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Abstract: This paper presents an algorithm for solving static output feedback pole
placement problems of the following rather general form: given n subsets of the
complex plane, find a static output feedback that places in each of these subsets a
pole of the closed loop system. The algorithm presented is iterative in nature and
is based on alternating projection ideas. Each iteration of the algorithm involves a
Schur matrix decomposition, a standard least squares problem and a combinatorial
least squares problem. Computational results are presented demonstrating the
effectiveness of the algorithm. Copyright c© 2005 IFAC.
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1. INTRODUCTION

Consider the following generalized static output
feedback pole placement problem.

Problem 1. Given A ∈ R
n×n, B ∈ R

n×m, C ∈
R
p×n and closed subsets C1, . . . , Cn ⊂ C, find

K ∈ R
m×p such that

λi(A+BKC) ∈ Ci for i = 1, . . . , n.

Here λi(A+BKC) denotes the i’th eigenvalue of
A+BKC.

Problem 1 encompasses many types of pole place-
ment problems. Indeed by varying the choice of
Ci’s, Problem 1 can for example be specialized to
the following problems:

(1) Classical pole placement :

Ci = {ci}, ci ∈ C.

(2) Stabilization type problems for continuous

time and discrete time systems:

C1 = . . . = Cn = {z ∈ C | Re(z) ≤ −α}

and

C1 = . . . = Cn = {z ∈ C | |z| ≤ α}

respectively.
(3) Relaxed classical pole placement :

Ci = {z ∈ C | |z − ci| ≤ ri}.

(4) Hybrid problems: for example, problems of
the type shown in Figure 1. Here c ∈ C and
the aim is to place a pair of poles at c and c̄,
and to place the rest in the region C:

C1 = {c}, C2 = {c̄}, C3 = . . . = Cn = C.

This paper presents an algorithm for Problem 1,
which is shown to be equivalent to finding a point
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Fig. 1. A hybrid problem.

in the intersection of two particular sets. The
algorithm is iterative in nature and is based on an
alternating projection like scheme between these
two sets. Each iteration of the algorithm involves a
Schur matrix decomposition and a standard least
squares problem. If the Ci’s are not all equal,
each iteration also requires a combinatorial least
squares matching step.

The algorithm is heuristic in nature and conver-
gence to a solution is not guaranteed even if a
solution exists. Despite this it will be shown that
the algorithm can be quite effective in practice.

Of course, for given (A,B,C) and Ci’s, Prob-
lem 1 may or may not be solvable. Indeed, one
would expect that determining whether a partic-
ular instance of Problem 1 is solvable is in general
difficult. For example, the problem of determin-
ing whether the classical pole placement problem
is solvable for particular (A,B,C) and desired
poles has recently been shown to be NP-hard
(Fu, 2004).

In terms of formal requirements placed on the Ci’s,
the main one is that it is possible to calculate
projections onto each Ci. (See section 2 for details
on projections.) In particular, the Ci’s must be
closed though they need not be convex or even
connected. In addition, for any (A,B,C) and K,
each eigenvalue of A + BKC is necessarily real
or has a complex conjugate partner and hence,
though it is not a formal requirement of the
algorithm, it is reasonable to require that each
subset Ci either be symmetric with respect to the
real axis or have a complex conjugate partner,
that is, a set Ci′ such that z ∈ Ci if and only if
z̄ ∈ Ci′ .

The methods presented here generalize the mate-
rial presented in (Yang et al., 2004) which dealt
solely with the continuous time stabilization prob-
lem.

The problem solved by the algorithm is a feasi-
bility problem involving non-symmetric matrices.
The idea of solving such problems via alternat-
ing projections that utilize Schur’s decomposition
originates in (Orsi and Yang, n.d.).

There is a great deal of literature dealing with
classical pole placement and stabilization. An
overview of theoretical results, existing algorithms

and historical develops can be found in (Byrnes,
1989), (Rosenthal and Willems, 1998), (Syrmos
et al., 1997), (de Oliveira and Geromel, 1997),
(Rosenthal and Sottile, 1998) and (Eremenko
and Gabrielov, 2002). As far as the authors are
aware, pole placement in the generality presented
in Problem 1 has not previously been consid-
ered. Note however that, using linear matrix in-
equality techniques, pole placement in a single
convex region has been investigated, see (Chilali
and Gahinet, 1996). Lastly, regarding algorithms
for classical pole placement, the survey paper
(Rosenthal and Willems, 1998) states that exist-
ing sufficiency conditions are mainly theoretical in
nature and that there are no good numerical al-
gorithms available in many cases when a problem
is known to be solvable.

