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Abstract: In this paper, we focus on the identification of large-scale discrete-event 
systems for the purpose of fault detection. The properties of a model to be useful for fault 
detection are discussed. As appropriate model basis the nondeterministic autonomous 
automaton is chosen and metrics to evaluate the accuracy of the identified model are 
defined. An identification algorithm which allows setting the accuracy of the identified 
model is presented. Results are given for two case studies, one of a laboratory and another 
one of an industrial plant.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Increasing the availability of machines is an 
important economic issue. The challenge is to reduce 
the downtime of the machines. This happens if 
failures can be avoided by detecting the faults prior 
to a stop. The goal is to notice that the machine is 
running in an abnormal mode and to perform 
preventive actions. If the failure is inevitable, the 
challenge is to reduce the time needed to find the 
origin of the failure. 
 
Several methods like expert systems (Lucas and van 
der Gaag, 1991) or fault trees (Schneeweiß, 1984) 
are available to find the origin of a failure when this 
has occurred but the fault detection is mostly done 
manually, i.e. by the operators in charge of the 
production. This is especially the case with large 
scale and complex systems.  
 
The model based approach offers a way to perform 
automatically fault detection on large scale system. It 
relies on the simple principle enounced by (Davis 

and Hamscher, 1988): “To determine why something 
has stopped working, it’s useful to know how it was 
supposed to work in the first place.” The idea is to 
have a model of the functioning of the system and to 
compare the evolution of the model (prediction) with 
the evolution of the real system (observation). If the 
model is supposed to be accurate and complete, a 
discrepancy between prediction and observation 
originates necessarily from a fault in the system 
 
Our goal is to perform fault detection for large-scale 
industrial systems. Hence we will concentrate on the 
way a model of the normal evolution can be won. 
Two ways can be distinguished: The knowledge-
based approach and the identification approach. 
 
The knowledge based approach is a white-box 
method which needs a structural description of the 
system, i.e. the way the components are connected, 
and a description of the behaviour of each 
component. This approach is very cumbersome for 
large-scale complex systems but works very well for 



   

     

small and medium-sized systems, see (Lunze et al., 
2001; Sztipaovits and Misra, 1996; Sampath et al., 
1996). 
 
The chosen identification based approach follows 
another way. Basing on previous observations of the 
behaviour of the system, a state-transition model of 
the behaviour is built. Since this approach does not 
require any prior knowledge on the system, it is 
suitable for large-scale complex systems integrating 
control and controlled parts as well as their 
interactions. 
 
This paper is organized as follows: In section 2, the 
objectives of the behavioural identification as well as 
the chosen model are presented. In section 3, quality 
metrics to evaluate the identified model are defined. 
In section 4, the identification algorithm is developed 
using a simple example. In section 5, the results of 
the identification algorithm applied on two 
representative case studies are given. Finally section 
6 concludes the paper. 
 
 

2. BEHAVIOURAL IDENTIFICATION OF 
DISCRETE EVENT DYNAMIC SYSTEMS 

 
The goal of the identification is to win an internal 
behavioural model of a system basing on the external 
observed behaviour. For DES, this behaviour is the 
ordered sequence of input/output signals recorded on 
the system. The internal model is a mathematical 
representation of the behaviour of the system, 
typically for DES automata or Petri nets. 
 
Before going further on external and internal models, 
let us isolate the system to be identified. Our 
objective is to detect faults that occur in a running 
system composed of a control part – typically a 
programmable logic controller (PLC) – and an 
equipment under control running in closed loop, see 
figure 1. Hence the behaviour we have to identify is 
the behaviour of both the controller and the 
equipment interacting in closed loop. The observed 
signals are the controller input and output signals, 
represented by an I/O vector at a time t noted ui (t). 
Each observation corresponds to a stable state of the 
system. i is the index representing the observation 
sequence of a given production cycle of the system. 
The ordered series of ui (t) is named a data 
observation σi = (ui (1), ui (2), …, ui (|σi|)), where |σi| 
is the cardinality of σi. Note that the considered 
systems are cyclic, then the production cycles start 
and end in the same state, i.e. ∀ (i, j), 
ui (1) = uj (1) = ui (|σi|) = uj (|σj|). The set of all the 
observations, Σ = {σ1, σ2, ..., σ|Σ|}, contains the 
observed behaviour we have to translate into a state-
transition model. 
 

