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1. INTRODUCTION

The minimax stochastic optimization framework re-
cently proposed in (Petersen et al. 2000, Ugrinovskii
and Petersen 1999, Ugrinovskii and Petersen 2001)
has led to the development of a new robust control
design methodology termed minimax LQG design.
This methodology enables the design of controllers
which combine the performance properties of LQG
controllers and robustness characteristics of H∞ con-
trollers.

The foundations of minimax LQG control theory can
be found in the theory of large deviations (Dupuis and
Ellis 1997) and risk-sensitive control (Whittle 1990).
The minimax LQG approach to the robust control
design makes use of a stochastic minimax game-type
formulation of the robust control problem in which the
uncertainty is modeled in terms of probability distri-
butions rather than time-varying disturbance signals.
This leads to an uncertain system model in which
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system dynamics are described by a stochastic dif-
ferential equation in an uncertainty probability space,
and the probability laws of admissible uncertainties
are restricted to belong to a specified set of probability
distributions. The derivation of a suitable mathemat-
ical description of the admissible set of probability
distributions constitutes a major step in the application
of the minimax LQG control design method. As with
all robust control techniques exploiting the worst-case
design paradigm, a control system performance which
can be achieved through utilizing a minimax optimal
LQG controller largely depends on how well the cho-
sen mathematical description of the set of admissible
uncertain perturbations represents the uncertainty in
the physical system under consideration.

The mathematical description of the class of ad-
missible stochastic uncertain systems introduced in
(Petersen et al. 2000, Ugrinovskii and Petersen 1999,
Ugrinovskii and Petersen 2001) uses the notion of rel-
ative entropy to characterize the size of the uncertain
disturbances in the system. Specifically, the magnitude
of the disturbances is measured using the relative en-



tropy between admissible probability distributions and
the reference probability distribution of a white noise
disturbance, both defined on samples of a Brown-
ian motion process. This reflects a common situation
where the uncertain perturbation represents a super-
position of the disturbance signal and a white noise
signal. This uncertainty structure allows one to conve-
niently express bounds on the magnitude of admissible
uncertain perturbations in the form of a constraint
on the corresponding relative entropy (Petersen et
al. 2000, Ugrinovskii and Petersen 1999). The advan-
tage of the relative entropy uncertainty description is
that it allows one to convert the underlying robust con-
trol design problem into a partially observed risk sen-
sitive stochastic control problem; the latter problem
is known to admit a tractable solution (Bensoussan
and Schuppen 1985, Pan and Başar 1996). The equiv-
alence between risk-sensitive control problems and
stochastic minimax games (James et al. 1994, Dai Pra
et al. 1996) makes this conversion possible.

The existing results on minimax LQG control focus
on model uncertainty presented in a Linear Fractional
Transformation (LFT) form. The models falling into
this class include for instance, H∞-norm bounded
unmodeled dynamics. At the same time, the relative
entropy constraint uncertainty description has been
less successful in accounting for some other types
of uncertain dynamics such as those in which the
uncertainty has a normalised coprime factor structure;
e.g., see (McFarlane and Glover 1990).

The objective of this paper is to develop an exten-
sion of the existing minimax LQG optimal control
approach whereby uncertainty with a normalised co-
prime factor uncertainty structure can be accounted
for. To this end, we develop a special technique of
probability measure transformations which allows us
to consider this class of model uncertainties. As a by-
product, some other types of the model uncertainty, for
example, those reflecting passivity of the uncertainty,
are captured. Also, the proposed technique naturally
allows for the presence of uncertainty feedforward in
the cost functional being considered.

2. MINIMAX LQG CONTROL PROBLEM FOR
SYSTEMS WITH NORMALISED COPRIME

FACTOR UNCERTAINTY STRUCTURE

Consider a plant whose transfer function matrix from
the control input u to the controlled output z2 is
expressed in the normalised coprime factor form,

z2 = (M − ∆M )−1(N + ∆N )u.

Here G(s) = M(s)−1N(s) is a normalised coprime
factor representation of the nominal plant transfer
function matrix G(s) (McFarlane and Glover 1990).

The block diagram representing this uncertainty struc-
ture is shown in Figure 1. In this figure, ∆N (s),
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Fig. 1. An uncertain system with normalised coprime
factor uncertainty structure.