The structure of the paper is as follows. Sec-
tion 2 introduces projections and how alternating
projections can be used to find a point in the
intersection of a finite number of closed (convex)
sets. Section 3 presents the solution methodology.
Section 4 contains computational results of ap-
plying the algorithm to various instances of Prob-
lem 1. Results are presented for the classical pole
placement problem, the discrete time stabilization
problem, and a hybrid problem. The paper ends
with some concluding remarks.

2. PROJECTIONS

This section introduces projections and the method
of alternating projections.

Let x be an element in a Hilbert space H and let
D be a closed (possibly non-convex) subset of H.
Any d0 ∈ D such that ‖x − d0‖ ≤ ‖x − d‖ for all
d ∈ D will be called a projection of x onto D. In
the cases of interest here, namely that H is a finite
dimensional Hilbert space, there is always at least
one such point for each x. If D is convex as well as
closed then each x has exactly one such minimum
distance point. Any function PD : H → H will
be called a projection operator (for D) if for each
x ∈ H,

PD(x) ∈ D and

‖x− PD(x)‖ ≤ ‖x− d‖ for all d ∈ D.

A point in the intersection of a finite number of
closed convex sets can be found via alternating
projections (Brègman, 1965).

Theorem 2. Let D1, . . . ,DN be closed convex sets
in a real finite dimensional Hilbert space H.
If
⋂N

i=1Di is nonempty, then starting from an
arbitrary initial value, the following sequence

xi+1 = PDφ(i)
(xi),where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1Di.



When one or more Di’s are non-convex, Theorem
2 no longer applies and starting the algorithm of
Theorem 2 from certain initial values may result
in a sequence of points that does not converge to
a solution of the problem. However, (Combettes
and Trussell, 1990) suggests that alternating pro-
jections for problems with one or more non-convex
sets converge locally; they will converge if the ini-
tial starting point is sufficiently close to a feasible
point.

3. METHODOLOGY

This section presents the solution methodology.

From now on C
n×n will be regarded as a Hilbert

space with inner product

〈Y,Z〉 = tr(Y Z∗) =
∑

i,j

yij z̄ij .

The associated norm is the Frobenius norm ‖Z‖

= 〈Z,Z〉
1
2 .

Throughout this section it is assumed (A,B,C)
and C1, . . . , Cn are given and fixed.

Let L denote the set of all possible closed-loop
system matrices,

L = {Z ∈ R
n×n | Z = A+BKC

for some K ∈ R
m×p},

and letM denote the set of complex matrices with
eigenvalues in the specified regions C1, . . . , Cn,

M = {Z ∈ C
n×n | λi(Z) ∈ Ci, i = 1, . . . , n}.

Problem 1 can now be stated as:

Find X ∈ L ∩M.

A solution strategy to solve Problem 1 would
be to employ an alternating projection scheme,
alternatively projecting between L and M. Two
difficulties occur in trying to do this. The first
is that, while L is convex, M is in general a
rather complicated set that is non-convex. Hence,
alternating projections between L and M are
not guaranteed to converge. The second, more
important issue is that it is not clear how to
project onto M. That is, given a point Z, it is
not clear how to find a point in M of minimal
distance to Z.

As will be shown in the experiments, an alter-
nating projection like scheme can still be quite
successful if instead of using a true projection map
for M, a suitable substitute is used.

Before proceeding, recall Schur’s result (Horn and
Johnson, 1985).

Theorem 3. Given Z ∈ C
n×n with eigenvalues

λ1, . . . , λn in any prescribed order, there is a

unitary matrix V ∈ C
n×n and an upper triangular

matrix T ∈ C
n×n such that

Z = V TV ∗,

and Tkk = λk, k = 1, . . . , n.

