
In recent years, several optimal control strategies for
stochastically excited nonlinear systems have been
proposed (Bernstein, 1993; Crespo and Sun, 2003;
Zhu, et al., 2001). In these studies, the states of the
controlled systems were assumed known exactly, i.e.,
the controlled systems are completely observable.
However, the system states are actually estimated
from the measurements with random noises, i.e., the
controlled systems are partially observable. One

basic approach to the stochastic optimal control of
partially observable systems is to convert the
stochastic optimal control problem of a partially
observable system into that of a completely
observable system using the separation principle
(Wonham, 1968; Fleming and Rishel, 1975;
Bensoussan, 1992) and then to solve the later
problem. For a partially observable linear system, the
converted completely observable control system is of
finite dimension and it can be solved easily, e.g., by
using LQG strategy. A nonlinear stochastic optimal
control strategy for partially observable linear
systems was proposed recently by present authors
(Zhu and Ying, 2002) based on the separation
principle, stochastic averaging method and stochastic
dynamical programming principle. For a partially
observable nonlinear system, the converted
completely observable control system is usually of
infinite dimension and it can hardly be solved. A few



years ago, Charalambous and Elliott (1998) proved
that if the nonlinearities enter the dynamics of the
unobservable states and the observations as gradients
of potential functions, then the partially observable
nonlinear control system can be recast as a
completely observable linear control system of finite
dimension.

The objective of the present paper is to propose a
nonlinear stochastic optimal control strategy for
partially observable nonlinear systems based on the
theorem due to Charalambous and Elliott (1998) and
the nonlinear stochastic optimal control strategy
proposed for completely observable systems by Zhu
et al. (2001).

2. STOCHASTIC OPTIMAL CONTROL
PROBLEM OF PARTIALLY OBSERVABLE

NONLINEAR SYSTEMS

Consider a controlled nonlinear system governed by

)(dd)(d)(d 1 ttt BCXUXAX ++=       (1)

where )(XA  and U  are 2n-dimensional function
vectors; C1 is 2n×m-dimensional matrix; B(t) is m-
dimensional Wiener process vector. The observation
equation is of the form
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where Y is n1-dimensional observation vector;
)(XD  is n1-dimensional function vector; B1(t) is m1-

dimensional Wiener process vector; F, C2 and C3 are
n1×2n, n1×m and n1×m1-dimensional constant
matrices, respectively. The objective of stochastic
optimal control is to minimize a performance index
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for semi-infinite time-interval ergodic control, where
E{⋅} denotes expectation operation; T is the terminal
time of control; L(X, U) is cost function, which is
continuous, differential and convex function; Ψ(T) is
terminal cost. Eqs. (1), (2) and (3) constitute a
stochastic optimal control problem of partially
observable nonlinear system. It consists of two
coupled problems of optimal filtering and optimal
control.

To convert this stochastic optimal control problem
into one of completely observable linear system,
control force U  is first split into 1U  and 2U . 1U

is combined with the uncontrolled system and
observation so that Eqs. (1) and (2) become
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where A and D are 2n×2n and n1×2n-dimensional
constant matrices, respectively;

 ))0()0(( 1UA
X

A +
∂
∂

= , AXUXAXG −+= 1)()( ,

))0()0(( 1UFD
X

D +
∂
∂

= , DXUFXDXE −+= 1)()(

(6)

Note that control system (4) and observation (5)
contain nonlinear terms G(X) and E(X), respectively.
Correspondingly, performance index (3) is modified
as
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for semi-infinite time-interval ergodic control.

3. CONVERTED STOCHASTIC OPTIMAL
CONTROL PROBLEM OF COMPLETELY

OBSERVABLE LINEAR SYSTEMS

According to the separation principle (Wonham,
1968; Fleming and Rishel, 1975; Bensoussan, 1992),
the stochastic optimal control problem of partially
observable system (4), (5) and (7) can be converted
into one of completely observable system. However,
usually it is of infinite dimension and thus a very
difficult problem. To make the converted stochastic
optimal control problem of completely observable
system of finite dimension, according to
Charalambous and Elliott (1998), assume that initial
system state X̂ (0) has the following probability
density
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where m0 and σ0 are constant vector and symmetric
positive-definite matrix, respectively, and 1U  is
selected so that the nonlinear terms in control system



(4) and observation (5) have potential function
),ˆ( tXφ , i.e.,
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where ),ˆ( tXφ  satisfies the following partial
differential equation
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X̂  is system state estimation for given observation
Y(τ), 0≤τ≤t. If theses conditions are satisfied, then
the stochastic optimal control problem of partially
observable system (4), (5) and (7) can be converted
into a stochastic optimal control problem of
completely observable linear system, and formulated
as
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for semi-infinite time-interval ergodic control, where
TT
3322 CCCCC += ; VI is n1-dimensional innovation

process vector; RC is the covariance matrix of state
estimation error XXX ˆ~

−= , which has Gaussian
probability density
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Covariance RC satisfies the following differential
Riccati equation
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for finite time-interval control, or algebraic Riccati
equation
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for semi-infinite time-interval ergodic control.

