

FAULT DETECTION OF DISCRETE EVENT
SYSTEMS USING AN IDENTIFICATION APPROACH

Stéphane Klein*, **, Lothar Litz* and Jean-Jacques Lesage**

* Institute of Automatic Control – University of Kaiserslautern
P.O. Box 3049 – 67653 Kaiserslautern (Germany)

{sklein, litz}@eit.uni-kl.de

** LURPA – Ecole Normale Supérieure de Cachan
61, av. du Président Wilson – 94235 Cachan Cedex (France)

{klein, lesage}@lurpa.ens-cachan.fr

Abstract: In this paper, we focus on the identification of large-scale discrete-event
systems for the purpose of fault detection. The properties of a model to be useful for fault
detection are discussed. As appropriate model basis the nondeterministic autonomous
automaton is chosen and metrics to evaluate the accuracy of the identified model are
defined. An identification algorithm which allows setting the accuracy of the identified
model is presented. Results are given for two case studies, one of a laboratory and another
one of an industrial plant. Copyright © 2005 IFAC

Keywords: Discrete-event systems, Fault detection, Identification, Large-scale systems,
Behaviour, Accuracy.

1. INTRODUCTION

Increasing the availability of machines is an
important economic issue. The challenge is to reduce
the downtime of the machines. This happens if
failures can be avoided by detecting the faults prior
to a stop. The goal is to notice that the machine is
running in an abnormal mode and to perform
preventive actions. If the failure is inevitable, the
challenge is to reduce the time needed to find the
origin of the failure.

Several methods like expert systems (Lucas and van
der Gaag, 1991) or fault trees (Schneeweiß, 1984)
are available to find the origin of a failure when this
has occurred but the fault detection is mostly done
manually, i.e. by the operators in charge of the
production. This is especially the case with large
scale and complex systems.

The model based approach offers a way to perform
automatically fault detection on large scale system. It
relies on the simple principle enounced by (Davis

and Hamscher, 1988): “To determine why something
has stopped working, it’s useful to know how it was
supposed to work in the first place.” The idea is to
have a model of the functioning of the system and to
compare the evolution of the model (prediction) with
the evolution of the real system (observation). If the
model is supposed to be accurate and complete, a
discrepancy between prediction and observation
originates necessarily from a fault in the system

Our goal is to perform fault detection for large-scale
industrial systems. Hence we will concentrate on the
way a model of the normal evolution can be won.
Two ways can be distinguished: The knowledge-
based approach and the identification approach.

The knowledge based approach is a white-box
method which needs a structural description of the
system, i.e. the way the components are connected,
and a description of the behaviour of each
component. This approach is very cumbersome for
large-scale complex systems but works very well for

small and medium-sized systems, see (Lunze et al.,
2001; Sztipaovits and Misra, 1996; Sampath et al.,
1996).

The chosen identification based approach follows
another way. Basing on previous observations of the
behaviour of the system, a state-transition model of
the behaviour is built. Since this approach does not
require any prior knowledge on the system, it is
suitable for large-scale complex systems integrating
control and controlled parts as well as their
interactions.

This paper is organized as follows: In section 2, the
objectives of the behavioural identification as well as
the chosen model are presented. In section 3, quality
metrics to evaluate the identified model are defined.
In section 4, the identification algorithm is developed
using a simple example. In section 5, the results of
the identification algorithm applied on two
representative case studies are given. Finally section
6 concludes the paper.

2. BEHAVIOURAL IDENTIFICATION OF
DISCRETE EVENT DYNAMIC SYSTEMS

The goal of the identification is to win an internal
behavioural model of a system basing on the external
observed behaviour. For DES, this behaviour is the
ordered sequence of input/output signals recorded on
the system. The internal model is a mathematical
representation of the behaviour of the system,
typically for DES automata or Petri nets.