The following map is proposed as a substitute
for a projection map onto M. Though it is not
a true projection map, the notation PM will
still be used. The choice for PM is motivated
by other substitute maps appearing in (Orsi and
Yang, n.d.) and (Yang et al., 2004), which were
themselves motivated by true projection maps for
certain ‘symmetric’ problems. In the following,
PCi(z) will denote the projection of z ∈ C onto
Ci.

Definition 4. Suppose V ∈ C
n×n is unitary and

T ∈ C
n×n is upper triangular. Let σ be a permu-

tation of {1, . . . , n} such that amongst all possible
permutations, it minimizes

n
∑

k=1

|Tkk − PCσ(k)
(Tkk)|

2. (1)

Define
PM(V, T ) = V T̂V ∗

where T̂ is upper triangular and given by

T̂kl =

{

PCσ(k)
(Tkk), if k = l,

Tkl, otherwise.

Note that PM maps into the setM. Note also that
finding σ involves solving a combinatorial least
squares problem. (This will be discussed further
later in the section.)

In order to apply PM to Z ∈ C
n×n, a Schur

decomposition of Z must first be found. A given Z
may have a non-unique Schur decomposition and
Z = V1T1V

∗
1 = V2T2V

∗
2 does not necessarily imply

PM(V1, T1) = PM(V2, T2). Hence, PM may give
different points for different Schur decompositions
of the same matrix. This is not so important as
different Schur decompositions lead to points in
M of equal distance from the original matrix, as
is now shown.

Theorem 5. Suppose Z = V1T1V
∗
1 = V2T2V

∗
2

where V1, V2 ∈ C
n×n are unitary and T1, T2 ∈

C
n×n are upper triangular. Then

‖PM(V1, T1)− Z‖ = ‖PM(V2, T2)− Z‖.

Proof . Suppose Z = V TV ∗ where V is unitary
and T is upper triangular. If T̂ is the matrix given
in Definition 4, then by the unitary invariance of
the Frobenius norm,

‖PM(V, T )− Z‖ = ‖T̂ − T‖.



As ‖T̂−T‖2 equals the quantity in (1), ‖PM(V, T )−
Z‖ depends only on T11, . . . , Tnn (and the sets
C1, . . . , Cn). The Tkk’s are the eigenvalues of Z and
hence, aside from ordering, are not decomposition
dependent. The result now follows by noting that
(1) does not depend on the ordering of the Tkk’s.

¤

PM(V, T ) keeps V fixed and modifies T . Theorem
6 below shows that of all the points in M of the
form V T̃V ∗, T̃ ∈ M upper triangular, i.e., of all
the points inM that have a Schur decomposition
with the same V matrix, PM(V, T ) is closest (or
at least equal closest) to the original point Z =
V TV ∗.

Theorem 6. Suppose Z = V TV ∗ ∈ C
n×n with V

unitary and T upper triangular. Then PM(V, T )
satisfies

‖PM(V, T )− Z‖ ≤ ‖V T̃V ∗ − Z‖

for all upper triangular T̃ ∈M.

Proof . Let T̃ be an upper triangular matrix in
M. The unitary invariance of the Frobenius norm
implies the result will be established if it can be
shown

‖T̂ − T‖ ≤ ‖T̃ − T‖,

where T̂ is the matrix given in Definition 4. As
both T̃ and T are upper triangular and T̃ ∈ M,
it follows that

‖T̃ −T‖2 =
n
∑

k=1

|T̃kk−Tkk|
2+
∑

k<l

|T̃kl−Tkl|
2 (2)

and that T̃kk ∈ Cσ̃(k), k = 1, . . . , n, for some
permutation σ̃.

The result now follows by noting that ‖T̂ − T‖2

equals the quantity in (1) and that this value must
be less than or equal to the first summation on the
right hand side of the equality in (2). ¤

The projection of X ∈ C
n×n onto L involves

solving a standard least squares problem.

Lemma 7. The projection of X ∈ C
n×n onto L is

given by PL(X) = A+BKC whereK is a solution
of the least squares problem

argmin
K∈Rm×p

‖(CT ⊗B) vec(K)− vec(Re(X)−A)‖2.

Here ‖·‖2 denotes the standard vector 2 norm.

Proof . See (Yang et al., 2004). ¤

Here is the algorithm for Problem 1.

