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1. INTRODUCTION

Consider the following switched linear stochastic
system

dx(t) = Aθt
x(t)dt + Bθt

u(t)dt + Fθt
dwt, (1)

E‖x(0)‖2 < ∞
where x(t) ∈ Rn is the completely observable sys-
tem state and u(t) ∈ Rr is the input. The {wt} is
an l -dimensional standard Wiener process, which
is independent of {x(s), s ≤ t}. Aθt

, Bθt
, Fθt

are
coefficient matrices with suitable dimensions. The
switching law θt : [0,∞) → Θ is a piecewise
constant function of time. In this paper, θt can
not be directly observed and is independent of
{x(s), s ≤ t, wt}. The set Θ , {1, 2, . . . , N}.
Switched systems are frequently encountered in
practice, e.g., power systems (Sira-Ranirez, 1991),
(Williams and Hoft, 1991), robot manipulators,
traffic management (Varaiya, 1993), etc. Nu-
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merous results on switched systems have been
achieved in recent years.

The stability analysis of switched systems is
started with different premises. When the switch-
ing law is Markov process, this always been
called as Markov jump systems. For this kind
systems the stability analysis can be traced back
to the work of Rosenbloom (Rosenbloom, 1954) in
1954. And then many researchers contributed to
this thesis, e.g., (Kozin, 1969) and (Leizarowitz,
1990), etc. When θt is observable, the neces-
sary and sufficient conditions for mean-square
stabilization have been obtained by (Bouhtouti
and Hadri, 2003) and (Fang and Loparo, 2002)
for continuous-time deterministic and stochas-
tic jump systems respectively. While θt is un-
observable, some sufficient conditions for stabi-
lization at the sense of average quadratic index
for continuous-time jump stochastic systems have
been given (cf. (Caines and Zhang, 1995)).

For the other switching laws, the study for sta-
bility (or stabilizability) can be classified into two



types. One is to study the conditions under which
the systems can be stabilized for any switch, for
example, (Liberzon et al., 1999) , (Molchanov and
Pyatnitskiy, 1989), (Narendra and Balakrishman,
1994) and (Shim et al., 1998), etc. The another
is to find the restrictions of switching laws under
which the given family of subsystems can main-
tain stability (or stabilizability). For determinis-
tic systems, some researchers assume the systems
have a finite switching frequency in a finite time
horizon (e.g., (Peleties and Decarlo, 1991)). Some
others suppose the switching duration is large
enough (e.g. (Morse, 1996), (Zhai et al., 2001)).
For stochastic systems, using the concept of av-
erage dwell time put forward by (Hespanha and
Morse, 1999), (Feng and Zhang, 2004) studies
stability of disturbed switched systems with ob-
servable switching laws, they derive the conclusion
that when the ratio of the total time the system
dwelling on stable subsystems to that on unsta-
ble subsystems is not smaller than some given
constant, the switched linear system can be sta-
bilized though there exists unstable subsystems.
When the switching laws are unobservable, (Guo
et al., 2004) shows that the switched deterministic
system can be stabilized if each individual subsys-
tem is controllable and the dwell time is uniformly
positive.

This paper studies the stabilizability of (1) with
unobservable switching laws. Since the switching
law can no be directly unobserved, we ought to
identify the parameters before designing the sta-
bilizer. Comparing with the deterministic system,
the influence of random noise retards us to iden-
tify the accurate state of the parameters in any
finite duration. Therefore the following stabilizing
control may proceed under wrong parameters. In
this article we study the effects of misestimate,
and conclude that the stabilization of the switched
stochastic linear system with unknown system is
possible.

The rest of the paper is organized as follows. In
Section 2 the definitions of dwell time and mean-
square stabilization, as well as the assumptions of
this paper are introduced. The method of system
identification and its probability of veracity are
depicted in Section 3. And the main results are
given in Section 4. The last section concludes the
paper with some remarks and the prospects for
the future work.