∆M (s) denote the normalised coprime factor uncer-
tainties, and ˙̃w is the system noise. Using the notation
shown in the figure, a state-space realization of this
uncertain system can be written in the following form:

ẋ = Ax + B1u + B2(ξ + ˙̃w), (1)

z =:
[

z1

z2

]
=

[
0
C

]
x +

[
I
D

]
u +

[
0
I

]
(ξ + ˙̃w),

ξ := ξ1 + ξ2 =
[
∆N ∆M

]
z;

e.g., see (McFarlane and Glover 1990). We now make
the following standard assumptions. Assume that the
system noise ˙̃w is white noise with zero mean and
covariance matrix W = W ′ > 0 and assume the
following bounds on the uncertainties:

[
∆′

N (−jω)
∆′

M (−jω)

]
W−1

[
∆N (jω) ∆M (jω)

]
< W̄−1 :=

[
G H
H ′ W−1

]
∀ω ∈ (−∞,∞). (2)

Let T > 0 be a constant which will denote the
finite time horizon considered throughout the paper.
Using the Parseval identity and taking the expectation,
condition (2) can be re-written in the form of an
integral quadratic constraint

E
∫ T

0

(‖z̄(t)‖2
W̄−1 + 2(H ′z1(t)+

W−1Z(t))′ξ(t)
)
dt > −T ; (3)

z̄ =
[

z1

Z

]
=

[
0
C

]
x +

[
I
D

]
u. (4)

where ‖a‖W−1 := (a′W−1a)1/2.

The robust control problem of interest is to design an
output feedback controller for the uncertain system (1)
subject to a constraint of the form (3). A common
approach to achieving this objective is to design a
controller that delivers an acceptable level of guar-
anteed H∞ performance. In the presence of random
disturbances, a corresponding operator norm induced

by the signal norm
(
E

∫ T

0
‖ · ‖2dt

)1/2

may be used as

a measure of performance. This leads us to introduce
the following minimax optimization problem



inf
u(·)

sup
ξ(·)

E
∫ T

0

(‖Z(t)+ξ(t)‖2
W−1 −γ2‖ξ(t)‖2

W−1)dt,

(5)
In (5) the supremum is taken over the set of admissible
uncertainties subject to the constraint (3), and the infi-
mum is taken over a class of linear output feedback
controllers utilizing measurements of the controlled
variable Z. The solution of this problem is in the
main focus of this paper. The derivation of the solu-
tion will make use of a technique developed for solv-
ing a general class of similar stochastic robust con-
trol problems (Ugrinovskii and Petersen 1999, Ugri-
novskii and Petersen 2001). In the next section, we
will present a rigorous formulation of the stochastic
minimax optimization problem corresponding to the
problem (5). An important distinction between this
problem and those considered in (Ugrinovskii and
Petersen 1999, Ugrinovskii and Petersen 2001) relates
to the structure of the uncertainty set, and also to the
presence of the uncertainty feedforward term in the
cost function.

3. DEFINITIONS

3.1 Uncertain signals and probability measures

Consider a complete probability space (Ω,F , P ).
In this probability space, define independent Wiener
processes w(·) ∈ Rq, v(·) ∈ Rp with covariance
matrices W (t), Σ(t); W (t),Σ(t) ≥ ρI > 0 for all
t ∈ [0, T ]. The sample space Ω is defined as Ω =
Rn × C([0, T ],Rq) × C([0, T ],Rp) and is equipped
with the filtration {Ft, t ≥ 0} generated by the
mappings {Πt, t ≥ 0} where Π0(x,w(·), v(·)) = x
and Πt(x,w(·), v(·)) = (w(t), v(t)) for t > 0. P
is a Wiener measure defined on sets in the complete
filtration {Ft, t ≥ 0}. The expectation with respect to
P will be denoted E.

In the probability space (Ω,F , P ), consider system
dynamics driven by the Wiener processes w(·), v(·),

dx(t) = (A(t)x(t) + B1u(t))dt + B2(t)dw(t), (6)

dy(t) = Z(t)dt + dw(t) + βdv(t),

Z(t) = C2(t)x(t) + D2(t)u(t),

z(t) = C1(t)x(t) + D1(t)u(t).