Before going further on external and internal models,
let us isolate the system to be identified. Our
objective is to detect faults that occur in a running
system composed of a control part – typically a
programmable logic controller (PLC) – and an
equipment under control running in closed loop, see
figure 1. Hence the behaviour we have to identify is
the behaviour of both the controller and the
equipment interacting in closed loop. The observed
signals are the controller input and output signals,
represented by an I/O vector at a time t noted ui (t).
Each observation corresponds to a stable state of the
system. i is the index representing the observation
sequence of a given production cycle of the system.
The ordered series of ui (t) is named a data
observation σi = (ui (1), ui (2), …, ui (|σi|)), where |σi|
is the cardinality of σi. Note that the considered
systems are cyclic, then the production cycles start
and end in the same state, i.e. ∀ (i, j),
ui (1) = uj (1) = ui (|σi|) = uj (|σj|). The set of all the
observations, Σ = {σ1, σ2, ..., σ|Σ|}, contains the
observed behaviour we have to translate into a state-
transition model.

Fig. 1. Modelled closed-loop system.

In the following sections of this paper, we will
distinguish three different behaviours: The original
behaviour, the observed one and the identified one.
The original behaviour (BehOrig) is the never known
behaviour of the real system. That’s why no a priori
knowledge of the behaviour can be taken into
account during the identification and the system to be
identified is considered as a “black box”. The
observed behaviour (BehObs) – represented by Σ – is
an incomplete part, limited to the observed
sequences, of the original behaviour. The identified
behaviour (BehId) is the behaviour of the
identification model used for the fault detection.

For DES, each of these behaviours is a finite set of
trajectories between a finite set of states. Figure 2
gives a graphical representation of the different
behaviours.

Fig. 2. Graphical representation of the different

considered behaviours.

Some remarks can be formulated:

First, BehObs ⊂ BehOrig and BehNO ≠ ∅ with
BehNO = BehOrig \ BehObs the non-observed behaviour.
Indeed, an infinite observation time, i.e. t → ∞,
would be required to have BehNO → 0. In practice
non-observed behaviours lead to declare correct
trajectories as faulty.

Second, BehObs ⊂ BehId and BehExc ≠ ∅ with
BehExc = BehOrig \ BehId the exceeding behaviour. The
first inclusion traduces the simulation relation
enounced by (Lee and Varaya, 2003). It indicates that
the model is complete in the sense defined by
(Blanke et al., 2003) and so that it is suitable for fault
detection. Nevertheless, even if the state spaces on
which the different trajectories are built are identical,
there are more trajectories in the identified behaviour
than those really observed. The general difficulty of
the identification problem is to reduce the number of
exceeding trajectories. The number of exceeding
trajectories represents the accuracy of the model. In
terms of fault detection, these exceeding trajectories
result in behaviours that will be considered fault free
even if they are erroneous. This leads to non
detectable faults.

To evaluate the accuracy of the model, a formal
definition of the different behaviours is given later in
the paper.

Several theoretical works in the field of the
identification have been done in the sixties and
seventies in computer science, see (Kella, 1971;
Biermann and Feldman, 1972; Veelenturf, 1978;

BehOrig

BehObs

BehId
BehExc

BehNO

Controller

Equipment under control

OI

Booth, 1967). Most of these works aim at identifying
languages in the form of Moore or Mealy machines.
This implies especially that the modelled system
establishes a causal relationship between its inputs
and outputs. In the case of interest, such models are
not suitable since we want to model trajectories in a
finite state space without outlining the relationship
between the input and the output signals. To do that,
we define a specific class of automata named Non
Deterministic Autonomous Automaton with Output
(NDAAO). This model, based on a non deterministic
autonomous automaton (Litz, 2004), is formally
defined as:

NDAAO = (X, Ω, fnd, λ, x0, xf) with:
X: finite set of states,
Ω: finite set of output symbols,
fnd: X → 2X: transition function (2X represents the
power set of X),
λ: X → Ω: output function,
x0: initial state,
xf: final state.

x0 is the state representing the first observed I/O
vector of each observation whereas xf represents the
last observed I/O vector. Even the output associated
to these states are identical, they are distinguished for
the identification process. For the purpose of fault-
monitoring, x0 and xf cannot be defined. The initial
state of the fault detection will be identified during
the initialization of the fault monitoring process.