2. DEFINITIONS AND ASSUMPTIONS

First we will introduce the concept of dwell time.

Definition 1. The dwell time of a switching law,
denoted by τ(ω), is defined as τ(ω) , inf

k
{tk(ω)−

tk−1(ω)}, where tk(ω) , inf{t : t > tk−1(ω), θt 6=
θtk−1}, and ω represents sample trajectory.

The dwell time τ(ω) restricts the class of admis-
sible switching signals to signals with the prop-
erty that the interval between any two consec-
utive switching times is no smaller than τ(ω).
There are many definitions for stabilizability(Feng
et al., 1992). This paper investigates the mean-
square stabilizability of the systems given as fol-
lows.

Definition 2. Switched linear stochastic system
(1) is mean-square stabilized, if for any x0 ∈ Rn

and any θ0 ∈ Θ, there exists a feedback control
u(t) such that

lim
t→∞

E‖xt‖2 < ∞. (2)

Before stating our assumptions we display some
properties of the system. For the finite set of gain
matrices {F1, F2, . . . , FN}, there always exists a
constant σ such that ‖F (·)‖ ≤ σ uniformly with
θt, where ‖ · ‖ denotes the operator norm induced
by the Euclidean norm on Rn. That is, for any
α ∈ Rl, ‖F‖2 , max

||α||=1
‖Fα‖22.

Throughout the paper, we hold the following two
assumptions:

H1) Each pare of [A(i), B(i)] is completely con-
trollable, i ∈ Θ.

H2) Switching instants are available and τ ,
infω τ(ω) > 0.

Remark 1. The assumption H2) means for any
θt, the time interval between any two consecu-
tive switching times is no smaller than a strictly
positive constant τ . This assumption can not be
eliminated. Because for Markov jump processes,
which don’t satisfy this assumption, there are
examples (see, e.g., Example 3.1 of (Fang and
Loparo, 2002)) showing that even a deterministic
linear switched system with observable parame-
ters with H1) can not be mean-square stabilized.

3. IDENTIFICATION OF SWITCHING
SIGNALS

To design a feedback stabilizer, we have to know
which subsystem the switched system is dwelling
on. So we need to estimate the unobservable
parameter θt. Consider a time interval [kτ, (k +
1)τ), k ∈ {0, 1, 2, . . . }. The system will switch, if
it does, only once by the definition of τ . θt will be
estimated when the system reaches the moments
kτ , (k + 1)τ and the switching time, denoted by
tkτ . A identification process will expense a length



of h time or be interrupted by a switching event,
where 0 < h < τ/2. In the rest of [kτ, (k + 1)τ),
k ∈ {0, 1, 2, . . . }, we will design a feedback control
to stabilize the identified system .

Now we encounter a problem that the estimation
usually does not equal to the true value of the
parameter because there exists disturbance. In
what follows, we will show that under certain class
of excitation signals, the probability P{θ̂t0 = θt0}
will tend to 1 as ‖x(t0)‖ going to infinity, where θ̂t0

is the estimate of θt0 given in (5), t0 = kτ, tkτ
, k =

0, 1, 2, · · · .
Let C(n)[0, h] be the space of Rr-valued functions
defined on [0,h], which have continuous derivatives
up to order n. ∀u ∈ C(n)[0, h], let us denote U(t)
as

U(t) = (u(t), u(1)(t), · · · , u(n)(t))T . (3)
Consider the following class of functions

U0 = {u ∈ C(n)[0, h]|U(0) = 0,

λmin(
∫ h

0

U(t)U(t)T dt) > 0} (4)

where λmin(·) denotes the minimum eigenvalue
of a square matrix. U0 is not empty (cf. The
appendix of (Guo et al., 2004)). The excitation
signal can be taken as any fixed function in U0,
denoted as u0(t).

Let φ(t) = (x(t)T , u(t)T )T and Hi = (Ai, Bi)T .