In (6), x(t) ∈ Rn is the state, z(t) ∈ Rp is the un-
certainty output, Z(t) ∈ Rq is the controlled output,
and y(t) ∈ Rq is the measured output. The initial
condition x(0) = x0 : Ω → Rn is a Gaussian random
variable with mean x̌0 and variance Y0 > 0. It is
assumed that x0 and (w(t), v(t)) are independent.

In a practical problem, it is natural to assume that
noisy measurements of the controlled output Z are
taken directly. However, for the sake of mathematical
convenience, we will be using the process y(t) in the
derivation of a solution to the robust control problem

under consideration. In particular, it will be convenient
to define feasible output feedback control laws using
a stochastic differential equation driven by y(t),

dx̂ = Ac(t)x̂ + Bc(t)dy(t); (7)

u(t) = Kc(t)x̂(t).

All coefficients in equations (6), (7) are assumed to
be deterministic bounded sufficiently smooth matrix
valued functions defined on [0, T ].

To introduce disturbances into the system (6), con-
sider a perturbation probability measure Q which is
absolutely continuous with respect to the nominal
Wiener probability measure P , Q � P . Following
(Dai Pra et al. 1996), a pair of progressively measur-
able processes ξ(t), ν(t) adapted to {Ft, t ≥ 0} and a
Wiener process {w̃(t), ṽ(t),Ft, t ≥ 0} are associated
with Q, so that under Q[

w̃(t)
ṽ(t)

]
=

[
w(t)
v(t)

]
−

∫ t

0

[
ξ(s)
ν(s)

]
ds.

As in (Petersen et al. 2000, Ugrinovskii and Petersen
1999), the model uncertainty is formulated in terms of
a collection of probability measures P . We consider
all probability measures Q such that

h(Q‖P ) < ∞. (8)

In equation (8), h(Q‖P ) denotes the relative entropy
between a probability measure Q and the reference
probability measure P (Dupuis and Ellis 1997):

h(Q‖P ) : =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EQ log
(

dQ

dP

)
if Q � P and

log
(

dQ

dP

)
∈ L1(dQ),

+∞ otherwise.

For Q ∈ P , using localizations one can express the
relative entropy between Q and P as

h(Q‖P ) =
1
2
EQ

∫ T

0

(‖ξ(t)‖2
W−1 + ‖ν(t)‖2

Σ−1)dt; (9)

see (Dai Pra et al. 1996). Hence, the satisfaction of
condition (8) included in the definition of the set P
implies that EQ

∫ T

0
(‖ξ(t)‖2

W−1+‖ν(t)‖2
Σ−1)dt < ∞.

We further restrict the class of uncertain perturbations
and consider disturbances for which

EQ

∫ T

0

(‖x(t)‖2 + ‖u(t)‖2
)
dt < ∞. (10)

This technical assumption will allow us to perform
probability measure transformations needed in order
to derive a suitable representation of the stochastic un-
certain system under consideration. Also, for the sake
of simplicity we will restrict attention to perturbed
probability measures Q which are associated with the
pair of processes (ξ(·), ν(·)), such that ν(t) = 0 a.s..
The set of probability measures which meet this re-
quirement and for which condition (10) holds, will be



denoted P0. We will also say that the corresponding
measurable process ξ(·) belongs to P0.

As explained in Section 2, the following constraint can
be used to quantify the size of the uncertainty with a
normalised coprime factor structure.

Definition 1. Given a constant d > 0 and a quadratic
form F0(z, u) = z′S11z+2z′S12u+u′S22u, an uncer-
tainty ξ(·) ∈ P0 is said to be an admissible uncertainty
if the following integral quadratic constraint holds:

EQ

∫ T

0

(F0(z(t), u(t)) + 2z′(t)Hξ(t)) dt ≥ −d.

(11)
In (11), x(·), z(·) are defined by equation (6) consid-
ered in the probability space (Ω,F , Q). We denote the
set of admissible uncertainties by Ξd.

