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Abstract: In this paper we study the solvability of a general nD partial control
problem in the behavioral framework. This turns out to be characterized in terms
of the solvability of another (full) control problem based on a canonical controller
associated to the original problem. Moreover we investigate the performance of
the canonical controller in achieving a given control objective and generalize
the corresponding results previously obtained by other authors for the 1D case.
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1. INTRODUCTION

The behavioral approach to control rests on the
set theoretic interpretation of the basic idea that
to control a system is to impose adequate ad-
ditional restrictions to its variables in order to
obtain a desired overall functioning pattern. In
this context, there are two main situations to
be considered: either all the system variables are
available for control (i.e., are control variables) or
only some of the variables are control variables.
In order to distinguish these two cases, we respec-
tively refer to full control and (partial) control.

The first results on solvability of full control
problems for systems evolving over a time domain
(1D systems) have been obtained in (Willems,
1997). In (Rocha and Wood, 2001), further results
have been presented not only for 1D, but also for
multidimensional (nD) systems (i.e., for systems
evolving over n-dimensional domains).

As concerns partial control problems, the situa-
tion is somewhat more involved, since a direct
characterization of solvability seems to be impos-
sible. However, in (Belur and Trentelman, 2002)
the solvability of a 1D partial control problem for
a given plant has been related to the solvability

of a suitable associated full control problem. In
(Rocha, 2002) some preliminary results for the
corresponding nD case have been obtained, by
considering a special behavior that has also been
introduced in (van der Schaft, 2002) and (Willems
et al., 2003) under the name of canonical con-
troller.

In this paper we start by further investigating the
solvability of nD partial control problems. More
concretely, we establish a relation between the
controllers that yield a desired control objective
by partial control with the controllers that yield
the associated canonical controller (now regarded
as a control objective) by full control. This situa-
tion is different from the 1D case, but also allows
to obtain necessary and sufficient conditions for
the solvability of a partial control problem in
terms of a full one.

In a second stage, we study the effectiveness of
the canonical controller in solving the associated
partial control problem - a question which has also
been considered in (Willems et al., 2003) for the
1D case - and generalize the corresponding 1D
results to the nD case.



2. BEHAVIORAL CONTROL

To make the notions of full and partial control
more precise we introduce the following notation.
If a behavior B has variables z, we denote it by
Bz; moreover, if the variables z are partitioned as
z = (w, c), we define the w-behavior of B(w,c) as
Bw := ΠwB(w,c) := {w | ∃c such that (w, c) ∈
B(w,c)}; we also define Bc in an analogous way.
On the other hand, given a behavior Bv we de-
fine its lifting to a (e, v)-behavior as B∗

(e,v) :=
{(e, v) | e is free and v ∈ Bv}
In set theoretic terms, full control can be formu-
lated as follows. If Pz is the behavior of the system
to be controlled (the plant) and Cz is the set of all
signals compatible with the additional restrictions
to be imposed on z, i.e., the full controller, then
the resulting controlled behavior is given by

Pz ∩ Cz. (1)

This intersection is known as the interconnection
of the behaviors Pz and Cz. A desired controlled
behavior Dz is said to be implementable (from Pz)
by full control if there exists a full controller Cz

that implements it, i.e., such that its interconnec-
tion (1) with the plant behavior Pz results in Dz.

As for partial control, assume now that the system
variables z are partitioned as z = (w, c), where c
are the control variables and w the variables to be
controlled. If P(w,c) is the behavior of the system
to be controlled and Cc is the controller, i.e., the
set of all signals compatible with the additional
restrictions to be imposed on the control variables
c, then the resulting controlled (w, c)-behavior is
given by the interconnection

P(w,c) ∩ C∗(w,c). (2)

A desired behavior Dw for the variables to be con-
trolled is said to be implementable (from P(w,c))
if there exists a controller Cc such that the w-
behavior of the interconnection (2) is Dw; in this
case we say that Cc implements Dw.