 
Fig. 1. Modelled closed-loop system. 

In the following sections of this paper, we will 
distinguish three different behaviours: The original 
behaviour, the observed one and the identified one. 
The original behaviour (BehOrig) is the never known 
behaviour of the real system. That’s why no a priori 
knowledge of the behaviour can be taken into 
account during the identification and the system to be 
identified is considered as a “black box”. The 
observed behaviour (BehObs) – represented by Σ – is 
an incomplete part, limited to the observed 
sequences, of the original behaviour. The identified 
behaviour (BehId) is the behaviour of the 
identification model used for the fault detection. 
 
For DES, each of these behaviours is a finite set of 
trajectories between a finite set of states. Figure 2 
gives a graphical representation of the different 
behaviours. 
 

 
Fig. 2. Graphical representation of the different 

considered behaviours. 
 
Some remarks can be formulated: 
 

First, BehObs ⊂ BehOrig and BehNO ≠ ∅ with 
BehNO = BehOrig \ BehObs the non-observed behaviour. 
Indeed, an infinite observation time, i.e. t → ∞, 
would be required to have BehNO → 0. In practice 
non-observed behaviours lead to declare correct 
trajectories as faulty. 
 

Second, BehObs ⊂ BehId and BehExc ≠ ∅ with 
BehExc = BehOrig \ BehId the exceeding behaviour. The 
first inclusion traduces the simulation relation 
enounced by (Lee and Varaya, 2003). It indicates that 
the model is complete in the sense defined by 
(Blanke et al., 2003) and so that it is suitable for fault 
detection. Nevertheless, even if the state spaces on 
which the different trajectories are built are identical, 
there are more trajectories in the identified behaviour 
than those really observed. The general difficulty of 
the identification problem is to reduce the number of 
exceeding trajectories. The number of exceeding 
trajectories represents the accuracy of the model. In 
terms of fault detection, these exceeding trajectories 
result in behaviours that will be considered fault free 
even if they are erroneous. This leads to non 
detectable faults. 
 
To evaluate the accuracy of the model, a formal 
definition of the different behaviours is given later in 
the paper. 
 
Several theoretical works in the field of the 
identification have been done in the sixties and 
seventies in computer science, see (Kella, 1971; 
Biermann and Feldman, 1972; Veelenturf, 1978; 
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Booth, 1967). Most of these works aim at identifying 
languages in the form of Moore or Mealy machines. 
This implies especially that the modelled system 
establishes a causal relationship between its inputs 
and outputs. In the case of interest, such models are 
not suitable since we want to model trajectories in a 
finite state space without outlining the relationship 
between the input and the output signals. To do that, 
we define a specific class of automata named Non 
Deterministic Autonomous Automaton with Output 
(NDAAO). This model, based on a non deterministic 
autonomous automaton (Litz, 2004), is formally 
defined as: 
 

NDAAO = (X, Ω, fnd, λ, x0, xf) with: 
X: finite set of states, 
Ω: finite set of output symbols, 
fnd: X → 2X: transition function (2X represents the 
power set of X), 
λ: X → Ω: output function, 
x0: initial state, 
xf: final state. 
 
x0 is the state representing the first observed I/O 
vector of each observation whereas xf represents the 
last observed I/O vector. Even the output associated 
to these states are identical, they are distinguished for 
the identification process. For the purpose of fault-
monitoring, x0 and xf cannot be defined. The initial 
state of the fault detection will be identified during 
the initialization of the fault monitoring process. 
 
The dynamics of this automaton is: Given a current 
state xi, the automaton can evolve in any state xj such 
as xj ∈ fnd (xi). When several reachable states are 
possible, the choice is not determined. 
 

The output function λ associates each state of the 
automaton with an element of the set of output 
symbols Ω. This set is composed of the different 
observed I/O vectors ui (t). As for Moore machine, 
the output holds as long as the automaton is in the 
corresponding state. 
 
