# STABILITY ANALYSIS OF SWITCHED LINEAR STOCHASTIC SYSTEMS WITH UNKNOWN SWITCHINGS 

Peng Ye, Haitao Fang *,1<br>* Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100080, China


#### Abstract

This paper is concerned with the stabilization problem of switched linear stochastic systems with unknown switchings. The system switching among a finite set of linear stochastic systems is considered. Since there are noise perturbations, the switching laws can not be exactly identified in a finite time horizon, we prove that if each individual subsystem is controllable and the switching duration uniformly has a strict positive lower bound, then the system can be stabilized by using on-line identification method and suitable designed controller. Copyright © 2005 IFAC


Keywords: Switched systems, stability, stabilization, estimation.

## 1. INTRODUCTION

Consider the following switched linear stochastic system

$$
\begin{align*}
& d x(t)=A_{\theta_{t}} x(t) d t+B_{\theta_{t}} u(t) d t+F_{\theta_{t}} d w_{t}  \tag{1}\\
& E\|x(0)\|^{2}<\infty
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n}$ is the completely observable system state and $u(t) \in \mathbb{R}^{r}$ is the input. The $\left\{w_{t}\right\}$ is an $l$-dimensional standard Wiener process, which is independent of $\{x(s), s \leq t\} . A_{\theta_{t}}, B_{\theta_{t}}, F_{\theta_{t}}$ are coefficient matrices with suitable dimensions. The switching law $\theta_{t}:[0, \infty) \rightarrow \Theta$ is a piecewise constant function of time. In this paper, $\theta_{t}$ can not be directly observed and is independent of $\left\{x(s), s \leq t, w_{t}\right\}$. The set $\Theta \triangleq\{1,2, \ldots, N\}$.
Switched systems are frequently encountered in practice, e.g., power systems (Sira-Ranirez, 1991), (Williams and Hoft, 1991), robot manipulators, traffic management (Varaiya, 1993), etc. Nu-

[^0]merous results on switched systems have been achieved in recent years.

The stability analysis of switched systems is started with different premises. When the switching law is Markov process, this always been called as Markov jump systems. For this kind systems the stability analysis can be traced back to the work of Rosenbloom (Rosenbloom, 1954) in 1954. And then many researchers contributed to this thesis, e.g., (Kozin, 1969) and (Leizarowitz, 1990), etc. When $\theta_{t}$ is observable, the necessary and sufficient conditions for mean-square stabilization have been obtained by (Bouhtouti and Hadri, 2003) and (Fang and Loparo, 2002) for continuous-time deterministic and stochastic jump systems respectively. While $\theta_{t}$ is unobservable, some sufficient conditions for stabilization at the sense of average quadratic index for continuous-time jump stochastic systems have been given (cf. (Caines and Zhang, 1995)).
For the other switching laws, the study for stability (or stabilizability) can be classified into two
types. One is to study the conditions under which the systems can be stabilized for any switch, for example, (Liberzon et al., 1999) , (Molchanov and Pyatnitskiy, 1989), (Narendra and Balakrishman, 1994) and (Shim et al., 1998), etc. The another is to find the restrictions of switching laws under which the given family of subsystems can maintain stability (or stabilizability). For deterministic systems, some researchers assume the systems have a finite switching frequency in a finite time horizon (e.g., (Peleties and Decarlo, 1991)). Some others suppose the switching duration is large enough (e.g. (Morse, 1996), (Zhai et al., 2001)). For stochastic systems, using the concept of average dwell time put forward by (Hespanha and Morse, 1999), (Feng and Zhang, 2004) studies stability of disturbed switched systems with observable switching laws, they derive the conclusion that when the ratio of the total time the system dwelling on stable subsystems to that on unstable subsystems is not smaller than some given constant, the switched linear system can be stabilized though there exists unstable subsystems. When the switching laws are unobservable, (Guo et al., 2004) shows that the switched deterministic system can be stabilized if each individual subsystem is controllable and the dwell time is uniformly positive.

This paper studies the stabilizability of (1) with unobservable switching laws. Since the switching law can no be directly unobserved, we ought to identify the parameters before designing the stabilizer. Comparing with the deterministic system, the influence of random noise retards us to identify the accurate state of the parameters in any finite duration. Therefore the following stabilizing control may proceed under wrong parameters. In this article we study the effects of misestimate, and conclude that the stabilization of the switched stochastic linear system with unknown system is possible.

The rest of the paper is organized as follows. In Section 2 the definitions of dwell time and meansquare stabilization, as well as the assumptions of this paper are introduced. The method of system identification and its probability of veracity are depicted in Section 3. And the main results are given in Section 4. The last section concludes the paper with some remarks and the prospects for the future work.