In the sequel we consider nD behaviors Bz that
can be described by a set of linear partial differ-
ence or partial differential equations, i.e.,

Bz = kerH(σ1, . . . , σn) := {z ∈ U | Hz = 0},

where U is the trajectory universe, the σi’s are
either the usual nD shifts or the elementary nD
partial differential operators and H(s1, . . . , sn) is
an nD polynomial matrix known as representation
of Bz. We refer to these behaviors as kernel
behaviors. In case the variable z is partitioned as
z = (w, c), we consider the representation matrix
H to be partitioned accordingly as H = [R −M ].
This clearly corresponds to writing the equation
Hz = 0 as Rw = Mc. Note that here, for the

sake of simplicity, we have written H instead of
H(s1, . . . , sn) and H(σ1, . . . , σn). From now on,
whenever it is clear from the context to which kind
of object we are referring (nD polynomial matrix
or nD partial difference / differential operator),
we adopt this simplification.

Instead of characterizing Bz by means of a repre-
sentation matrix H, it is also possible to char-
acterize it by means of its orthogonal module
Mod(Bz), which consists of all the nD polynomial
rows r such that Bz ⊂ ker r, and can be shown to
coincide with the polynomial module generated by
the rows of H.

Given two behaviors B1
z and B2

z their interconnec-
tion B1

z ∩ B2
z is said to be regular if

Mod(B1
z) ∩Mod(B2

z) = {0}. (3)

If B1
z = ker(H1) and B2

w = ker(H2), then B1
z ∩

B2
z = ker(

[
H1

H2

]
) and it constitutes a regular

interconnection if and only if

rank
[

H1

H2

]
= rankH1 + rankH2, (4)

where the ranks are taken as ranks of nD polyno-
mial matrices.

A full controller Cz is called a regular full con-
troller, if its interconnection (1) with the plant
Pz is regular. A behavior Dz is regularly imple-
mentable by full control if it is implemented by a
regular full controller. In turn, a controller Cc is
said to be a regular controller, if the interconnec-
tion (2) is regular. In the same way, a behavior Dw

is regularly implementable if it is implemented by
a regular controller.

In this setting, the problem of (regular) full con-
trol can be stated as follows: given a plant Pz and
a desired behavior (control objective) Dz, design
a (regular) full controller Cz that implements Dz.
The problem of (regular) control consists in: given
a plant P(w,c) and a control objective Dw, find a
(regular) controller Cc that implements Dw.

3. THE CANONICAL CONTROLLER AND
BEHAVIOR IMPLEMENTATION

The solvability of a given control problem is noth-
ing else than the possibility of implementing the
control objective from the given plant. Clearly, a
behavior Dz is implementable from a plant Pz if
and only if it is contained in the plant (in this case
it suffices to take as controller Cz = Dz). However,
this interconnection is regular only when Pz co-
incides with the whole universe for the signals z.
The notion of implementation of nD behaviors by
regular full control has been studied in (Rocha and



Wood, 2001) under the name of ”achievability by
regular interconnection”. On the other hand, the
implementation and regular implementation of 1D
behaviors by partial control have been completely
characterized in (Trentelman and Willems, 2002)
and (Belur and Trentelman, 2002). As for partial
control in the nD case, some preliminary results
have been obtained in (Rocha, 2002).

Let P(w,c) be an nD plant behavior with descrip-
tion

Rw = Mc (5)

and Dw be a control objective. Define the hidden
behavior Hw := {w | (w, 0) ∈ P(w,c)}. Clearly,

Hw = kerR. (6)

The following theorem generalizes the 1D results
on implementation by partial control (Trentelman
and Willems, 2002).

Theorem 1. (Rocha, 2002) With the previous no-
tation, the following statements are equivalent.

(1) Dw is implementable from P(w,c).
(2) Hw ⊂ Dw ⊂ Pw.

As concerns regular implementation, it is shown
in (Belur and Trentelman, 2002) that in the 1D
case a behavior Dw is regularly implementable
from P(w,c) (by partial control) if and only if it is
regularly implementable from Pw by full control.
Unfortunately, this no longer holds in the nD case,
as illustrated in the following example.