The estimate θ̂t0 for θt0 is given as

arg min
1≤i≤N

‖
∫ t0+h

t0

[φ(s)dx(s)T−φ(s)φ(s)T dsHT
i ]‖,
(5)

where t0 = kτ, tkτ , k = 0, 1, 2, · · · ,

u(s) = β‖x(t0)‖u0(s− t0), s ∈ [t0, t0 + h), (6)

β > 0 is a constant such that β ≥ 2η0

√
h
b1

,

η0 = max
1≤i≤N

max
0≤t≤h

‖eAit‖, (7)

and b1 is constant depending on (Ai, Bi), 1 ≤ i ≤
N, h and u0(t).

Let c = max{c′, 1}, and

a = max
i 6=j

‖Hi −Hj‖, a = min
i 6=j

‖Hi −Hj‖, (8)

where

c′ = max
1≤i≤N
0≤t≤h

(‖eAit‖+ β‖
∫ t

0

eAi(t−s)Biu
0(s)ds‖).

(9)

Let x̂(s) be the solution of the deterministic
counterpart of (1), i.e.,

dx̂(s) = A(θs)x̂(s)ds+B(θs)u(s)ds, x̂(t0) = x(t0).
(10)

Denote φ̂(t) = (x̂(t)T , u(t)T )T . Noticing that (10)
is deterministic, the following lemma given in
(Guo et al., 2004) also holds here.

Lemma 1. Consider switched linear system (10).
For a t0, if the system does not switch on [t0, t0 +
h), then under the control defined in ( 6),

λmin{
∫ t0+h

t0

φ̂(s)φ̂(s)T ds}

≥ {1
2
b1β

2 − hη2
0}‖x(t0)‖2, (11)

The estimate of the probability of θ̂t = θt is given
by the following lemma.

Lemma 2. Consider switched linear stochastic
system (1). For a t0, if the system does not switch
on [t0, t0 + h), then under the control defined in
(6), we have

P{θ̂t0 6= θt0} ≤ min{1, a‖x(t0)‖−1+b‖x(t0)‖−2},
(12)

where θ̂t is given in (5) and a, b are two positive
constants.

Proof. From (1) and (5) we have
∫ t0+h

t0

φ(s)dx(s)T −
∫ t0+h

t0

φ(s)φ(s)T dsHT
i

=
∫ t0+h

t0

[φ(s)φ(s)T ds(H −Hi) + φ(s)dwT
s FT ]

, Φ(Hi), (13)

where Hθt
, Fθt

denote as H, F respectively for
short.

Since P{θ̂t0 6= θt0} =
∑

i 6=θt0

P{θ̂t0 = i}, we

calculate P{θ̂t0 = i}, i ∈ Θ \ {θt0} separately.

By (5) and (13), we have

P{θ̂t0 = i} ≤ P{‖Φ(Hi)‖ ≤ min
j 6=i

{‖Φ(Hj)‖}.
(14)

Since i 6= θt0 , this implies that

min
j 6=i

‖Φ(Hj)‖ ≤ ‖
∫ t0+h

t0

φ(s)dwT
s FT ‖,

which yields

P{θ̂t0 = i} ≤ P{‖Φ(Hi)‖ ≤ ‖
∫ t0+h

t0

φ(s)dwT
s FT ‖}.

Then by

‖Φ(Hi)‖ ≥ ‖
∫ t0+h

t0

φ(s)φ(s)T dt(H −Hi)‖

− ‖
∫ t0+h

t0

φ(s)dwT
s FT ‖,

it follows that

P{θ̂t = i} ≤ P{2‖
∫ t0+h

t0

φ(s)dwT
s FT ‖

≥ ‖
∫ t0+h

t0

φ(s)φ(s)T ds(H −Hi)‖}. (15)



We decompose x(t) on [t0, t0 +h) as x(t) = x̂(t)+
x̃(t), in which x̂(t) is defined in (10), and set

∫ t0+h

t0

φ(s)φ(s)T ds(H −Hi) = Ψ1 + Ψ2 + Ψ3,

(16)
where

Ψ1 =
∫ t0+h

t0

φ̂(s)φ̂(s)T ds(H −Hi),

Ψ2 =
∫ t0+h

t0

x̃(s)x̃(s)T ds(AT −AT
i ),

Ψ3 =
∫ t0+h

t0

[φ̂(s)x̃(s)T + x̃(s)φ̂(s)T ]ds(H −Hi).