## 2. DEFINITIONS AND ASSUMPTIONS

First we will introduce the concept of dwell time.
Definition 1. The dwell time of a switching law, denoted by $\tau(\omega)$, is defined as $\tau(\omega) \triangleq \inf _{k}\left\{t_{k}(\omega)-\right.$
$\left.t_{k-1}(\omega)\right\}$, where $t_{k}(\omega) \triangleq \inf \left\{t: t>t_{k-1}(\omega), \theta_{t} \neq\right.$ $\left.\theta_{t_{k-1}}\right\}$, and $\omega$ represents sample trajectory.

The dwell time $\tau(\omega)$ restricts the class of admissible switching signals to signals with the property that the interval between any two consecutive switching times is no smaller than $\tau(\omega)$. There are many definitions for stabilizability (Feng et al., 1992). This paper investigates the meansquare stabilizability of the systems given as follows.

Definition 2. Switched linear stochastic system (1) is mean-square stabilized, if for any $x_{0} \in \mathbb{R}^{n}$ and any $\theta_{0} \in \Theta$, there exists a feedback control $u(t)$ such that

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty} E\left\|x_{t}\right\|^{2}<\infty \tag{2}
\end{equation*}
$$

Before stating our assumptions we display some properties of the system. For the finite set of gain matrices $\left\{F_{1}, F_{2}, \ldots, F_{N}\right\}$, there always exists a constant $\sigma$ such that $\|F(\cdot)\| \leq \sigma$ uniformly with $\theta_{t}$, where $\|\cdot\|$ denotes the operator norm induced by the Euclidean norm on $\mathbb{R}^{n}$. That is, for any $\alpha \in \mathbb{R}^{l},\|F\|^{2} \triangleq \max _{\|\alpha\|=1}\|F \alpha\|_{2}^{2}$.

Throughout the paper, we hold the following two assumptions:

H1) Each pare of $[A(i), B(i)]$ is completely controllable, $i \in \Theta$.

H2) Switching instants are available and $\tau \triangleq$ $\inf _{\omega} \tau(\omega)>0$.

Remark 1. The assumption H2) means for any $\theta_{t}$, the time interval between any two consecutive switching times is no smaller than a strictly positive constant $\tau$. This assumption can not be eliminated. Because for Markov jump processes, which don't satisfy this assumption, there are examples (see, e.g., Example 3.1 of (Fang and Loparo, 2002)) showing that even a deterministic linear switched system with observable parameters with H1) can not be mean-square stabilized.

## 3. IDENTIFICATION OF SWITCHING SIGNALS

To design a feedback stabilizer, we have to know which subsystem the switched system is dwelling on. So we need to estimate the unobservable parameter $\theta_{t}$. Consider a time interval $[k \tau,(k+$ 1) $\tau), k \in\{0,1,2, \ldots\}$. The system will switch, if it does, only once by the definition of $\tau . \theta_{t}$ will be estimated when the system reaches the moments $k \tau,(k+1) \tau$ and the switching time, denoted by $t_{k_{\tau}}$. A identification process will expense a length
of $h$ time or be interrupted by a switching event, where $0<h<\tau / 2$. In the rest of $[k \tau,(k+1) \tau)$, $k \in\{0,1,2, \ldots\}$, we will design a feedback control to stabilize the identified system .

Now we encounter a problem that the estimation usually does not equal to the true value of the parameter because there exists disturbance. In what follows, we will show that under certain class of excitation signals, the probability $P\left\{\hat{\theta}_{t_{0}}=\theta_{t_{0}}\right\}$ will tend to 1 as $\left\|x\left(t_{0}\right)\right\|$ going to infinity, where $\hat{\theta}_{t_{0}}$ is the estimate of $\theta_{t_{0}}$ given in (5), $t_{0}=k \tau, t_{k_{\tau}}, k=$ $0,1,2, \cdots$.

Let $C^{(n)}[0, h]$ be the space of $\mathbb{R}^{r}$-valued functions defined on $[0, \mathrm{~h}]$, which have continuous derivatives up to order n. $\forall u \in C^{(n)}[0, h]$, let us denote $U(t)$ as

$$
\begin{equation*}
U(t)=\left(u(t), u^{(1)}(t), \cdots, u^{(n)}(t)\right)^{T} \tag{3}
\end{equation*}
$$