3.2 The minimax control problem

Introduce the process

η†(t) := e
−

∫ t

0
Z(s)′W−1(s)dw(s)− 1

2‖Z(s)‖2
W−1ds

. (12)

Here, Z(t) is the controlled output of the closed
loop system (6), (7). It can be shown that η†(t)
is a martingale. Therefore, a new probability mea-
sure P † can now be defined on events of Ft by
letting P †(dω) = η†(t)P (dω). Furthermore, since

P
(∫ T

0
‖Z(t)‖2

W−1dt < ∞
)

= 1 and Eη†(T ) = 1,

then the probability measures P and P † are equiva-
lent, P ∼ P † (Liptser and Shiryayev 1977).

From this discussion, Q � P † for Q ∈ P . Therefore,
the relative entropy between Q and P † is well defined.
In this paper we are concerned with the constrained
optimization problem associated with the system (6),
considered in the probability space (Ω,F , Q), Q ∈
P0, the cost functional

Jγ(u,Q) =
1
2

EQ

∫ T

0

F1(x(t), u(t))dt

+ h(Q‖P †) − γ2h(Q‖P ), (13)

F1(x, u) := x′N11x + 2x′N12u + u′N22u,

and the constraint (11). In this optimization problem
we seek to find a control law u(·) of the form (7)
which minimizes the worst case of the cost functional
Jγ(u,Q):

V γ := inf
u(·)

sup
Q∈Ξd

Jγ(u(·), Q), (14)

where the maximizing player input is an admissible
probability measure Q ∈ Ξd.

For uncertainties Q ∈ P0, the cost functional
Jγ(u,Q) can be represented in a more explicit form.
Indeed, the value of h(Q‖P ) has been given in (9).
Also, h(Q‖P †) can be readily computed for Q ∈ P0.
Hence,

Jγ(u,Q) =
1
2

EQ

∫ T

0

(F1(x(t), u(t))

+‖Z(t) + ξ(t)‖2
W−1 − γ2‖ξ(t)‖2

W−1

)
dt. (15)

Note that in the special case F1 = 0, the cost func-
tional (15) reduces to the cost functional of the opti-
mization problem (5).

4. MINIMAX CONTROL UNDER STOCHASTIC
UNCERTAINTY CONSTRAINTS

As in references (Petersen et al. 2000, Ugrinovskii
and Petersen 1999, Ugrinovskii and Petersen 2001),
the derivation of a solution to the constrained min-
imax optimization problem (14) will use a special
stochastic version of the Lagrange multiplier tech-
nique (Luenberger 1969). It will be used to convert the
constrained optimization problem (14) into a similar
optimization problem without constraints. This uncon-
strained optimization problem is defined in terms of
the system (6) and the following cost functional

Jγ,θ(u,Q) := Jγ(u,Q)

+
θ

2
EQ

∫ T

0

(F0(z, u) + 2z′(t)Hξ(t)) dt, (16)

where θ > 0 is a Lagrange multiplier. In the uncon-
strained optimization problem, we seek to find

V γ,θ := inf
u

sup
Q∈P0

Jγ,θ(u,Q). (17)

Lemma 1. If the set Γ := {γ > 0, θ > 0: V γ,θ < ∞}
is not empty, then the value (14) is finite, and one can
find γ such that

V γ ≤ inf
θ>0

(V γ,θ +
1
2
θd). (18)

�

From Lemma 1, it follows that the guaranteed cost
controller achieving an upper bound on the value
of the minimax optimization problem (14) can be
obtained by minimizing the value of the optimization
problem (17). We therefore focus on the problem (17).

Let us define

F γ,θ =
1

γ2 − 1
(
F1(x, u) + θF0(z, u) + ‖Z‖2

W−1

)
+

1
(γ2 − 1)2

‖Z + θWHz‖2
W−1 . (19)

Also, let us introduce a fictitious output of the system
(6), (7) zγ,θ and an associated noise process wγ,θ,

zγ,θ :=− 1
γ2 − 1

(Z + θWHz); (20)

wγ,θ(t) :=
∫ t

0

zγ,θ(s)ds + w(t). (21)



It will be convenient to change the probability measure
on (Ω,F) in order to transform wγ,θ(·) into a Wiener
process. Since it can be shown that

ηγ,θ(t) := e
−

∫ t

0
(zγ,θ(t))′W−1(s)dw(s)

× e−
1
2‖zγ,θ(t)‖2

W−1ds (22)

is a martingale, then we define a new probability
measure P γ,θ by letting P γ,θ(dω) = ηγ,θ(t)P (dω).
Girsanov’s Theorem yields that in (Ω,F , P γ,θ), the
process {(wγ,θ(t), v(t)),Ft, t ≥ 0} is a Wiener
process. Also, from Theorem 7.1 of (Liptser and
Shiryayev 1977), P ∼ P † ∼ P γ,θ.