The dynamics of this automaton is: Given a current
state xi, the automaton can evolve in any state xj such
as xj ∈ fnd (xi). When several reachable states are
possible, the choice is not determined.

The output function λ associates each state of the
automaton with an element of the set of output
symbols Ω. This set is composed of the different
observed I/O vectors ui (t). As for Moore machine,
the output holds as long as the automaton is in the
corresponding state.

As for a deterministic automaton (Cassandras and
Lafortune, 1999), the language accepted by a
NDAAO can be defined. We note x

n

i
L the set of

words of length n that can be accepted starting from
state xi and Ln the set of words of length n accepted
by the NDAAO. Formally, these are defined as:

()() ()() ()()()
() () ()() ()

() ()()
x

nd

: 1 , 2 , ..., :

1 , 2 , ..., : 1 x ,

1 1, 1
i

n

n
i

s s x x x n

L x x x n x

t n x t f x t

λ λ λ ∈ =

 = ∃ = ∈

∀ ≤ ≤ − + ∈

Ω

X

and

x
x

i

i

n nL L
∈

=
X

∪ .

3. QUALITY OF THE IDENTIFIED MODEL

As explained in section 2, the identified model must
be complete and accurate. In this section, quality

metrics are defined to evaluate these two qualities of
the identified automata.
The goal of the fault detection is to compare the
current trajectory with the trajectories that are
possible in the model. A fault is detected when there
is a discrepancy between the observed trajectory and
the ones possible in the model. These trajectories are
theoretically infinite. Comparing infinite trajectories
is not possible; hence we will compare trajectories of
a given length n. A trajectory of length n in the
identified model corresponds to a word of the
accepted language Ln. The observed sequences of
length n can be compared with a word of the
language Ln. To compare both behaviours, we first
need a formal definition of these behaviours.

3.1 Definition of behaviours.

Identified Behaviour. The identified behaviour of
length n is defined as the set of trajectories of length
lower or equal to n that can be followed in the state
space of the identified automaton. This is equivalent
to the number of words of length lower or equal to n
accepted by the automaton. Formally,

1

n
n i

Id
i

Beh L
=

=∪ .

Observed Behaviour. The observed behaviour of
length n is the finite set of trajectories of length lower
or equal to n that have been observed. If we define
the observed language Obs

kL as the set of words of
length k that have been observed, i.e.

() () ()()Obs

|σ | 1

σ 1

u u 1 u 1, , ...,k

i i i

i

i

k

j

L j j j k
− +

∈ =

= + + −

 Σ

∪ ∪ ,

we can define the observed behaviour of length n as

Obs
1

n
n k

Obs
k

Beh L
=

=∪ .

3.2 Quality Metrics.

Before the identification algorithm is presented, let
us define some criteria to evaluate the quality of the
produced solution. (Geffroy et al., 1995) define two
criteria: The structural and the behavioral
complexities.

Structural Complexity. The structure of the
identified model is characterized by the number of
states and the number of transitions of the model.
Looking at the number of states allows seeing if the
produced model can be handled. A large model is a
handicap for the online fault detection. Hence the
model should be kept as small as possible. The
number of transitions itself does not bring lots of
information about the structure but the number of
transitions in regard of the number of states gives
information on the degree of non determinism of the
machine. Basing on these considerations, two metrics
for the structural complexity are defined:

CS1 = |X|, representing the number of states of the
identified model, and

()nd
x

S2

| x |
C

| |

f
∈=
∑

X

X
, representing the mean number

of transitions per state.

These metrics are quite similar to those defined by
(Gilb, 1977) to characterize the structural complexity
of software programs. Instead of considering states,
Gilb considers the number of modules and the
number of module connections.

Behavioural Complexity. The main identification
problem is to obtain an accurate model, i.e. a model
that does not allow too many non-observed
behaviours. A way to qualify the accuracy of the
model is to quantify the exceeding number of words
of length n accepted by the model. Hence we define
the behavioural complexity at rank n as the ratio
between the number of words of length n accepted
by the model and the number of observed words of

length n, i.e. Id
B

Obs

| |

| |
C

n
n

n

L

L
= .