Consider the following class of functions

$$
\begin{align*}
& U_{0}=\left\{u \in C^{(n)}[0, h] \mid U(0)=0,\right. \\
& \left.\quad \lambda_{\min }\left(\int_{0}^{h} U(t) U(t)^{T} d t\right)>0\right\} \tag{4}
\end{align*}
$$

where $\lambda_{\min }(\cdot)$ denotes the minimum eigenvalue of a square matrix. $U_{0}$ is not empty (cf. The appendix of (Guo et al., 2004)). The excitation signal can be taken as any fixed function in $U_{0}$, denoted as $u^{0}(t)$.
Let $\phi(t)=\left(x(t)^{T}, u(t)^{T}\right)^{T}$ and $H_{i}=\left(A_{i}, B_{i}\right)^{T}$. The estimate $\hat{\theta}_{t_{0}}$ for $\theta_{t_{0}}$ is given as
$\arg \min _{1 \leq i \leq N}\left\|\int_{t_{0}}^{t_{0}+h}\left[\phi(s) d x(s)^{T}-\phi(s) \phi(s)^{T} d s H_{i}^{T}\right]\right\|$,
where $t_{0}=k \tau, t_{k_{\tau}}, k=0,1,2, \cdots$,

$$
u(s)=\beta\left\|x\left(t_{0}\right)\right\| u^{0}\left(s-t_{0}\right), \quad s \in\left[t_{0}, t_{0}+h\right)
$$

$\beta>0$ is a constant such that $\beta \geq 2 \eta_{0} \sqrt{\frac{h}{b_{1}}}$,

$$
\begin{equation*}
\eta_{0}=\max _{1 \leq i \leq N} \max _{0 \leq t \leq h}\left\|e^{A_{i} t}\right\| \tag{7}
\end{equation*}
$$

and $b_{1}$ is constant depending on $\left(A_{i}, B_{i}\right), 1 \leq i \leq$ $N, h$ and $u^{0}(t)$.
Let $c=\max \left\{c^{\prime}, 1\right\}$, and

$$
\begin{equation*}
\bar{a}=\max _{i \neq j}\left\|H_{i}-H_{j}\right\|, \underline{a}=\min _{i \neq j}\left\|H_{i}-H_{j}\right\|, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
c^{\prime}=\max _{\substack{1 \leq i \leq N \\ 0 \leq t \leq h}}\left(\left\|e^{A_{i} t}\right\|+\beta\left\|\int_{0}^{t} e^{A_{i}(t-s)} B_{i} u^{0}(s) d s\right\|\right) \tag{9}
\end{equation*}
$$

Let $\hat{x}(s)$ be the solution of the deterministic counterpart of (1), i.e.,
$d \hat{x}(s)=A\left(\theta_{s}\right) \hat{x}(s) d s+B\left(\theta_{s}\right) u(s) d s, \hat{x}\left(t_{0}\right)=x\left(t_{0}\right)$.
Denote $\hat{\phi}(t)=\left(\hat{x}(t)^{T}, u(t)^{T}\right)^{T}$. Noticing that (10) is deterministic, the following lemma given in (Guo et al., 2004) also holds here.

Lemma 1. Consider switched linear system (10). For a $t_{0}$, if the system does not switch on $\left[t_{0}, t_{0}+\right.$ $h)$, then under the control defined in (6),

$$
\begin{align*}
\lambda_{\min }\left\{\int_{t_{0}}^{t_{0}+h}\right. & \left.\hat{\phi}(s) \hat{\phi}(s)^{T} d s\right\} \\
& \geq\left\{\frac{1}{2} b_{1} \beta^{2}-h \eta_{0}^{2}\right\}\left\|x\left(t_{0}\right)\right\|^{2}, \tag{11}
\end{align*}
$$

The estimate of the probability of $\hat{\theta}_{t}=\theta_{t}$ is given by the following lemma.

Lemma 2. Consider switched linear stochastic system (1). For a $t_{0}$, if the system does not switch on $\left[t_{0}, t_{0}+h\right)$, then under the control defined in (6), we have
$P\left\{\hat{\theta}_{t_{0}} \neq \theta_{t_{0}}\right\} \leq \min \left\{1, a\left\|x\left(t_{0}\right)\right\|^{-1}+b\left\|x\left(t_{0}\right)\right\|^{-2}\right\}$,
where $\hat{\theta}_{t}$ is given in (5) and $a, b$ are two positive constants.

Proof. From (1) and (5) we have

$$
\begin{align*}
& \int_{t_{0}}^{t_{0}+h} \phi(s) d x(s)^{T}-\int_{t_{0}}^{t_{0}+h} \phi(s) \phi(s)^{T} d s H_{i}^{T} \\
& =\int_{t_{0}}^{t_{0}+h}\left[\phi(s) \phi(s)^{T} d s\left(H-H_{i}\right)+\phi(s) d w_{s}^{T} F^{T}\right] \\
& \triangleq \Phi\left(H_{i}\right) \tag{13}
\end{align*}
$$

where $H_{\theta_{t}}, F_{\theta_{t}}$ denote as $H, F$ respectively for short.