Lemma 2. For any Q ∈ P0,

Jγ,θ(u,Q)
γ2 − 1

=
1
2

EQ

∫ T

0

F γ,θ(x, u)dt

−h(Q‖P γ,θ). (23)

�

Lemma 2 allows us to convert the original constrained
minimax optimization problem (14) into a risk sensi-
tive optimal control problem. This will be achieved by
using the duality relationship between free energy and
relative entropy given in (Dai Pra et al. 1996, Dupuis
and Ellis 1997).

First we observe from (21), that in the probability
space (Ω,F , P γ,θ), the system (6) has the form

dx(t) = (A(t)x(t) + B1(t)u(t) − B2(t)zγ,θ(t))dt

+B2(t)dwγ,θ(t), (24)

Z(t) = C2(t)x(t) + D2(t)u(t),

z(t) = C1(t)x(t) + D1(t)u(t),

zγ,θ =− 1
γ2 − 1

(Z + θWHz),

dy(t) = (Z(t) − zγ,θ(t))dt + dwγ,θ(t) + βdv(t).

Associated with the system (24), consider a risk sen-
sitive cost functional

�T (u(·)) = EP γ,θ

e
1
2

∫ T

0
F γ,θ(x(t),u(t))dt

, (25)

where F γ,θ is defined in (19). We will use a shorthand
notation for the coefficients of F γ,θ

F γ,θ(x, u) = x′Rγ,θ(t)x+2x′Υγ,θ(t)u+u′Uγ,θ(t)u.

The result of reference (Dai Pra et al. 1996) applied to
the system (24) and to the cost functional (25), states
that for each admissible control u(·),

sup
Q∈Pγ,θ

[
1
2

EQ

∫ T

0

F γ,θ(x(t), u(t))dt − h(Q‖P γ,θ)

]

= log�T (u(·)). (26)

Here, Pγ,θ denotes a convex set of all probability
measures Q for which h(Q‖P γ,θ) < ∞. Clearly,

P0 ⊆ Pγ,θ, therefore we conclude that an output feed-
back control law solving the stochastic risk sensitive
optimal control problem

inf
u(·)

�T (u(·)) (27)

will deliver a guaranteed bound on the upper value
of the unconstrained optimization problem (17). Solu-
tions to the risk-sensitive optimal control problem (27)
have been obtained in (Pan and Başar 1996, Bensous-
san and Schuppen 1985). Hence, linking the results of
those references with those of Lemma 1 via the duality
relation (26), we arrive at a guaranteed bound on the
upper value of the minimax control problem (14).

The risk-sensitive control technique was developed in
the above references for the case where the control
input does not have a feedforward connection to the
measured output of the system. This is not the case
with the system (24). Therefore in order to apply
the results of (Pan and Başar 1996, Bensoussan and
Schuppen 1985) to the system (24), we augment the
measurement process into an extended state dynamics
equation as follows. Consider the system

dx̃(t) = (Ã(t)x̃(t) + B̃1u(t))dt + B̃2(t)dµγ,θ(t),

dỹ = C̃2x̃ + D̃2dµγ,θ(t). (28)

Here, the following notation has been used

x̃ =
[
x′ Z ′ − (zγ,θ)′

]′
,

µγ,θ(t) =
[
(W−1/2wγ,θ(t))′ (Σ−1/2v(t))′

]′
,

Ã =

⎡
⎢⎣ A +

1
γ2 − 1

B2(C2 + θWHC1) 0

γ2

γ2 − 1
C2 +

θ

γ2 − 1
WHC1 0

⎤
⎥⎦ ,

B̃1 =

⎡
⎢⎣ B1 +

1
γ2 − 1

B2(D2 + θWHD1)

γ2

γ2 − 1
D2 +

θ

γ2 − 1
WHD1

⎤
⎥⎦ ,

B̃2 =
[
B̂2 0

]
W 1/2, B̂2 =

[
B2

I

]
,

C̃2 =
[
0 I

]
, D̃2 =

[
W 1/2 βΣ1/2

]
. (29)

The variance matrix of the random variable x̃0 will
be denoted Ỹ0. Clearly, this matrix is uniquely deter-
mined by the parameters Y0, x̌0 of the initial Gaussian
distribution of x(0) = x0.