Example 1. (Rocha, 2002) Let P(w,c) be the 2D
behavior described by the equation

w =
[

σ2 − 1
1− σ1

]
c,

or equivalently, by[
1 0 1− σ2

0 1 σ1 − 1

] [
w
c

]
=

[
0
0

]
and let Dw be the zero behavior. Define the con-
troller Cc = ker 1 (which corresponds to forcing
the control variable c to be equal to zero). Apply-
ing this controller to P(w,c) corresponds to making
the interconnection P(w,c) ∩ C∗(w,c), given by the
equation  1 0 1− σ2

0 1 σ1 − 1
0 0 1

[
w
c

]
=

 0
0
0

 .

This is a regular interconnection, since

rank

 1 0 1− s2

0 1 s1 − 1
0 0 1

 = rank
[

1 0 1− s2

0 1 s1 − 1

]
+rank[0 0 1].

Moreover, the associated w-behavior is obviously
the zero behavior Dw, showing that Dw is regu-
larly implementable from P(w,c) by partial control.

Consider now the behavior Pw associated with
P(w,c). It is not difficult to check that Pw =
ker[σ1 − 1 σ2 − 1]. If Dw were implementable
from Pw by full control, the 2D polynomial ma-
trix [s1 − 1 s2 − 1] would be completable to a
unimodular matrix, which is not the case since it
is not a zero-left-prime matrix. Thus we conclude
that Dw is not implementable from Pw by full
interconnection, showing that the 1D result does
to generalize to nD behaviors.

Another distinction between the 1D and the nD
cases is that whereas for 1D systems imple-
mentability by full control can be expressed in
terms of controllability, the same does not happen
for nD systems. Indeed, it is proven in (Rocha and
Wood, 2001) and (Belur and Trentelman, 2002)
that, in the 1D caseDw is regularly implementable
from Pw by full control if and only if

Dw + Pcont
w = Pw,

where Pcont
w is the controllable part of Pw, i.e., the

largest controllable sub-behavior or Pw. This sum
condition can be interpreted in terms of control-
lability both in the 1D and in the higher dimen-
sional cases, see (Rocha and Wood, 2001). How-
ever, in the nD case, this condition is necessary
but not sufficient for regular implementability by
full control. We refer the reader to (Rocha and
Wood, 2001) for further details.

In view of the foregoing considerations, we need
to introduce new tools in order to analyze the
problem of nD regular implementation. More con-
cretely, we shall try to characterize regular imple-
mentation (by partial control) in terms of condi-
tions on the control variable behavior, rather than
by means of conditions on the behavior of the
variables to be controlled. In order to do so, we
next define the canonical controller associated to
a given control problem. This controller has been
considered in (Rocha, 2002), under a different
designation, as well as in (van der Schaft, 2002)
and (Willems et al., 2003).

Definition 1. Let P(w,c) be a given plant behavior
and Dw a desired behavior (control objective).
The canonical controller associated with P(w,c)

and Dw is defined as Ccan
c := {c | ∃w : (w, c) ∈

P(w,c) and w ∈ Dw}.

Thus, the canonical controller consists of all the
control variable trajectories compatible with the
desired behavior for the variables to be controlled.

We start by relating the implementation of Dw

from P(w,c) (by partial control) with the imple-



mentation of the corresponding canonical con-
troller from Pc := ΠcP(w,c) (the control variable
behavior associated with P(w,c)) by full control.
For that purpose we define the unobserved con-
trol variable behavior associated with P(w,c) as
Nc := {c | (0, c) ∈ P(w,c)}.

Proposition 1. Given a plant behavior P(w,c) and
an implementable control objective Dw, the fol-
lowing holds.

(1) If the controller Cc implements Ccan
c from Pc

by full control, then it implements Dw from
P(w,c).

(2) If the controller C̃c implements Dw from
P(w,c), then the controller C̃c+Nc implements
Ccan

c from Pc by full control.

Proof
Let

Rw = Mc (7)

be a representation of P(w,c) and N be an nD poly-
nomial matrix which is an minimal left annihilator
(MLA) of R. Then, Pc = kerNM .

1. Assume that the controller Cc = kerK imple-
ments Ccan

c and apply this controller to the plant.
This yields the (w, c)-behavior described by the
equations: {

Rw = Mc
0 = Kc.