Since $P\left\{\hat{\theta}_{t_{0}} \neq \theta_{t_{0}}\right\}=\sum_{i \neq \theta_{t_{0}}} P\left\{\hat{\theta}_{t_{0}}=i\right\}$, we calculate $P\left\{\hat{\theta}_{t_{0}}=i\right\}, i \in \Theta \backslash\left\{\theta_{t_{0}}\right\}$ separately.
By (5) and (13), we have

$$
\begin{equation*}
P\left\{\hat{\theta}_{t_{0}}=i\right\} \leq P\left\{\left\|\Phi\left(H_{i}\right)\right\| \leq \min _{j \neq i}\left\{\left\|\Phi\left(H_{j}\right)\right\|\right\} .\right. \tag{14}
\end{equation*}
$$

Since $i \neq \theta_{t_{0}}$, this implies that

$$
\min _{j \neq i}\left\|\Phi\left(H_{j}\right)\right\| \leq\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\|
$$

which yields

$$
P\left\{\hat{\theta}_{t_{0}}=i\right\} \leq P\left\{\left\|\Phi\left(H_{i}\right)\right\| \leq\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\|\right\} .
$$

Then by

$$
\begin{aligned}
\left\|\Phi\left(H_{i}\right)\right\| \geq \| \int_{t_{0}}^{t_{0}+h} & \phi(s) \phi(s)^{T} d t\left(H-H_{i}\right) \| \\
& -\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\|
\end{aligned}
$$

it follows that

$$
\begin{align*}
P\left\{\hat{\theta}_{t}\right. & =i\} \leq P\left\{2\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\|\right. \\
& \left.\geq\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) \phi(s)^{T} d s\left(H-H_{i}\right)\right\|\right\} \tag{15}
\end{align*}
$$

We decompose $x(t)$ on $\left[t_{0}, t_{0}+h\right)$ as $x(t)=\hat{x}(t)+$ $\tilde{x}(t)$, in which $\hat{x}(t)$ is defined in (10), and set

$$
\begin{equation*}
\int_{t_{0}}^{t_{0}+h} \phi(s) \phi(s)^{T} d s\left(H-H_{i}\right)=\Psi_{1}+\Psi_{2}+\Psi_{3} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
\Psi_{1} & =\int_{t_{0}}^{t_{0}+h} \hat{\phi}(s) \hat{\phi}(s)^{T} d s\left(H-H_{i}\right) \\
\Psi_{2} & =\int_{t_{0}}^{t_{0}+h} \tilde{x}(s) \tilde{x}(s)^{T} d s\left(A^{T}-A_{i}^{T}\right) \\
\Psi_{3} & =\int_{t_{0}}^{t_{0}+h}\left[\hat{\phi}(s) \tilde{x}(s)^{T}+\tilde{x}(s) \hat{\phi}(s)^{T}\right] d s\left(H-H_{i}\right) .
\end{aligned}
$$

By Lemma 1 and (8) we have

$$
\begin{align*}
\left\|\Psi_{1}\right\| & \geq \lambda_{\min }\left\{\left\|\int_{t_{0}}^{t_{0}+h} \hat{\phi}(s) \hat{\phi}(s)^{T} d s\right\|\right\}\left\|\left(H-H_{i}\right)\right\| \\
& \geq \underline{a}\left(\frac{1}{2} b_{1} \beta^{2}-h \eta_{0}^{2}\right)\left\|x\left(t_{0}\right)\right\|^{2} \tag{17}
\end{align*}
$$

By (10) and (1) we have

$$
\tilde{x}(t)=\int_{t_{0}}^{t} e^{A(t-s)} F d w_{s}
$$

Then

$$
\begin{align*}
& E\|\tilde{x}(t)\|^{2}=E\left\|\int_{t_{0}}^{t} e^{A(t-s)} F d w_{s}\right\|^{2} \\
& =\int_{t_{0}}^{t} \operatorname{tr}\left(F^{T} e^{A^{T}(t-s)} e^{A(t-s)} F\right) d s \\
& \leq \int_{t_{0}}^{t} l\left\|e^{A(t-s)} F\right\|^{2} d s \leq \sigma^{2} \eta_{0}^{2} h l, \tag{18}
\end{align*}
$$

where for the last inequality is from (7). Thus

$$
\begin{gather*}
E\left\{\left\|\Psi_{2}\right\|\right\} \leq \int_{t_{0}}^{t_{0}+h} E\left\|\tilde{x}(s) \tilde{x}(s)^{T}\right\| d s\left(A^{T}-A_{i}^{T}\right) \\
\leq \bar{a} \int_{t_{0}}^{t_{0}+h} E\|\tilde{x}(s)\|^{2} d s \leq \bar{a} \sigma^{2} \eta_{0}^{2} h^{2} l \tag{19}
\end{gather*}
$$

Since

$$
\begin{align*}
& E\left\|\hat{\phi}(t) \tilde{x}(t)^{T}\right\|=E\left\|\tilde{x}(t)\left(\hat{x}(t)^{T} \quad u(t)^{T}\right)\right\| \\
& \leq(\|\hat{x}(t)\|+\|u(t)\|) E\|\tilde{x}(t)\| . \tag{20}
\end{align*}
$$