Algorithm:

Problem Data. A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n

and C1, . . . , Cn ⊂ C.

Initialization. Choose a randomly generated ma-
trix Y ∈ R

n×n. For example, draw each entry
of Y from a normal distribution of zero mean
and variance 1.

repeat

1. X := PL(Y ).

2. Calculate a Schur decomposition of X: X =
V TV ∗.

3. Y := PM(V, T ).

until ‖X − Y ‖ < ε.

Note that as Y = PM(V, T ) = V T̂V ∗, see
Definition 4, ‖X − Y ‖ = ‖V TV ∗ − V T̂V ∗‖ =

‖T − T̂‖ = (
∑

|Tkk − T̂kk|
2)

1
2 . As the Tkk’s are

the eigenvalues of X ∈ L and the T̂kk’s are the
eigenvalues of Y ∈ M, the algorithm stops when
X (which equals A + BKC for some K) has
eigenvalues sufficiently close a matrix that satisfies
the pole placement constraints. In particular, each
eigenvalue of such an X cannot violate the pole
placement constraints by more than ε.

As mentioned previously, PM involves finding
a permutation σ that minimizes (1). The first
step in solving this combinatorial least squares
problem is calculating the squared distance of
each Tkk to each subset Cl and placing these values
in a n× n cost matrix D:

Dkl := |Tkk − PCl(Tkk)|
2. (3)

The problem is now equivalent to finding a per-
mutation σ such that

∑

Dkσ(k) is minimal.

The problem of finding a minimizing σ given a cost
matrix D is a linear assignment problem which
can be solved in O(n3) time using the so called
Hungarian method, see (Martello and Toth, 1987)
for details.

Note that if the Ci’s are not all distinct, for
example this occurs for stabilization problems and
what here have been called hybrid problems, the
complexity of the matching problem is reduced.
In fact for stabilization problems, all the Ci’s
are the same and no matching step is required.
For the hybrid problem shown in Figure 1, it
is only necessary to check n(n − 1) possibilities
corresponding to which two Tkk’s are matched
to c and c̄. Hence for this hybrid problem, the
direct approach is faster than using the Hungarian
method.

Also note that, given a cost matrix D, an alter-
native to the Hungarian method is the follow-
ing faster suboptimal matching strategy. Find the
(or a) smallest entry in D, say Dk̄l̄. Match Tk̄k̄
with Cl̄ and cross out row k̄ and column l̄ of D.
Now only consider the uncrossed out entries in D

and repeat, until all n matches have been made.
This method does not always find the optimal
matching though it can often be quite an effective
substitute for the Hungarian method. It will be



termed suboptimal matching. Surprisingly, as will
be shown in the next section, by using suboptimal
matching in the algorithm it was possible to solve
a particular problem which was not solvable using
the Hungarian method.

4. COMPUTATIONAL RESULTS

This section contains computational results of
applying the algorithm to various instances of
Problem 1. Results are presented for the classical
pole placement problem, the discrete time stabi-
lization problem, and a hybrid problem. (Results
for continuous time stabilization appear in (Yang
et al., 2004).)

The algorithms for each problem were imple-
mented in Matlab 6.5 and all results were obtained
using a 3.06 GHz Pentium 4 machine.

Throughout this section a randomly generated
matrix will be a matrix whose entries are drawn
from a normal distribution of zero mean and
variance 1.

4.1 Classical pole placement: random problems

This subsection contains results for some ran-
domly generated classical pole placement prob-
lems. A 1000 problems with n = 6, m = 4 and
p = 3 were created. Each problem was created as
follows. A,B,C and K̃ were generated randomly.
A scalar multiple of the identity was added to A
to ensure the stability degree of A + BK̃C was
equal to α = 0.1. The desired poles were taken
to be the poles of A+BK̃C. Matching was done
using the Hungarian method.

An attempt was made to solve each problem using
up to 10 different initial conditions and a max-
imum of a 1000 iterations per initial condition.
With the termination parameter ε set to ε = 10−3,
the success rate for 1 initial condition was 50% and
the overall success rate was 91%. For the problems
that were solved, the average number of iterations
taken was 1.8 × 103 and the average time taken
was 1.5 CPU seconds.