(8)

We next show that the corresponding w-behavior
coincides with Dw, which clearly implies that Cc

implements Dw from P(w,c).

Suppose then that w∗ belongs to the w-behavior
induced by equations (8), i.e., that there exists
c∗ such that the pair (w∗, c∗) satisfies these equa-
tions. This implies that c∗ ∈ Pc ∩ Cc = Ccan

c and
hence, by the definition of the canonical controller,
there exists w̄ ∈ Dw such that (w̄, c) ∈ P(w,c).
Thus, by linearity, (w∗ − w̄, 0) ∈ P(w,c), meaning
that w∗ − w̄ ∈ Hw. Since Dw is by assumption
implementable, Hw ⊂ Dw and w∗ − w̄ ∈ Dw.
Consequently also w∗ ∈ Dw and therefore the w-
behavior induced by equations (8) is contained in
Dw.

Conversely, suppose that w∗ ∈ Dw. Then obvi-
ously w∗ ∈ Pw and hence there exists c∗ such
that (w∗, c∗) ∈ P(w,c), i.e., such that

Rw∗ = Mc∗.

By the definition of the canonical controller, this
means that c∗ ∈ Ccan

c . Since Ccan
c is assumed to

be implementable by Cc, Ccan
c ⊂ Cc and therefore

c∗ ∈ Cc, i.e.,
Kc∗ = 0.

Thus, the pair (w∗, c∗) satisfies equations (8),
which means that w∗ is in the w-behavior induced
by these equations. So, Dw is contained in that
behavior. As mentioned before, this shows that Cc

implements Dw from P(w,c).

2. Assume now that the controller C̃c = kerK
implements Dw from P(w,c). Let c∗ ∈ Ccan

c . This
means that there exists w∗ such that (w∗, c∗) ∈
P(w,c) and w∗ ∈ Dw. This last condition implies
that there exists c̄ ∈ C̃c such that (w∗, c̄) ∈ P(w,c).
Note that by the linearity of P(w,c), (0, c∗ − c̄) ∈
P(w,c); hence c∗−c̄ ∈ Nc and therefore (taking into
account that c̄ ∈ C̃c) we have that c∗ ∈ Nc + C̃c.
Thus, Ccan

c ⊂ Nc + C̃c and, since also Ccan
c ⊂ Pc,

Ccan
c ⊂ (Nc + C̃c) ∩ Pc.

Conversely, assume that c∗ ∈ (Nc+C̃c)∩Pc. Then,
there exist w∗ and c̄ ∈ C̃c such that (w∗, c∗) ∈
P(w,c), c̄ ∈ C̃c and c∗ − c̄ ∈ Nc. This implies
that (w∗, c̄) ∈ P(w,c) and, since C̃c implements Dw

from P(w,c), w∗ ∈ Dw. Together with the fact that
(w∗, c∗) ∈ P(w,c), taking the definition of Ccan

c into
account, this allows to conclude that c∗ ∈ Ccan

c .
Therefore (Nc+C̃c)∩Pc ⊂ Ccan

c . This finally proves
that Ccan

c = (Nc + C̃c) ∩ Pc, which amounts to
say that Nc + C̃c implements Ccan

c from Pc by full
control.

Remark Note that, as a consequence of this propo-
sition, if Nc = {0}, then Cc implements Dw from
P(w,c) if and only if it implements Ccan

c from Pc

by full control.

It turns out that an analogous result to Proposi-
tion 1 holds true for regular implementation.

Proposition 2. Given a plant behavior P(w,c) and
an implementable control objective Dw, the fol-
lowing holds.

(1) If the controller Cc implements Ccan
c from Pc

by regular full control, then Cc implements
Dw regularly from P(w,c).

(2) If the controller C̃c implements Dw regularly
from P(w,c), then the controller C̃c +Nc im-
plements Ccan

c from Pc by regular full control.

Proof
Since the statements about implementation have
already been proven in Proposition 1 it now suf-
fices to prove the statements concerning regular-
ity.