By (18) and Schwarz inequality, we have

$$
E\|\tilde{x}(t)\| \leq\left(E\|\tilde{x}(t)\|^{2}\right)^{\frac{1}{2}} \leq \eta_{0} \sigma h^{\frac{1}{2}} l^{\frac{1}{2}}
$$

And by using $c$ in (9) and $u_{t}$ in (6),

$$
\begin{aligned}
\|\hat{x}(t)\| & =\left\|e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-s)} B u_{s} d s\right\| \\
& \leq c\left\|x\left(t_{0}\right)\right\|
\end{aligned}
$$

These imply that the right hand side of (20) is less than

$$
\begin{align*}
& (\| x \hat{x} t)\|+\| u(t) \|)\left(E\|\tilde{x}(t)\|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(c\left\|x\left(t_{0}\right)\right\|+\beta\left\|x\left(t_{0}\right)\right\| \cdot\left\|u^{0}\left(t-t_{0}\right)\right\|\right) \eta_{0} \sigma h^{\frac{1}{2}} l^{\frac{1}{2}} \\
& \leq \eta_{0} \eta_{1} \sigma h^{\frac{1}{2}} l^{\frac{1}{2}}\left\|x\left(t_{0}\right)\right\|, \tag{21}
\end{align*}
$$

where $\eta_{1}=c+\beta \max _{0 \leq t \leq h}\left\|u^{0}(t)\right\|$. Therefore,

$$
E\left\{\left\|\Psi_{3}\right\|\right\} \leq 2 \bar{a} \eta_{0} \eta_{1} \sigma h^{\frac{3}{2}} l^{\frac{1}{2}}\left\|x\left(t_{0}\right)\right\| .
$$

Analogously, noting that

$$
\begin{align*}
& E\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\| \\
& \leq\|F\|\left(E\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T}\right\|^{2}\right)^{\frac{1}{2}} \\
& \leq \sigma \int_{t_{0}}^{t_{0}+h}(\|\hat{x}(s)\|+\|u(s)\|+E\|\tilde{x}(s)\|)^{2} d s \\
& \leq \sigma^{2} \eta_{0} h l^{\frac{1}{2}}+\sigma \eta_{1} h^{\frac{1}{2}}\left\|x\left(t_{0}\right)\right\| . \tag{22}
\end{align*}
$$

and from (17), (19) and (22), and combining with Chebyshev inequality, we know that for $\left\|x\left(t_{0}\right)\right\| \geq$ 0 ,

$$
\begin{align*}
& P\left\{\hat{\theta}_{t_{0}}=i\right\} \leq P\left\{\left\|\Psi_{1}\right\|\right. \\
& \leq P\left\{\left\|\int_{t_{0}}^{t_{0}+h} \phi(s) d w_{s}^{T} F^{T}\right\| \geq \frac{1}{6}\left\|\Psi_{1}\right\|\right\} \\
& +P\left\{\left\|\Psi_{2}\right\| \geq \frac{1}{3}\left\|\Psi_{1}\right\|\right\}+P\left\{\left\|\Psi_{3}\right\| \geq \frac{1}{3}\left\|\Psi_{1}\right\|\right\} \\
& =a\left\|x\left(t_{0}\right)\right\|^{-1}+b\left\|x\left(t_{0}\right)\right\|^{-2}, \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
& a=\frac{6 \sigma \eta_{1} h^{\frac{1}{2}}\left(1+\bar{a} \eta_{0} h l^{\frac{1}{2}}\right)}{\underline{a}\left(\frac{1}{2} b_{1} \beta^{2}-h \eta_{0}^{2}\right)}, \\
& b=\frac{3 \sigma^{2} h \eta_{0}\left(2 l^{\frac{1}{2}}+\bar{a} \eta_{0} h l\right)}{\underline{a}\left(\frac{1}{2} b_{1} \beta^{2}-h \eta_{0}^{2}\right)} .
\end{aligned}
$$

It is obvious that $P\left\{\hat{\theta}_{t_{0}}=i\right\} \leq 1$, this implies the assertion of Lemma.

## 4. MAIN RESULT

To obtain the main result of this paper, we will use the squashing lemma given in (Cheng et al., 2004):

Lemma 3. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times r}$ be matrices such that the pair $(A, B)$ is completely controllable, then $\forall \lambda>0$, there always exists a matrix $K \in \mathbb{R}^{r \times n}$ such that

$$
\begin{equation*}
\left\|e^{(A+B K) t}\right\| \leq M \lambda^{L} e^{-\lambda t}, \forall t \geq 0 \tag{24}
\end{equation*}
$$

where $L=(n-1)(n+2) / 2, M>0$ are constants depending only on $A, B$ and $n$.