By Lemma 1 and (8) we have

||Ψ1|| ≥ λmin{‖
∫ t0+h

t0

φ̂(s)φ̂(s)T ds‖}‖(H −Hi)‖

≥ a(
1
2
b1β

2 − hη2
0)‖x(t0)‖2. (17)

By (10) and (1) we have

x̃(t) =
∫ t

t0

eA(t−s)Fdws.

Then

E‖x̃(t)‖2 = E‖
∫ t

t0

eA(t−s)Fdws‖2

=
∫ t

t0

tr(FT eAT (t−s)eA(t−s)F )ds

≤
∫ t

t0

l‖eA(t−s)F‖2ds ≤ σ2η2
0hl, (18)

where for the last inequality is from (7). Thus

E{||Ψ2||} ≤
∫ t0+h

t0

E‖x̃(s)x̃(s)T ‖ds(AT −AT
i )

≤ ā

∫ t0+h

t0

E‖x̃(s)‖2ds ≤ āσ2η2
0h2l. (19)

Since

E‖φ̂(t)x̃(t)T ‖ = E‖x̃(t)
(
x̂(t)T u(t)T

) ‖
≤ (‖x̂(t)‖+ ‖u(t)‖)E‖x̃(t)‖. (20)

By (18) and Schwarz inequality, we have

E‖x̃(t)‖ ≤ (E‖x̃(t)‖2) 1
2 ≤ η0σh

1
2 l

1
2 .

And by using c in (9) and ut in (6),

‖x̂(t)‖ = ‖eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Busds‖

≤ c‖x(t0)‖.
These imply that the right hand side of (20) is less
than

(‖ ˆx(t)‖+ ‖u(t)‖)(E‖x̃(t)‖2) 1
2

≤
(
c‖x(t0)‖+ β‖x(t0)‖ · ‖u0(t− t0)‖

)
η0σh

1
2 l

1
2

≤ η0η1σh
1
2 l

1
2 ‖x(t0)‖, (21)

where η1 = c + β max0≤t≤h ‖u0(t)‖. Therefore,

E{||Ψ3||} ≤ 2āη0η1σh
3
2 l

1
2 ‖x(t0)‖.

Analogously, noting that

E‖
∫ t0+h

t0

φ(s)dwT
s FT ‖

≤ ‖F‖
(
E‖

∫ t0+h

t0

φ(s)dwT
s ‖2

) 1
2

≤ σ

∫ t0+h

t0

(‖x̂(s)‖+ ‖u(s)‖+ E‖x̃(s)‖)2ds

≤ σ2η0hl
1
2 + ση1h

1
2 ‖x(t0)‖. (22)

and from (17), (19) and (22), and combining with
Chebyshev inequality, we know that for ‖x(t0)‖ ≥
0,

P{θ̂t0 = i} ≤ P{‖Ψ1‖

≤ P{‖
∫ t0+h

t0

φ(s)dwT
s FT ‖ ≥ 1

6
‖Ψ1‖}

+ P{‖Ψ2‖ ≥ 1
3
‖Ψ1‖}+ P{‖Ψ3‖ ≥ 1

3
‖Ψ1‖}

= a‖x(t0)‖−1 + b‖x(t0)‖−2, (23)

where

a =
6ση1h

1
2 (1 + āη0hl

1
2 )

a( 1
2b1β2 − hη2

0)
,

b =
3σ2hη0(2l

1
2 + āη0hl)

a( 1
2b1β2 − hη2

0)
.

It is obvious that P{θ̂t0 = i} ≤ 1, this implies the
assertion of Lemma.