As for a deterministic automaton (Cassandras and 
Lafortune, 1999), the language accepted by a 
NDAAO can be defined. We note x

n

i
L  the set of 

words of length n that can be accepted starting from 
state xi and Ln the set of words of length n accepted 
by the NDAAO. Formally, these are defined as: 

( )( ) ( )( ) ( )( )( )
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3. QUALITY OF THE IDENTIFIED MODEL 
 
As explained in section 2, the identified model must 
be complete and accurate. In this section, quality 

metrics are defined to evaluate these two qualities of 
the identified automata. 
The goal of the fault detection is to compare the 
current trajectory with the trajectories that are 
possible in the model. A fault is detected when there 
is a discrepancy between the observed trajectory and 
the ones possible in the model. These trajectories are 
theoretically infinite. Comparing infinite trajectories 
is not possible; hence we will compare trajectories of 
a given length n. A trajectory of length n in the 
identified model corresponds to a word of the 
accepted language Ln. The observed sequences of 
length n can be compared with a word of the 
language Ln. To compare both behaviours, we first 
need a formal definition of these behaviours. 
 
3.1 Definition of behaviours. 
 
Identified Behaviour.   The identified behaviour of 
length n is defined as the set of trajectories of length 
lower or equal to n that can be followed in the state 
space of the identified automaton. This is equivalent 
to the number of words of length lower or equal to n 
accepted by the automaton. Formally, 

1

n
n i

Id
i

Beh L
=

=∪ . 

 
Observed Behaviour.   The observed behaviour of 
length n is the finite set of trajectories of length lower 
or equal to n that have been observed. If we define 
the observed language Obs

kL  as the set of words of 
length k that have been observed, i.e. 

( ) ( ) ( )( )Obs

|σ | 1

σ 1

u u 1 u 1, , ...,k

i i i

i

i

k

j

L j j j k
− +

∈ =
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 Σ

∪ ∪ , 

we can define the observed behaviour of length n as 

Obs
1

n
n k

Obs
k

Beh L
=

=∪ . 

 
3.2 Quality Metrics. 
 

Before the identification algorithm is presented, let 
us define some criteria to evaluate the quality of the 
produced solution. (Geffroy et al., 1995) define two 
criteria: The structural and the behavioral 
complexities. 
 

Structural Complexity.   The structure of the 
identified model is characterized by the number of 
states and the number of transitions of the model. 
Looking at the number of states allows seeing if the 
produced model can be handled. A large model is a 
handicap for the online fault detection. Hence the 
model should be kept as small as possible. The 
number of transitions itself does not bring lots of 
information about the structure but the number of 
transitions in regard of the number of states gives 
information on the degree of non determinism of the 
machine. Basing on these considerations, two metrics 
for the structural complexity are defined: 
 

CS1 = |X|, representing the number of states of the 
identified model, and 
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X

X
, representing the mean number 

of transitions per state. 
 

These metrics are quite similar to those defined by 
(Gilb, 1977) to characterize the structural complexity 
of software programs. Instead of considering states, 
Gilb considers the number of modules and the 
number of module connections. 
 

Behavioural Complexity.   The main identification 
problem is to obtain an accurate model, i.e. a model 
that does not allow too many non-observed 
behaviours. A way to qualify the accuracy of the 
model is to quantify the exceeding number of words 
of length n accepted by the model. Hence we define 
the behavioural complexity at rank n as the ratio 
between the number of words of length n accepted 
by the model and the number of observed words of 

length n, i.e. Id
B

Obs

| |

| |
C

n
n

n

L

L
= . 

 

This metric can be interpreted in terms of non 
detectable faults. Assume we have 3

BC 1.25= . That 
means that the identified model can accept 25% more 
words of length 3 than the original system does. 
During the fault detection, once the current state is 
clearly defined, after two evolutions, the probability 
that a non detected fault has occurred is  
1 – 1/1.25 = 0.2 = 20%. That means although the 
followed trajectory is in the identified model, there 
are 20% risks that this trajectory is erroneous. 
 

In terms of behaviours, reducing the amount of non 
detectable faults aims at having n n

Obs IdBeh Beh=  for a 
given value of n. That means, , i i

Obs Idi n L L∀ ≤ =  and 
B, C 1ii n∀ ≤ = . 

 
 

4. IDENTIFICATION ALGORITHM 
 

In this section, our algorithm that identifies a 
machine generating exactly 1

Obs

kL +  is detailed. This 
machine respects the condition 1 1k k

Obs IdBeh Beh+ += . In 
order to do so, we use a parameter k that allows 
adjusting the accuracy of the model. This approach 
was inspired from (Biermann and Feldmann, 1972) 
who used such a parameter for the identification of 
Mealy machines. 
 