This metric can be interpreted in terms of non
detectable faults. Assume we have 3

BC 1.25= . That
means that the identified model can accept 25% more
words of length 3 than the original system does.
During the fault detection, once the current state is
clearly defined, after two evolutions, the probability
that a non detected fault has occurred is
1 – 1/1.25 = 0.2 = 20%. That means although the
followed trajectory is in the identified model, there
are 20% risks that this trajectory is erroneous.

In terms of behaviours, reducing the amount of non
detectable faults aims at having n n

Obs IdBeh Beh= for a
given value of n. That means, , i i

Obs Idi n L L∀ ≤ = and
B, C 1ii n∀ ≤ = .

4. IDENTIFICATION ALGORITHM

In this section, our algorithm that identifies a
machine generating exactly 1

Obs

kL + is detailed. This
machine respects the condition 1 1k k

Obs IdBeh Beh+ += . In
order to do so, we use a parameter k that allows
adjusting the accuracy of the model. This approach
was inspired from (Biermann and Feldmann, 1972)
who used such a parameter for the identification of
Mealy machines.

To identify the NDAAO, we start with a set Σ of
observed sequences. Building an automaton that
represents the trajectories of length k + 1 between the
states aims at building an automaton that accepts the
languages composed of words of length k + 1. Each
letter of these words is an observed I/O vector.

Our algorithm proceeds in six steps:
1. For each observed sequence σi, construction of

sequences of k vectors ui (t) where k is the a priori
fixed parameter.

2. Construction of the NDAAO.
3. Renaming of the output function.
4. Reduction of the last state.
5. Merging of equivalent states.
6. Closure of the automaton.

To illustrate this identification process, let us
consider the example of an elementary plant with a
controller having two inputs and one output, see
figure 3. Two sequences have been observed. Each

I/O vector is coded as ()
()
()
()

1

2

1

i

u i

o
i

t

t t

t

=

. Using this

notation, let us consider the observed sequences are:

1

0 0 1 0 0 0

σ 0 , 1 , 1 , 1 , 0 , 0

0 0 1 1 1 0

=

 and

2

0 1 0 1 0 0

σ 0 , 1 , 1 , 1 , 1 , 0

0 1 0 1 1 0

=

.

In order to simplify the notation, each I/O vector is
coded as A, B, C, D or E. These letters represent the
letters of the observed alphabet. With this coding, the
observed sequences are: σ1 = (A, B, C, D, E, A) and
σ2 = (A, C, B, C, D, A).

Fig. 3. Sample system used for the identification.

4.1 Step 1: Construction of vector sequences.

In this first step, we transform the observed
sequences of letters into sequences of words of
length k. The defined sequences are built on elements
of Obs

kL . In order to respect the hypothesis that each
sequence starts and ends with the same word, the first
and the last I/O vector of each sequence have to be
duplicated k – 1 times. Setting k = 2, we obtain for the
example:

() () () () () ()(2

0σ = A,A , A,B , B,C , C,D , D,E , E,A
())A, A and () () () ()(2

1σ = A,A , A,C , C,B , B,C
() () ())C, D , D, A , A, A .

4.2 Step 2: Construction of the NDAAO.

In this step, we build the NDAAO that accepts the
observed language 1

Obs

kL + . We proved that a NDAAO
that associates each state with an element of the
observed language Obs

kL and represents the transitions
between these words accepts exactly the observed
language 1

Obs

kL + . The first word of each sequence,

i1(t), i2(t)

Plant

Controller

o1(t)

defined in section 4.1, is associated with x0 whereas
the last word is associated with xf. The identification
principle is to associate each different word with a
single state, see figure 4.

Fig. 4. Identified NDAAO.

4.3 Step 3: Rename the output function.

Each state of the NDAAO of figure 4 corresponds to
a unique and stable value of the input and output
signals. This value is described by the last letter of
each sequence of length k. The corresponding state is
renamed with this last letter, see figure 5.

Fig. 5. Identified NDAAO after renaming the output

function.