The solution method developed in (Pan and Başar
1996) can now be applied to the risk-sensitive opti-
mal control problem (27), (28). The solution to this
problem is given in terms of a pair of the Riccati
differential equations.

Assumption 1. There exist constants γ > 1, θ > 0,
such that the following conditions hold:

(i) There exists a symmetric solution Y (t) to the
following filter type Riccati differential equation



Ẏ = (Ã − B̂2WΦC̃2)Y + Y (Ã − B̂2WΦC̃2)′

− Y (C̃ ′
2ΦC̃2 − Rγ,θ)Y + Ψ, Y (0) = Ỹ0, (30)

such that Y (t) ≥ c0I for some c0 > 0 and for all
t ∈ [0, T ]; here Φ := (W + β2Σ)−1,

Ψ :=
[

β2B2WΦΣB′
2 β2B2WΦΣ

β2ΣΦWB2 β2ΣΦW

]
.

(ii) Rγ,θ − Υγ,θU
−1
γ,θΥ′

γ,θ ≥ 0 and furthermore there
exists a symmetric nonnegative definite solution
X(t) to the standard H∞ control type Riccati dif-
ferential equation

Ẋ + X(Ã − B̃1U
−1
γ,θΥγ,θ)

+(Ã − B̃1U
−1
γ,θΥγ,θ)′X + (Rγ,θ − Υγ,θU

−1
γ,θΥ′

γ,θ)

−X(B̃1U
−1
γ,θB̃′

1 − B̂2WB̂′
2)X = 0, (31)

X(T ) = 0.

(iii) For each t ∈ [0, T ], the matrix I − Y (t)X(t) has
only positive eigenvalues.

The solutions to Riccati differential equations (30),
(31) will define the optimal controller in the risk-
sensitive optimal control problem. Indeed, for any
γ > 1, θ > 0 satisfying Assumption 1, consider the
controller

dx̌(t) =
[
Ã + Y Rγ,θ − (Y C̃ ′

2 + B̂2W )ΦC̃2

− (B̃1 + Y Υγ,θ)U−1
γ,θ(B̃′

1X + Υ′
γ,θ)

×(I − Y X)−1
]
x̌dt

+(Y C̃ ′
2 + B̂2W )Φdỹ(t), (32)

x̌(0) = x̌0,

u∗(t) =−U−1
γ,θ(t)(B̃′

1(t)X(t) + Υγ,θ(t))

×[I − Y (t)X(t)]−1x̌(t). (33)

The following result is a straightforward consequence
of the output feedback risk sensitive optimal control
result of (Pan and Başar 1996, Theorem 2) and the
duality result of (Dai Pra et al. 1996).

Lemma 3. Suppose Assumption 1 is satisfied. Then
the set Γ is not empty. Furthermore, for any γ, θ
satisfying Assumption 1,

V γ,θ ≤ (γ2 − 1)
{

x̌′
0X(0)(I − Y0X(0))−1x̌0

+
∫ T

0

tr
[
Y Rγ,θ + (Y C̃ ′

2(t) + B̂2(t)W )Φ

× (C̃2(t)Y + WB̂′
2(t))X(I − Y X)−1

]
dt

}
. (34)

�

From Lemma 3, the main result now follows.

Theorem 1. Assume that there exist constants γ > 1,
θ > 0 such that Assumption 1 is satisfied. Then the

set Γ is non-empty. Furthermore, suppose the pair
(γ∗, θ∗) attains the infimum

inf
γ,θ

(Ṽ γ,θ +
1
2
θd). (35)

where Ṽ γ,θ denotes the expression on the right-hand
side of (34); the infimum is taken over γ > 1, θ > 0
satisfying Assumption 1. The corresponding control
input u∗(·) defined by (33), is an output feedback
control that guarantees the upper bound on the worst
case of the cost functional (13) in the constrained
stochastic minimax optimization problem (14) subject
to the stochastic integral quadratic constraint (11). �
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