1. We have to show that Mod(Pc)∩Mod(Cc) = {0}
(i.e., the regularity of Cc as a full controller applied
to Pc) implies Mod(P(w,c)) ∩ Mod(C∗(w,c)) = {0}
(i.e., the regularity of Cc as a controller applied
to P(w,c)). Let r = [0 r̄] ∈ Mod(P(w,c)) ∩
Mod(C∗(w,c)) (note that since w is free in C∗(w,c), the
first components of r must be zero). Then, clearly,
r̄ ∈ Mod(Cc). Moreover, Pc ⊂ ker r̄, and hence



r̄ ∈ Mod(Pc). Therefore r̄ ∈ Mod(Pc) ∩Mod(Cc).
In this way, if Mod(P(w,c)) ∩ Mod(C∗(w,c)) has a
nonzero element r = [0 r̄] with r̄ 6= 0 then
also Mod(Pc) ∩ Mod(Cc) has a nonzero element
r̄, proving the desired implication.

2. Now, we must show that if Mod(P(w,c)) ∩
Mod(C̃∗(w,c)) = {0} then Mod(Pc) ∩ Mod(C̃c +
Nc) = {0}. Note that since Mod(C̃c + Nc) =
Mod(C̃c) ∩ Mod(Nc) and Mod(Pc) ⊂ Mod(Nc),
the condition to be proven is equivalent to
Mod(C̃c) ∩ Mod(Pc) = {0}. Let r̃ ∈ Mod(C̃c) ∩
Mod(Pc), then, because r̃ ∈ Mod(Pc), [0 r̃] ∈
Mod(P(w,c)) and, because r̃ ∈ Mod(C̃c), [0 r̃] ∈
Mod(C̃∗(w,c)). This means that [0 r̃] ∈ Mod(P(w,c))∩
Mod(C̃∗(w,c)). As previously, this yields the desired
result.

Remark Once more, as a consequence of Proposi-
tion 2, in case Nc = {0}, Cc regularly implements
Dw from P(w,c) if and only if it implements Ccan

c

from Pc by regular full control.

As an immediate consequence of Proposition 2 we
obtain our main result on the regular implemen-
tation of a given control objective.

Theorem 2. Let P(w,c) be a given plant behavior
and Dw a control objective. Assume further that
Dw is implementable from P(w,c). Then Dw is
regularly implementable from P(w,c) if and only
if Ccan

c is regularly implementable from Pc by full
control.

Since the condition of regular implementation by
full control can be checked by analyzing the kernel
representations of the involved behaviors (Rocha
and Wood, 2001), Theorem 2 does provide a way
of checking regular implementation by partial con-
trol.

In the previous considerations, the canonical con-
troller associated to a given control problem has
been in a certain sense regarded as a ”control
objective” itself, whose ability to be implemented
provides information on the possibility of imple-
menting the true control objective. We now take
a different perspective and consider the canonical
controller in its most natural role, i.e., as being
itself a controller. In this context, two questions
obviously arise: does the canonical controller im-
plement the control objective? if so, is this im-
plementation regular? The answers to these ques-
tions are given below.

Theorem 3. Given a plant behavior P(w,c), a con-
trol objective Dw, let Ccan

c be the associated
canonical controller. Then, Ccan

c implements Dw

if and only of Dw is implementable.

Proof
The ”only if” part of the statement is trivial.
As for the ”if” part, suppose that Dw is imple-
mentable, and let C̃c = ker K be a controller that
implements this behavior. Then, by Proposition 1,
the controller C̃c + Nc implements Ccan

c from Pc.
If Rw = Mc is a representation of P(w,c) and N
is a MLA of R, Nc = kerM and Pc = kerNM .
Therefore, the fact that C̃c +Nc implements Ccan

c

from Pc means that Ccan
c is the c-behavior induced

by the following equations:
NMc = 0
c = c1 + c2

Kc1 = 0
Mc2 = 0.

(9)

Consequently, applying the canonical controller to
the plant P(w,c) yields the restrictions:

Rw = Mc
NMc = 0
c = c1 + c2

Kc1 = 0
Mc2 = 0,

(10)

that can easily be shown to have the same w-
behavior as {

Rw = Mc1

Kc1 = 0.
(11)

But this w-behavior is precisely Dw, which proves
that Ccan

c indeed implements Dw.