To identify the NDAAO, we start with a set Σ of 
observed sequences. Building an automaton that 
represents the trajectories of length k + 1 between the 
states aims at building an automaton that accepts the 
languages composed of words of length k + 1. Each 
letter of these words is an observed I/O vector. 
 

Our algorithm proceeds in six steps: 
1. For each observed sequence σi, construction of 

sequences of k vectors ui (t) where k is the a priori 
fixed parameter. 

2. Construction of the NDAAO. 
3. Renaming of the output function. 
4. Reduction of the last state. 
5. Merging of equivalent states. 
6. Closure of the automaton. 
 

To illustrate this identification process, let us 
consider the example of an elementary plant with a 
controller having two inputs and one output, see 
figure 3. Two sequences have been observed. Each 

I/O vector is coded as ( )
( )
( )
( )

1

2

1

i

u i

o
i

t

t t

t

=

 
 
  
 

. Using this 

notation, let us consider the observed sequences are: 

1

0 0 1 0 0 0

σ 0 , 1 , 1 , 1 , 0 , 0

0 0 1 1 1 0

=

           
           
                      
           

 and 

2

0 1 0 1 0 0

σ 0 , 1 , 1 , 1 , 1 , 0

0 1 0 1 1 0

=

           
           
                      
           

.  

 

In order to simplify the notation, each I/O vector is 
coded as A, B, C, D or E. These letters represent the 
letters of the observed alphabet. With this coding, the 
observed sequences are: σ1 = (A, B, C, D, E, A) and 
σ2 = (A, C, B, C, D, A). 
 

 
Fig. 3. Sample system used for the identification. 
 
 

4.1 Step 1: Construction of vector sequences. 
 

In this first step, we transform the observed 
sequences of letters into sequences of words of 
length k. The defined sequences are built on elements 
of Obs

kL . In order to respect the hypothesis that each 
sequence starts and ends with the same word, the first 
and the last I/O vector of each sequence have to be 
duplicated k – 1 times. Setting k = 2, we obtain for the 
example: 

( ) ( ) ( ) ( ) ( ) ( )(2

0σ = A,A , A,B , B,C , C,D , D,E , E,A   
( ))A, A  and ( ) ( ) ( ) ( )(2

1σ = A,A , A,C , C,B , B,C  
( ) ( ) ( ))C, D , D, A , A, A . 
 
 

4.2 Step 2: Construction of the NDAAO. 
 

In this step, we build the NDAAO that accepts the 
observed language 1

Obs

kL + . We proved that a NDAAO 
that associates each state with an element of the 
observed language Obs

kL  and represents the transitions 
between these words accepts exactly the observed 
language 1

Obs

kL + . The first word of each sequence, 

i1(t), i2(t)

Plant 

Controller 

o1(t) 



   

     

defined in section 4.1, is associated with x0 whereas 
the last word is associated with xf. The identification 
principle is to associate each different word with a 
single state, see figure 4. 
 

 
Fig. 4. Identified NDAAO. 
 
 

4.3 Step 3: Rename the output function. 
 

Each state of the NDAAO of figure 4 corresponds to 
a unique and stable value of the input and output 
signals. This value is described by the last letter of 
each sequence of length k. The corresponding state is 
renamed with this last letter, see figure 5. 
 

 
Fig. 5. Identified NDAAO after renaming the output 

function. 
 
 

4.4 Step 4: Reduction of the final state. 
 

In the NDAAO of figure 5, the last k states of each 
branch ending with xf are associated with the same 
letter. These states, used as a construction artefact, 
can now be reduced. The following procedure has to 
be iterated k – 1 times. First, merge the pre-states of 
xf. Second redefine this new state as the final state xf 
and delete the former xf from the set of states. In the 
example, states x5 and x8 are merged and x5 is the 
new final state, see figure 6. 
 

 
Fig. 6. Identified NDAAO after the reduction of the 

last state. 
 
 
4.5 Step 5: Merging of equivalent states. 
 

In step 3, several states can be associated with the 
same output. It must be shown if these states are 
equivalent before they can be merged. Two states xi 
and xj are equivalent if and only if: 
1. They are associated with the same output, i.e. 

λ (xi) = λ (xj). 
2. They have the same set of post states, i.e. 

fnd (xi) = fnd (xj). 