4. MAIN RESULT

To obtain the main result of this paper, we will use
the squashing lemma given in (Cheng et al., 2004):

Lemma 3. Let A ∈ Rn×n and B ∈ Rn×r be
matrices such that the pair (A,B) is completely
controllable , then ∀λ > 0, there always exists a
matrix K ∈ Rr×n such that

‖e(A+BK)t‖ ≤ MλLe−λt, ∀t ≥ 0 (24)

where L = (n− 1)(n + 2)/2, M > 0 are constants
depending only on A,B and n .

Denote

Λ , {λ : log 32c+max(log MλL, 0) <
1
2
(τ−2h)λ}

where ε is a given fixed small positive constant,
and where η2 is defined as

η2 = max
1≤i,j≤N

max
0≤t≤τ−h

‖e(Ai+BiKj)t‖. (25)

We have the following Theorem.



Theorem 1. If assumptions H1) and H2) hold,
then the switched linear stochastic system (1) is
mean-square stabilized.

Proof. Consider the system’s behavior in the
time interval [kτ, (k + 1)τ), k ∈ {0, 1, 2, . . . }.
We will calculate the conditional square moment
E(‖x((k + 1)τ)‖2|x(kτ)).

First, for the identification processes during [t0, t0+
δ), t0 = kτ or tkτ

, 0 < δ ≤ h , by (1) and (6),

E(‖x(t0 + δ)‖2|x(t0))

≤
(
‖eAδ‖+ β‖

∫ δ

0

eA(δ−s)Bu0(s)ds‖
)2

‖x(t0)‖2

+
∫ δ

0

l‖eA(δ−s)F‖2ds

≤ c2‖x(t0)‖2 + η2
0σ2hl ≤ c2‖x(t0)‖2 + c1, (26)

where A, B and F denote the true coefficients of
the system, c is defined in (9), η0 is given by (7),
and c1 = max{η2

0σ2τ l, η2
2σ2τ l}.

Second, for the stabilization process during [t∗, t∗+
µ), t∗, t∗+µ ∈ [kτ, (k+1)τ), by Lemma 3 there are
λ ∈ Λ, and corresponding Ki such that for each of
{(Ai, Bi)} (24) is satisfied. Then let K = K(θ̂t∗),
we have

E
(
‖x(t∗ + µ)‖2

∣∣∣x(t∗)
)

=
N∑

i=1

E
(
‖x(t∗ + µ)‖2

∣∣∣θ̂t∗ = i, x(t∗)
)
· P{θ̂t∗ = i}

≤ E
(
‖x(t∗ + µ)‖2

∣∣∣θ̂t∗ = θt∗ , x(t∗)
)

+
∑

i 6=θt∗

E
(
‖x(t∗ + µ)‖2

∣∣∣θ̂t∗ = i, x(t∗)
)

· P{θ̂t∗ = i}. (27)

If θ̂t∗ = θt∗ , then

E
(
‖x(t∗ + µ)‖2

∣∣∣θ̂t∗ = θt∗ , x(t∗)
)

≤ ‖e(A+BK)µx(t∗)‖2 + E

∫ µ

0

l‖e(A+BK)(µ−s)F‖2ds

≤ (MλLe−λµ)2‖x(t∗)‖2 +
l

2λ
(σMλL)2(1− e−2λµ).

(28)

Otherwise,
∑

i 6=θt∗

E(‖x(t∗ + µ)‖2|θ̂t∗ = i, x(t∗))

=
∑

i 6=θt∗

E{||e(A+BKi)µx(t∗)

+
∫ µ

0

e(A+BKi)(µ−s)Fdws||2
∣∣∣x(t∗)}

≤ (N − 1)η2
2{‖x(t∗)‖2 + lσ2µ}

≤ (N − 1)(η2
2‖x(t∗)‖2 + c1), (29)

where η2 is given in (25).