Denote
$\Lambda \triangleq\left\{\lambda: \log 32 c+\max \left(\log M \lambda^{L}, 0\right)<\frac{1}{2}(\tau-2 h) \lambda\right\}$ where $\epsilon$ is a given fixed small positive constant, and where $\eta_{2}$ is defined as

$$
\begin{equation*}
\eta_{2}=\max _{1 \leq i, j \leq N} \max _{0 \leq t \leq \tau-h}\left\|e^{\left(A_{i}+B_{i} K_{j}\right) t}\right\| \tag{25}
\end{equation*}
$$

We have the following Theorem.

Theorem 1. If assumptions H1) and H2) hold, then the switched linear stochastic system (1) is mean-square stabilized.

Proof. Consider the system's behavior in the time interval $[k \tau,(k+1) \tau), k \in\{0,1,2, \ldots\}$. We will calculate the conditional square moment $E\left(\|x((k+1) \tau)\|^{2} \mid x(k \tau)\right)$.

First, for the identification processes during $\left[t_{0}, t_{0}+\right.$ $\delta), t_{0}=k \tau$ or $t_{k_{\tau}}, 0<\delta \leq h$, by (1) and (6),

$$
\begin{align*}
& E\left(\left\|x\left(t_{0}+\delta\right)\right\|^{2} \mid x\left(t_{0}\right)\right) \\
& \leq\left(\left\|e^{A \delta}\right\|+\beta\left\|\int_{0}^{\delta} e^{A(\delta-s)} B u^{0}(s) d s\right\|\right)^{2}\left\|x\left(t_{0}\right)\right\|^{2} \\
&+\int_{0}^{\delta} l\left\|e^{A(\delta-s)} F\right\|^{2} d s \\
& \leq c^{2}\left\|x\left(t_{0}\right)\right\|^{2}+\eta_{0}^{2} \sigma^{2} h l \leq c^{2}\left\|x\left(t_{0}\right)\right\|^{2}+c_{1}, \tag{26}
\end{align*}
$$

where $A, B$ and $F$ denote the true coefficients of the system, $c$ is defined in (9), $\eta_{0}$ is given by (7), and $c_{1}=\max \left\{\eta_{0}^{2} \sigma^{2} \tau l, \eta_{2}^{2} \sigma^{2} \tau l\right\}$.
Second, for the stabilization process during $\left[t_{*}, t_{*}+\right.$ $\mu), t_{*}, t_{*}+\mu \in[k \tau,(k+1) \tau)$, by Lemma 3 there are $\lambda \in \Lambda$, and corresponding $K_{i}$ such that for each of $\left\{\left(A_{i}, B_{i}\right)\right\}(24)$ is satisfied. Then let $K=K\left(\hat{\theta}_{t_{*}}\right)$, we have

$$
\begin{align*}
& E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid x\left(t_{*}\right)\right) \\
& =\sum_{i=1}^{N} E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid \hat{\theta}_{t_{*}}=i, x\left(t_{*}\right)\right) \cdot P\left\{\hat{\theta}_{t_{*}}=i\right\} \\
& \leq E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid \hat{\theta}_{t_{*}}=\theta_{t_{*}}, x\left(t_{*}\right)\right) \\
& +\sum_{i \neq \theta_{t_{*}}} E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid \hat{\theta}_{t_{*}}=i, x\left(t_{*}\right)\right) \\
& \cdot P\left\{\hat{\theta}_{t_{*}}=i\right\} \tag{27}
\end{align*}
$$

If $\hat{\theta}_{t_{*}}=\theta_{t_{*}}$, then

$$
\begin{align*}
& E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid \hat{\theta}_{t_{*}}=\theta_{t_{*}}, x\left(t_{*}\right)\right) \\
& \leq\left\|e^{(A+B K) \mu} x\left(t_{*}\right)\right\|^{2}+E \int_{0}^{\mu} l\left\|e^{(A+B K)(\mu-s)} F\right\|^{2} d s \\
& \leq\left(M \lambda^{L} e^{-\lambda \mu}\right)^{2}\left\|x\left(t_{*}\right)\right\|^{2}+\frac{l}{2 \lambda}\left(\sigma M \lambda^{L}\right)^{2}\left(1-e^{-2 \lambda \mu}\right) . \tag{28}
\end{align*}
$$

Otherwise,

$$
\begin{align*}
& \sum_{i \neq \theta_{t_{*}}} E\left(\left\|x\left(t_{*}+\mu\right)\right\|^{2} \mid \hat{\theta}_{t_{*}}=i, x\left(t_{*}\right)\right) \\
& =\sum_{i \neq \theta_{t_{*}}} E\left\{\| e^{\left(A+B K_{i}\right) \mu} x\left(t_{*}\right)\right. \\
& \left.\quad \quad+\int_{0}^{\mu} e^{\left(A+B K_{i}\right)(\mu-s)} F d w_{s} \|^{2} \mid x\left(t_{*}\right)\right\} \\
& \leq(N-1) \eta_{2}^{2}\left\{\left\|x\left(t_{*}\right)\right\|^{2}+l \sigma^{2} \mu\right\} \\
& \leq(N-1)\left(\eta_{2}^{2}\left\|x\left(t_{*}\right)\right\|^{2}+c_{1}\right), \tag{29}
\end{align*}
$$

where $\eta_{2}$ is given in (25).