Note: in (3), if Cl = {cl} then PCl(Tkk) = cl.

4.2 Classical pole placement: a particular problem

from the literature

The following problem is taken from (Sridhar and
Lindorff, 1973) and is of interest as the set of
desired poles overlaps with the set of open loop
poles. Consider the following system:

A =









1 0 0 0
0 2 0 0
0 0 −3 0
0 0 0 −4









, B =









1 0
0 1
1 0
1 1









, C =









1 0
1 0
0 1
0 1









T

.

In this problem the aim is to place the closed-
loop poles at {−1,−2,−3,−5}. While initial at-
tempts to solve this problem failed, the problem
was solved by using suboptimal matching and
replacing Step 3 of the algorithm with ‘Y := (1−
γ)PM(V, T ) + γX’, γ ∈ (−1, 1) constant. (If PM
were a true projection map, Y would now be
what is termed a relaxed projection of X onto
M.) Solutions were successfully found by taking
γ close to 1. While γ = 0.9, 0.8 and 0.7 can all
be used to successfully find a solution, likelihood
of success increases the closer γ is to 1, while
speed of convergence decreases. With γ = 0.7
and ε = 10−3, solutions can typically be found
in about 1.2 × 104 iterations and about 7.5 CPU
seconds. (With ε reduced greatly to ε = 10−14

a solution was found in about 106 iterations and
took 275 CPU seconds.)

Note: when employing relaxed projections, the
loop termination criterion should be replaced by
‘until ‖X − PM(V, T )‖ < ε’.

4.3 Discrete-time stabilization: random problems

This subsection contains results for some ran-
domly generated discrete time stabilization prob-
lems. For each problem, the aim is to place all
poles in the set C = {z | |z| ≤ α}, α = 0.9. A 1000
(A,B,C) triples with n = 6, m = 4 and p = 3
were randomly generated. Triples with A stable
were discarded and replaced.

As in Section 4.1, an attempt was made to solve
each problem using up to 10 different initial con-
ditions and a maximum of a 1000 iterations per
initial condition. With ε = 10−3, the success rate
for 1 initial condition was 61% and the overall
success rate was 80%. For the problems that were
solved, the average number of iterations taken was
3.3×103 and the average time taken was 0.37 CPU
seconds.

Note: in (3), PCl(Tkk) equals
αTkk
|Tkk|

if |Tkk| ≥ α and

Tkk otherwise.

4.4 A hybrid problem

In this subsection a hybrid problem of the type
shown in Figure 1 is considered. The problem pa-
rameters are c = −0.5+ i3, C = {z ∈ C | Re(z) ≤
−2 and | Im(z)| ≤ |Re(z)|}, n = 13, m = 3 and
p = 5. To ensure solvability, A was set to A =
Ṽ T̃ Ṽ T−BK̃C, where B, C and K̃ were randomly
generated, Ṽ was a randomly chosen orthogonal



matrix, and T̃ was a real block upper triangular
matrix whose spectrum satisfied the constraints.
(T̃ was assigned the spectrum {−0.5±i3,−2,−2±
i,−2.3,−2.5,−3 ± i3,−3.5 ± i3.1,−4 ± i4, } and
was created by choosing appropriate 1 × 1 and
2×2 blocks for its diagonal. The remaining upper
triangular entries of T̃ were chosen randomly.)

With ε = 10−3, 64% of initial conditions tested
resulted in a solution of this problem within 5000
iterations. For the initial conditions that lead
to convergence, the average number of iterations
taken was 8.6×102 and average time taken was 3.1
CPU seconds. The closed loop poles of a particular
solution are shown in Figure 2.
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Fig. 2. A hybrid problem: the closed loop pole
locations for a particular solution.

Note: the least squares matching steps were done
directly rather than using the Hungarian method
or suboptimal matching. Due to space limitations,
details of how to project onto C are omitted.

5. CONCLUSION

In this paper a new methodology for solving
a broad class of output feedback pole place-
ment problems has been presented. A particular
strength of the method is the ability to solve less
standard pole placement problems. Presented nu-
merical results demonstrate that the method can
be quite effective despite the fact that convergence
to a solution is not guaranteed.
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