4.4 Step 4: Reduction of the final state.

In the NDAAO of figure 5, the last k states of each
branch ending with xf are associated with the same
letter. These states, used as a construction artefact,
can now be reduced. The following procedure has to
be iterated k – 1 times. First, merge the pre-states of
xf. Second redefine this new state as the final state xf
and delete the former xf from the set of states. In the
example, states x5 and x8 are merged and x5 is the
new final state, see figure 6.

Fig. 6. Identified NDAAO after the reduction of the

last state.

4.5 Step 5: Merging of equivalent states.

In step 3, several states can be associated with the
same output. It must be shown if these states are
equivalent before they can be merged. Two states xi
and xj are equivalent if and only if:
1. They are associated with the same output, i.e.

λ (xi) = λ (xj).
2. They have the same set of post states, i.e.

fnd (xi) = fnd (xj).

We proved that, taking into account this definition,
the merging of equivalent states does not affect the
languages accepted by the NDAAO. The interest of
this merging is to reduce the structural complexity of
the automaton by limiting the number of states and
transitions. This is particularly important for large-
scale systems. In our example, states x1 and x7 are
equivalent. Hence they are merged and only x1
remains, see figure 7.

Fig. 7. Identified NDAAO after the merging of x1

and x7.

4.6 Step 6: Closure of the automaton.

With the hypothesis that each observed sequence
corresponds to a single production cycle, the states x0
and xf of the NDAAO figure 7 are identical. Thus the
NDAAO can be closed resulting in a strongly
connected NDAAO, see figure 8.

Fig. 8. Strongly connected identified NDAAO.

5. SOME CONCRETE RESULTS

In this section, two systems – an academic one and
an industrial one – of different type and size are
presented to illustrate the proposed approach.

5.1 Academic example.

The first case study is an assembly station of a Bosch
Rexroth manufacturing line implemented at the
LURPA, ENS Cachan. This station handles 35 input
and output signals controlled by a Schneider PLC.
We observed these signals during 18 production
cycles.

Table 1 gives some quality indicators of the automata
identified with these sequences. We find:
- k, the identification parameter related to the length

of the words accepted by the automaton.
- CS1, CS2 and BCn , the metrics defined in section 3.2
It can be noticed that when k increases, the number
of states of the NDAAO does not grow considerably.
The mean number of transitions decreases slowly but
the model is far more accurate. On this example, a

x0
AA

xf

AA
x6

AC
x7

CB
x8

DA

x1
AB

x2
BC

x4
DE

x5
EA

x3
CD

x6
C

x1
B

x0

A
x2

C
x4

E
x3

D

x0
A

xf
A

x6
C

x1
B

x2
C

x4

E
x3
D

x0
A

xf
A

x6
C

x7
B

x1
B

x2
C

x4

E
x3
D

x0
A

xf

A
x6

C
x7

B
x8
A

x1
B

x2
C

x4
E

x5
A

x3
D

very accurate and relatively small model can be built.
Hence a great k should be used in this case.

Table 1. Quality metrics for the identified
automaton of the academic example

k S1C S2C 3

BC 4

BC 5

BC 6

BC

1 103 1.23 1.05 1.14 1.28 1.46
2 108 1.20 1 1.05 1.12 1.21
3 115 1.18 1 1 1.03 1.09
4 124 1.16 1 1 1 1.03

5.2 Industrial Example.

The second example is the rewinding stand of a
machine producing fleece material. This machine,
located in Kaiserslautern in the company
Freudenberg, handles 336 input/output signals. A
production cycle generates about 1000 events,
representing 350 different I/O vectors. 51 machining
cycles have been recorded.

As for the previous example, the NDAAO have been
computed and the results are given in table 2 with the
same notations as for table 1. “n.c.” stands for “not
computed”. That means that the metrics could not be
calculated in a reasonable time.