Our last results concerns regular implementation
by means of the canonical controller.

Theorem 4. Given a plant behavior P(w,c), a con-
trol objective Dw, let Ccan

c be the associated
canonical controller. Then, Ccan

c regularly imple-
ments Dw if and only of Pc coincides with the
whole c-trajectory universe, i.e., if and only if
Mod(Pc) = {0}.

Proof
Assume that Ccan

c regularly implements Dw.
Then, by Proposition 2, Ccan

c +Nc regularly imple-
ments Ccan

c from Pc. This implies that Mod(Ccan
c +

Nc) ∩ Mod(Pc) = {0}. But, as shown before,
Mod(Ccan

c + Nc) ∩ Mod(Pc) = Mod(Ccan
c ) ∩

Mod(Pc). As Mod(Pc) ⊂ Mod(Ccan
c ) (because

Ccan
c ⊂ Pc), we obtain that Mod(Pc) = {0}.

Conversely, if Mod(Pc) = {0} then the canonical
controller regularly implements itself from Pc. By
Proposition 2 this implies that Ccan

c also imple-
ments Dw regularly.

Corollary 1. The canonical controller is regular if
and only if every controller is regular.



Proof
The ”if” part is obvious. As for the ”only if part”,
we start by noting that, given a controller Cc,
Mod(P(w,c)) ∩ Mod(C∗(w,c)) = {r | r = [0 r̄], r̄ ∈
Mod(Cc)∩Mod(Pc)}. Assume now that the canon-
ical controller is regular. Then, by the previous
theorem, Mod(Pc) = {0} and consequently also
Mod(P(w,c)) ∩ Mod(C∗(w,c)) = {0} for any given
controller Cc, which precisely means that the con-
troller Cc is regular. This proves the desired result.

Theorems 3, 4 and Corollary 1 generalize the
corresponding 1D results obtained in (Willems et
al., 2003) to the nD case.

4. CONCLUSION

We have considered nD partial control problems
and started by establishing a relation between
the controllers that yield a desired control objec-
tive with the controllers that yield the associated
canonical controller (regarded as a control objec-
tive) by full control, both in the cases of simple
and regular control. This has allowed to prove the
equivalence between the (regular) implementation
of a given control objective by partial control and
the (regular) implementation of the corresponding
canonical controller by full control. We then stud-
ied the effectiveness of the canonical controller in
solving the associated control problem and gener-
alized the corresponding 1D results in (Willems et
al., 2003) to the nD case.
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de Investigação Matemática e Aplicações (UIMA),
University of Aveiro, Portugal, through the Pro-
grama Operacional ”Ciência e Tecnologia e In-
ovação” (POCTI) of the Fundação para a Ciência
e Tecnologia (FCT), co-financed by the European
Union fund FEDER.

5. REFERENCES

Belur, M.N and H.L. Trentelman (2002). Sta-
bilization, pole placement and regular im-
plementability. IEEE Trans. Aut. Contr.
47, 735–744.

Rocha, P. (2002). Regular implementability of
nd behaviors. In: CD ROM Proceedings of
the Fifteenth International Symposium on the
Mathematical Theory of Networks and Sys-
tems, MTNS’02. University of Notre Dame,
South Bend, USA.

Rocha, P. and J. Wood (2001). Trajectory control
and interconnection of 1d and nd systems.
SIAM J. Cont. and Optim. 40 (1), 107–134.

Trentelman, H. and J.C. Willems (2002). Syn-
thesis of dissipative systems using quadratic
differential forms, part i. IEEE Trans. Aut.
Contr. 47, 53–69.

van der Schaft, A. (2002). Achievable behavior of
general systems. Systems and Control Letters
49, 141–149.

Willems, J.C. (1997). On interconnections, con-
trol and feedback. IEEE Trans. Aut. Contr.
42, 326–339.

Willems, J.C., M.N. Belur, A.A. Julius and
H. Trentelman (2003). The canonical con-
troller and its regularity. In: Proceedings of
the 42nd IEEE Conference on Decision and
Control. Maui, Hawaii, USA.