From (26)-(29) and Lemma 2, after an identification process $\left[t_{0}, t_{0}+h\right)$ followed with a stabilization process $\left[t_{0}+h, t_{1}\right)$,

$$
\begin{align*}
& E\left(\left\|x\left(t_{1}\right)\right\|^{2} \mid x\left(t_{0}\right)\right) \\
& \quad \leq\left[2 c M \lambda^{L} e^{-\lambda\left(t_{1}-t_{0}-h\right)}\right]^{2}\left\|x\left(t_{0}\right)\right\|^{2}+C_{1} \tag{30}
\end{align*}
$$

where $C_{1}$ is a constant.
$E\left(\|x(k \tau+\tau)\|^{2} \mid x(k \tau)\right)$ is estimated in the following three situations.

1. For the situation that the system does not switch on the time interval $[k \tau, k \tau+\tau)$,

$$
\begin{align*}
& E\left(\|x(k \tau+\tau)\|^{2} \mid x(k \tau)\right) \\
& \quad \leq 4 c^{2}\left(M \lambda^{L}\right)^{2} e^{-2 \lambda(\tau-h)}\|x(k \tau)\|^{2}+C_{1} \tag{31}
\end{align*}
$$

2. For the situation that system switches one time on $[k \tau, k \tau+\tau)$ and $t_{k_{\tau}}-k \tau>h,(k+1) \tau-t_{k_{\tau}}>h$, by using (30) twice, we obtain

$$
\begin{align*}
& E\left(\|x(k \tau+\tau)\|^{2} \mid x(k \tau)\right) \\
& \leq 32 c^{4}\left(M \lambda^{L}\right)^{4} e^{-2 \lambda(\tau-2 h)}\|x(k \tau)\|^{2}+C_{2} \tag{32}
\end{align*}
$$

where $C_{2}$ is a positive constant.
3. For the situation that the system switches once on $[k \tau,(k+1) \tau)$ and $t_{k_{\tau}}-k \tau \leq h$, or $k \tau+\tau-$ $t_{k_{\tau}} \leq h$, using (26) and (30), we have

$$
\begin{align*}
& E\left(\|x(k \tau+\tau)\|^{2} \mid x(k \tau)\right) \\
& \quad \leq 8 c^{3}\left(M \lambda^{L}\right)^{2} e^{-2 \lambda(\tau-2 h)}\|x(k \tau)\|^{2}+C_{3}, \tag{33}
\end{align*}
$$

where $C_{3}$ is a positive constant.
From (31)-(33), it follows that

$$
\begin{equation*}
E\left(\|x(k \tau+\tau)\|^{2} \mid x(k \tau)\right) \leq \alpha_{\lambda}^{2}\|x(k \tau)\|^{2}+C \tag{34}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{\lambda}=32\left[c \max \left(M \lambda^{L}, 1\right)\right]^{4} e^{-2 \lambda(\tau-2 h)} \\
& C=\max \left\{C_{1}, C_{2}, C_{3}\right\}
\end{aligned}
$$

Since $\alpha_{\lambda}$ and $C$ are independent of $k$, by iterating the inequality (34), we have

$$
E\left(\|x(k \tau)\|^{2} \mid x(0)\right) \leq \alpha_{\lambda}^{2 k}\|x(0)\|^{2}+\frac{1-\alpha_{\lambda}^{2 k}}{1-\alpha_{\lambda}^{2}} C
$$

Taking expectations on both sides, it follows that

$$
E\|x(k \tau)\|^{2} \leq \alpha_{\lambda}^{2 k} E\|x(0)\|^{2}+\frac{1-\alpha_{\lambda}^{2 k}}{1-\alpha_{\lambda}^{2}} C
$$

It can be inferred from the definition of $\Lambda$ that $\alpha_{\lambda}<1$. From the initial condition $E\|x(0)\|^{2}<\infty$, and letting $k \rightarrow \infty$, it is easy to see that

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} E\|x(k \tau)\|^{2} \leq \frac{C}{1-\alpha_{\lambda}^{2}}<\infty \tag{35}
\end{equation*}
$$

As for any $t \in[0, \infty)$, there always exists $k \in$ $\{1,2, \ldots\}$ such that $[k \tau, k \tau+\tau)$ covers $t$. By applying the inequalities (26) and (30) we obtain

$$
E\left(\|x(t)\|^{2} \mid x(k \tau)\right) \leq c^{4} \eta_{2}^{4}\|x(k \tau)\|^{2}+C_{0}
$$

where $C_{0}=c^{2} \eta_{2}^{4} c_{1}+c^{2} \eta_{2}^{2} c_{1}+\eta_{2}^{2} c_{1}+c_{1}$.