We proved that, taking into account this definition, 
the merging of equivalent states does not affect the 
languages accepted by the NDAAO. The interest of 
this merging is to reduce the structural complexity of 
the automaton by limiting the number of states and 
transitions. This is particularly important for large-
scale systems. In our example, states x1 and x7 are 
equivalent. Hence they are merged and only x1 
remains, see figure 7. 
 

 
Fig. 7. Identified NDAAO after the merging of x1 

and x7. 
 
 
4.6 Step 6: Closure of the automaton. 
 
With the hypothesis that each observed sequence 
corresponds to a single production cycle, the states x0 
and xf of the NDAAO figure 7 are identical. Thus the 
NDAAO can be closed resulting in a strongly 
connected NDAAO, see figure 8. 
 

 
Fig. 8. Strongly connected identified NDAAO. 
 
 

5. SOME CONCRETE RESULTS 
 
In this section, two systems – an academic one and 
an industrial one – of different type and size are 
presented to illustrate the proposed approach. 
 
5.1 Academic example. 
 
The first case study is an assembly station of a Bosch 
Rexroth manufacturing line implemented at the 
LURPA, ENS Cachan. This station handles 35 input 
and output signals controlled by a Schneider PLC. 
We observed these signals during 18 production 
cycles. 
 
Table 1 gives some quality indicators of the automata 
identified with these sequences. We find: 
- k, the identification parameter related to the length 

of the words accepted by the automaton. 
- CS1, CS2 and BCn , the metrics defined in section 3.2 
It can be noticed that when k increases, the number 
of states of the NDAAO does not grow considerably. 
The mean number of transitions decreases slowly but 
the model is far more accurate. On this example, a 
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very accurate and relatively small model can be built. 
Hence a great k should be used in this case. 
 

Table 1. Quality metrics for the identified  
automaton of the academic example 

 

k  S1C  S2C  3

BC  4

BC  5

BC  6

BC  

1 103 1.23 1.05 1.14 1.28 1.46 
2 108 1.20 1 1.05 1.12 1.21 
3 115 1.18 1 1 1.03 1.09 
4 124 1.16 1 1 1 1.03 
 
 
5.2 Industrial Example. 
 
The second example is the rewinding stand of a 
machine producing fleece material. This machine, 
located in Kaiserslautern in the company 
Freudenberg, handles 336 input/output signals. A 
production cycle generates about 1000 events, 
representing 350 different I/O vectors. 51 machining 
cycles have been recorded. 
 
As for the previous example, the NDAAO have been 
computed and the results are given in table 2 with the 
same notations as for table 1. “n.c.” stands for “not 
computed”. That means that the metrics could not be 
calculated in a reasonable time. 
 

Table 2. Quality metrics for the identified  
automaton of the industrial example 

 

k  S1C  S2C  3

BC  4

BC  5

BC  6

BC  

1 2303 2.10 2.09 5.66 n.c. n.c. 
2 3723 1.65 1 1.59 2.73 n.c. 
3 5246 1.44 1 1 1.36 2.08 
4 6746 1.32 1 1 1 1.25 
 
For k = 1, the model is quite compact but it does not 
allow an efficient fault detection. Indeed after two 
state evolutions, the risk that a non detectable fault 
has occurred is about 52% (1 – 1/2.09 = 0.52). After 
the third evolution, this probability is about 82%. 
Using a great value of the parameter k (k ≥ 3) the 
accuracy of the model is correct but its size leads to a 
less convenient use for online fault detection. 
 
 

6. CONCLUDING REMARKS 
 
In this paper, we focused on the identification of 
discrete event systems for the purpose of model 
based fault detection. We defined a specific class of 
automata called non deterministic autonomous 
automaton with output. Our identification algorithm 
allows setting a parameter k to adjust the accuracy of 
the identified automaton. Using this algorithm, it is 
possible to build a model that reproduces exactly the 
observed trajectories of length k + 1. To qualify the 
accuracy and the structural complexity of the 
identified model, quality metrics have been defined. 
The method works very well with large laboratory 
plants and has proved to be appropriate for large 
industrial plants. Nevertheless, there are some 

problems to be solved in the latter case. They 
concern first the reduction of the automaton size in 
order to decrease the initialisation time of the fault 
detection process and second the interpretation and 
minimization of the discrepancies.  
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