4. OPTIMAL CONTROL LAW

The stochastic optimal control problem of completely
observable linear system (11)-(13) can be solved by
using LQG control strategy. However, it has been
shown that the nonlinear stochastic optimal control
strategy proposed by the present authors (Zhu, et al.,
2001) is superior than LQG controller, especially,
more effective and efficient. To apply the nonlinear
stochastic optimal control strategy, let X=[QT, PT]T

and system (1) is formulated as a controlled quasi
Hamiltonian system, i.e.,
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where Q and P are n-dimensional generalized
displacement and momentum vectors, respectively;
H=H(Q,P) is Hamiltonian, possibly modified by
Wong-Zakai correction terms; U=U(Q,P) is n-
dimensional feedback control force vector;
C0=C0(Q,P) is n×n-dimensional damping coefficient
matrix possibly modified by Wong-Zakai correction
terms; K0=K0(Q,P) is n×m-dimensional stochastic
excitation amplitude matrix; C0, U and K0K0

T are
assumed of the same small order. In this case,
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where H  is the Hamiltonian modified by U1. Eqs.
(9) and (10) become
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where (⋅)N and (⋅)L represent nonlinear and linear
terms, respectively. For stationary potential )ˆ(Xφ ,
the first term in Eq. (19) vanishes. By applying the



stochastic averaging method (Zhu, et al., 1997) to
system (11), the following averaged Itô stochastic
differential equations is obtained
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modal energy of the controlled linear system; <⋅>
denotes averaging operation; B3(t) is standard Wiener
process vector; m( Ĥ ) and σ( Ĥ ) are, respectively,
drift vector and diffusion matrix with elements

>
∂

∂

∂

∂

∂

∂
+

∂

∂

∂

∂

∂

∂

+
∂

∂

∂

∂
−=<

+

+

∞−
= = ==

∫ ∑∑∑∑

ττ
θ

θ
τ

τ

d)(])ˆ
ˆ

(ˆ)ˆ

ˆ
(

)ˆ
ˆ

(ˆ)ˆ

ˆ
[(

ˆ
ˆ

ˆ
ˆ

)ˆ(
0

1, 1

2

1,1,

1

kltrk
r

i

j
tsl

s

j

trk
r

i

j
tsl

s

j

n

lk

n

j

n

sr

n

kj kj

i
jki

Rf
X
H

f
X

f
X
H

H
f

X

H

P
H

P
H

cm H

(21)

>
∂

∂

∂

∂
=< ∫ ∑∑

∞

∞−
=

+⋅⋅

ττ

σσ τ

d)()ˆ
ˆ

(

)ˆ

ˆ
()ˆ()ˆ(

1

1,

2

,

kltrk
r

i

n

lk

n

sr
tsl

s

j
ji

Rf
X
H

f
X

H
HH

   (22)

in which jkc  is damping coefficient dependent on A
in Eq. (17); jθ̂  is generalized phase process; frk is the
element of matrix 1

21 )( −+ CCCDR TT
C ; Rkl(τ) is the

correlation function of VI(t). Eq. (20) implies that
Ĥ (t) is a controlled diffusion process vector.
Correspondingly, performance index (13) is modified
into
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for semi-infinite time-interval ergodic control.

By applying the stochastic dynamical programming
principle (Fleming and Rishel, 1975; Fleming and
Soner, 1992) to the control problem of averaged
system (20) and (23) or (24), a dynamical
programming equation can be established. For
performance index (23), it is
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and for performance index (24), it is
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In Eqs. (25) and (26), V1 and V2 are called value
function, and λ is a constant representing optimal
average cost. The optimal control law is determined
by minimizing the right-hand side of Eq. (25) or (26)
with respect to U2, i.e.,
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Let L3 be quadratic with respect to U2, i.e.,
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where g( Ĥ )≥0; R is a symmetric positive-definite
matrix. Then optimal control law is of the form
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which depends on the derivatives of value function
V1 or V2 with respect to Ĥ . Substituting Eq. (29)
into Eq. (25) or (26) yields the following final
dynamical programming equation
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in the case of finite time-interval control, or
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in the case of semi-infinite time-interval ergodic
control. Since the diffusion matrix in Eq. (30) or (31)
is non-singular, they have classical solution (Fleming
and Soner, 1992), i.e., continuous and smooth
solution, which can be obtained by using
conventional numerical technique. Thus, the second
part of stochastic optimal control force, U2

*, can be
obtained by solving Eq. (30) or (31) and then by
substituting the resultant Ĥ/ ∂∂V  into Eq. (29). The
total optimal control force is then U*=U1+U2

*.