Table 2. Quality metrics for the identified
automaton of the industrial example

k S1C S2C 3

BC 4

BC 5

BC 6

BC

1 2303 2.10 2.09 5.66 n.c. n.c.
2 3723 1.65 1 1.59 2.73 n.c.
3 5246 1.44 1 1 1.36 2.08
4 6746 1.32 1 1 1 1.25

For k = 1, the model is quite compact but it does not
allow an efficient fault detection. Indeed after two
state evolutions, the risk that a non detectable fault
has occurred is about 52% (1 – 1/2.09 = 0.52). After
the third evolution, this probability is about 82%.
Using a great value of the parameter k (k ≥ 3) the
accuracy of the model is correct but its size leads to a
less convenient use for online fault detection.

6. CONCLUDING REMARKS

In this paper, we focused on the identification of
discrete event systems for the purpose of model
based fault detection. We defined a specific class of
automata called non deterministic autonomous
automaton with output. Our identification algorithm
allows setting a parameter k to adjust the accuracy of
the identified automaton. Using this algorithm, it is
possible to build a model that reproduces exactly the
observed trajectories of length k + 1. To qualify the
accuracy and the structural complexity of the
identified model, quality metrics have been defined.
The method works very well with large laboratory
plants and has proved to be appropriate for large
industrial plants. Nevertheless, there are some

problems to be solved in the latter case. They
concern first the reduction of the automaton size in
order to decrease the initialisation time of the fault
detection process and second the interpretation and
minimization of the discrepancies.

REFERENCES

Biermann, A.W., and J.A. Feldman (1972). On the

Sysnthesis of Finite-State Machines from Samples
of Their Behavior. IEEE Transactions on
Computers, Vol. 21, pp. 592-597.

Blanke, M., M. Klinnaert, J. Lunze and M. Staroswiecki
(2003). Diagnosis and Fault-Tolerant Control.
Springer-Verlag, Berlin, Heidelberg, New York.

Booth, T.L. (1967). Sequential Machines and Automata
Theory. John Wiley and Sons, Inc., New York,
London, Sidney.

Cassandras, C.G. and S. Lafortune (1999). Introduction
to Discrete Event Systems, chapter 2. Kluwer
Academic Publishers, Boston, Dordrecht, London.

Davis, R. and W. Hamscher (1988). Model-based
Reasoning: Troubleshooting. In: Exploring
Artificial Intelligence: Survey Talks from the
National Conferences on Artificial Intelligence,
(Schrobe H. (dir), Morgan Kaufmann), pp. 297-
346.

Geffroy, J.-C., C. Baron and K. El Maadani (1995).
Identification des systèmes séquentiels – Une
approche unifiée. Technique et science
informatique, Vol. 14 – n° 7, pp. 809-837.

Gilb, T. (1977). Software Metrics. Winthrop Publishers,
Inc., Cambridge.

Kella, J. (1971). Sequential Machine Identification.
IEEE Transactions on Computers, Vol. 20, pp.
332-338.

Lee, E.A. and P. Varaya (2003). Structure and
Interpretation of Signals and Systems, chapter 3.
Addison Wesley, Boston.

Litz, L. (2004). Grundlagen der
Automatisierungstechnik, chapter 3. Oldenbourg
Verlag, München, Wien.

Lucas, P. and L. van der Gaag (1991). Principles of
Expert Systems. Addison-Wesley Publishing
Company, Wockingham.

Lunze, J., J. Schröder and P. Supavatanakul (2001).
Diagnosis of Discrete Event Systems: the Method
and an Example. In: Proceedings of the 12th
International Workshop on Principles of Diagnosis
(DX'01), Via Lattea (Italy).

Sampath, M., R. Sengutpa, S. Lafortune, K.
Sinnamohideen and D. Teneketzis (1996). Failure
Diagnosis using Discrete-Event Models. IEEE
Transactions on Control Systems Technology, vol
4, No. 2, pp. 105-124.

Schneeweiß, W.G. (1984). Tutorial on Advanced
Concepts in Fault Tree Analysis. Informatik
Berichte Fernuniversität Hagen, Nr. 52.

Veelenturf, L.P.J. (1978). Inference of Sequential
Machines from Sample Computations. IEEE
Transactions on Computers, Vol. 27, pp. 167-170.