Therefore

$$
\varlimsup_{t \rightarrow \infty} E\|x(t)\|^{2} \leq \frac{c^{4} \eta_{2}^{4} C}{1-\alpha_{\lambda}^{2}}+C_{0}<\infty
$$

This completes the proof of Theorem.

## 5. CONCLUDING REMARKS

This paper has studied the stabilization problem of switched linear stochastic systems with unknown switchings but known switching instants. Our main assumptions are that each individual subsystem is controllable and the dwell time has a positive lower bound. Comparing with the corresponding results in deterministic systems, the difficulty is that the parameters can not be exactly identified within finite time. So the effect of misestimate would be considered during the analysis. We proved that the system is mean-square stabilized by using on-line estimation method and suitable designed linear feedback controllers. In this paper, the switching instants are available and the identification and control are two separated procedures based on this information, it is better to make these two purposes with a unified input for practicing application, this is a future research topic. Many researches such as (Fang and Loparo, 2002) and (Guo et al., 2004) have shown that the conditions for almost surely stability are differ with that required for mean square stability. So this is also a further research topic to consider the condition for almost surely stability in stochastic systems.

## REFERENCES

Bouhtouti, A. E. and K. E. Hadri (2003). Robust stabilization of jump linear systems with multiplicative noise. IMA. J. Math. Contr. Inf. 20, 1-19.
Caines, P. E. and J. F. Zhang (1995). On the adaptive control of jump parameter systems via nonlinear filtering. SIAM J. Contr. Optim. 33, 1758-1777.
Cheng, D. Z., L. Guo, Y. D. Lin and Y. Wang (2004). A note on squashing lemma. J. of Contr. Theory and Appl. 2, 161-164.
Fang, Y. G. and K. A. Loparo (2002). Stabilization of continuous-time jump linear systems. IEEE Trans. Automat. Contr. 47, 1590-1603.
Feng, W. and J. F. Zhang (2004). Stability analysis and stabilization control of multivariable switched stochastic systems,.
Feng, X., K. L. Loparo, Y. Ji and H. J. Chizeck (1992). Stochastic stability properties of jump linear systems. IEEE Trans. Automat. Contr. 37, 38-53.

Guo, L., Y. Wang, D. Z. Cheng and Y. D. Lin (2004). Stabilization of switched linear systems. To appear in IEEE Trans. Automat. Contr.
Hespanha, J. P. and A. S. Morse (1999). Stability of switched systems with average dwell time. In: Proc. 38th Conf. Decision and Control.
Kozin, F. (1969). A survey of stability of stochastic systems. Automatica 5, 95-112.
Leizarowitz, A. (1990). Exact results for the lyapunov exponents of certain linear ito systems. SIAM J. Appl. Math. 50, 1156-1165.
Liberzon, D., J. P. Hespanha and A. S. Morse (1999). Stability of switched systems: A liealgebra condition. Sys. Contr. Lett. 37, 117122.

Molchanov, A. P. and Y. S. Pyatnitskiy (1989). Criteria of absolute stability of differential and difference inclusions encounted in control theory. Sys. Contr. Lett. 13, 59-64.
Morse, A. S. (1996). Supervisory control of families of linear set-point controllers. IEEE Trans. Automat. Contr. 41, 1413-1431.
Narendra, K. S. and J. Balakrishman (1994). A common lyapunov function for stable LTI systems with commuting a-matrices. IEEE. Trans. Automat. Contr. 39, 2469-2471.
Peleties, P. and R. A. Decarlo (1991). Asymptotic stability of m-switched systems using lyapunov-like functions. In: Proc. American Contr. Conf.. pp. 1679-1684.
Rosenbloom, A. (1954). Analysis of linear systems with randomly time-varying parameters. In: Proc. Symp. Inf. Nets. Brooklyn, NY:Poly.Inst. Vol. III. p. 145.
Shim, H., D. J. Noh and J. H. Seo (1998). Common Lyapunov function for exponentially stable nonlinear systems. In: 4th SIAM Conf. Contr. Appl.. Jacksonville, FL.
Sira-Ranirez, H. (1991). Nonlinear P-I controller design for switch mode de-to dc power converters. IEEE Trans. Circuits Syst. 38, 410417.

Varaiya, P. P. (1993). Smart car on smart roads: Problems of control. IEEE Trans. Automat. Contr. 38, 195-207.
Williams, S. M. and R. G. Hoft (1991). Adaptive frequency domain control of PM switched power line conditioner. IEEE Trans. Power Electron. 6, 665-670.
Zhai, G. S., B. Hu and K. Yasuda (2001). Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. Int. J. Sys. Sci. 32, 1055-1061.


[^0]:    1 Supported in part by the National Natural Science Foundation of China.