5. PERFORMANCE OF PROPOSED CONTROL
STRATEGY

To evaluate the performance of the proposed



stochastic optimal control strategy for partially
observable nonlinear quasi Hamiltonian systems, the
response of the optimally controlled system is first
predicted. The response consists of optimally
controlled response estimation X̂  and response
estimation error X~ . Substituting U2

* in Eq. (29) into
Eq. (20) and averaging the terms involving U2

* yield
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Solving the FPK equation associated with Itô
equation (32) yields probability density ),ˆ( tp H  and
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of the errors of estimated generalized displacements
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from which the mean Hamiltonian E[HC] of the
optimally controlled system can be obtained. The
mean Hamiltonian E[HUC] of the uncontrolled system
can be obtained by directly applying the stochastic
averaging method to Eq. (1) with U =0. The control
effectiveness is measured in terms of
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where E[HUF] is the mean Hamiltonian E[HF] for
completely observable systems (1) and (3) plus the
contribution from measurement error. Higher values
of Κ1 and Κ2 imply better effectiveness of the
proposed control strategy.

6. EXAMPLE

The proposed stochastic optimal control strategy has
been applied to the ergodic control of a partially
observable Duffing oscillator subjected to Gaussian
white noise excitation governed by system equation

utebXaXXcX +=+++ )(3
1111 ξ&&&       (37)

 where c=0.1, b/a=0.16, and observation equation
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Fig. 1. Κ1 as function of e/e1 with s1/R as parameter.
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Fig. 2. Κ2 as function of e1/e with s1/R as parameter.
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Some numerical results are shown in Figs. 1-2, which
illustrate that the proposed control strategy is very
effective even for large observation noise.

7. CONCLUSIONS

In the present paper, a stochastic optimal control
strategy for partially observable nonlinear systems
has been proposed. It has been shown through
applying the proposed control strategy to a partially
observable Duffing oscillator under stochastic
excitation that the proposed control strategy is very
effective even for large observation noise.

ACKNOWLEDGEMENTS

This study was supported by the National Natural
Science Foundation of China under key grant No.
10332030, the Zhejiang Provincial Natural Science
Foundation under grant No. 101046 and the Special
Fund for Doctor Programs in Institutions of Higher
Learning of China under grant No. 20020335092.

K
1(%

)

e/e1

s1/R = 1

s1/R = 5
s1/R = 10

K
2(%

)

e1/e

s1/R = 5

s1/R = 7

s1/R = 10



REFERENCES

Bensoussan, A. (1992). Stochastic Control of
Partially Observable Systems, Cambridge
University Press, Cambridge.

Bernstein, D.S. (1993). Nonquadratic cost and
nonlinear feedback control. Int. J. Robust
Nonlinear Control, 3, pp. 211-229.

Charalambous, C.D. and R.J. Elliott (1998). Classes
of nonlinear partially observable stochastic
optimal control problems with explicit optimal
control laws. SIAM J. Control Optim., 36, pp.
542-578.

Crespo, L.G. and J.Q. Sun (203). Nonlinear
stochastic control via stationary response design.
Probab. Eng. Mech., 18, pp. 79-86.

Fleming, W.H. and H.M., Soner (1992). Controlled
Markov Processes and Viscosity Solutions,
Springer-Verlag, New York.

Fleming, W.H. and R.W. Rishel (1975). Deterministic
and Stochastic Optimal Control, Springer-Verlag,
Berlin.

Housner, G.W., L.A. Bergman, T.K. Caughey, A.G.

Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton,
T.T. Soong, B.F. Spencer and J.T.P. Yao (1997).
Structural control: past, present, and future.
ASCE J. Eng. Mech., 123, pp. 897-971.

Stengel, R.F. (1986). Stochastic Optimal Control:
Theory and Application, John Wiley & Sons,
New York.

Wonham, W.M. (1968). On the separation theorem of
stochastic control. SIAM J. Control, 6, pp. 312-
326.

Zhu, W.Q., Z.L. Huang and Y.Q. Yang (1997).
Stochastic averaging of quasi-integrable
Hamiltonian systems. ASME J. Appl. Mech., 64,
pp. 975-984.

Zhu, W.Q. and Z.G. Ying (2002). Nonlinear
stochastic optimal control of partially observable
linear structures. Eng. Struct., 24, pp. 333-342.

Zhu, W.Q., Z.G. Ying and T.T. Soong (2001). An
optimal nonlinear feedback control strategy for
randomly excited structural systems. Nonlinear
Dyn., 24, pp. 31-51.