From (26)-(29) and Lemma 2, after an identifica-
tion process [t0, t0 + h) followed with a stabiliza-
tion process [t0 + h, t1),

E(‖x(t1)‖2|x(t0))

≤ [2cMλLe−λ(t1−t0−h)]2‖x(t0)‖2 + C1, (30)

where C1 is a constant.

E(‖x(kτ + τ)‖2|x(kτ)) is estimated in the follow-
ing three situations.

1. For the situation that the system does not
switch on the time interval [kτ, kτ + τ),

E
(‖x(kτ + τ)‖2

∣∣x(kτ)
)

≤ 4c2(MλL)2e−2λ(τ−h)‖x(kτ)‖2 + C1. (31)

2. For the situation that system switches one time
on [kτ, kτ +τ) and tkτ

−kτ > h, (k+1)τ−tkτ
> h,

by using (30) twice, we obtain

E(‖x(kτ + τ)‖2|x(kτ))

≤ 32c4(MλL)4e−2λ(τ−2h)‖x(kτ)‖2 + C2 (32)

where C2 is a positive constant.

3. For the situation that the system switches once
on [kτ, (k + 1)τ) and tkτ

− kτ ≤ h, or kτ + τ −
tkτ

≤ h, using (26) and (30), we have

E(‖x(kτ + τ)‖2|x(kτ))

≤ 8c3(MλL)2e−2λ(τ−2h)‖x(kτ)‖2 + C3, (33)

where C3 is a positive constant.

From (31)-(33), it follows that

E
(‖x(kτ + τ)‖2∣∣x(kτ)

) ≤ α2
λ‖x(kτ)‖2 + C, (34)

where

αλ = 32[cmax(MλL, 1)]4e−2λ(τ−2h),

C = max{C1, C2, C3}.

Since αλ and C are independent of k, by iterating
the inequality (34), we have

E
(‖x(kτ)‖2∣∣x(0)

) ≤ α2k
λ ‖x(0)‖2 +

1− α2k
λ

1− α2
λ

C.

Taking expectations on both sides, it follows that

E‖x(kτ)‖2 ≤ α2k
λ E‖x(0)‖2 +

1− α2k
λ

1− α2
λ

C.

It can be inferred from the definition of Λ that
αλ < 1. From the initial condition E‖x(0)‖2 < ∞,
and letting k →∞, it is easy to see that

lim
k→∞

E‖x(kτ)‖2 ≤ C

1− α2
λ

< ∞. (35)

As for any t ∈ [0,∞), there always exists k ∈
{1, 2, . . . } such that [kτ, kτ + τ) covers t. By
applying the inequalities (26) and (30) we obtain

E
(‖x(t)‖2|x(kτ)

) ≤ c4η4
2‖x(kτ)‖2 + C0,

where C0 = c2η4
2c1 + c2η2

2c1 + η2
2c1 + c1.



Therefore

lim
t→∞

E‖x(t)‖2 ≤ c4η4
2C

1− α2
λ

+ C0 < ∞.

This completes the proof of Theorem.

5. CONCLUDING REMARKS

This paper has studied the stabilization problem
of switched linear stochastic systems with un-
known switchings but known switching instants.
Our main assumptions are that each individual
subsystem is controllable and the dwell time has
a positive lower bound. Comparing with the cor-
responding results in deterministic systems, the
difficulty is that the parameters can not be ex-
actly identified within finite time. So the effect of
misestimate would be considered during the anal-
ysis. We proved that the system is mean-square
stabilized by using on-line estimation method and
suitable designed linear feedback controllers. In
this paper, the switching instants are available
and the identification and control are two sepa-
rated procedures based on this information, it is
better to make these two purposes with a unified
input for practicing application, this is a future
research topic. Many researches such as (Fang and
Loparo, 2002) and (Guo et al., 2004) have shown
that the conditions for almost surely stability are
differ with that required for mean square stability.
So this is also a further research topic to con-
sider the condition for almost surely stability in
stochastic systems.
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