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Abstract:Utilizing the design technique of “parallel distributed compensation”(PDC), 
model-based fuzzy controllers are designed for both continuous-time and discrete-time 
dynamic fuzzy models. The stability analysis for this class of dynamic fuzzy models is 
studied in this paper. New stability conditions for this class of dynamic fuzzy models are 
presented respectively. On comparison with the existing research, the results derived are 
of less conservative and easy to use relatively, which is test by numerical examples. 
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1. INTRODUCTION1

 
A dynamic fuzzy model is presented by S.G.Cao et 
al first. The main idea is to construct a set of local 
dynamic systems models to represent the local 
dynamic behavior of the system, and then to connect 
the set of local models by membership functions to 
form a global dynamic model (S.G.Cao, et al. 1997). 
A dynamic fuzzy model could be considered as the 
extension of a T-S fuzzy system. 
 
Let a dynamic fuzzy model be the design model 
(B.Friedland. 1996). Then a model-based fuzzy 
controller could be designed by utilizing the 
technique of “parallel distributed compensation” 
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(Hua O.Wang, et al. 1996). And there have been 
many successful applications, for example, the stable 
control of a double inverted pendulum is solved in 
(Yao Hongwei, et al. 2001). 
 
Stability analysis is one of the most basic issues of 
fuzzy control systems. In this paper new relaxed 
stability conditions, which only need to calculate 
eigenvalues, are presented respectively for this class 
of dynamic fuzzy models whose controllers are 
designed by the technique of PDC.  
 
The paper is organized as follows: The recast of 
dynamic fuzzy models is given in Section 2. The 
main results of this paper are presented in Section 3, 
and numerical examples are also given. Concluding 
remarks are collected in Section 4. 
 

2. FROMULATION OF DYNAMIC FUZZY 
MODELS 

 
A dynamic fuzzy models, which is the extension of a 
T-S fuzzy model, is described by a set of “If-Then” 



fuzzy rules. The premise part of the fuzzy rule 
includes linguistic information and the consequence 
part of the rule includes a local dynamic model. 
 
For a multi-input discrete-time dynamic fuzzy model, 
it can be represented as (S.G.Cao, N.W.Rees and 
G.Feng. 1997): 
Rl

pd: If x1 is Fl
1 and ... xn is Fl

n,  
Then x(k+1)=Alx(k)+Blu(k),              (1) 

l=1,2,...,m, where Rl
pd denotes the lth fuzzy rule, 

Al∈Rn×n , Bl∈Rn×p
, ( Al, Bl ) is the lth local model of 

the dynamic fuzzy model (1), m is the number of the 
rules, Fl

i is the fuzzy set, Fl
i(xi(k)) denotes the 

corresponding membership function, x(k)=[x1(k), 
x2(k),..., xn(k)]T∈Rn are the state variables of the 
system, u(k)∈Rp are the input variables of the system. 
Let µl(x(k)) be the normalized membership function 
of the fuzzy set Fl, where Fl=∏n

i=1Fl
i and 0≤µl≤1, 

Σm
l=1µl=1. 

Using a singleton fuzzifier, product inference and a 
center-average defuzzifier, the global dynamic fuzzy 
model can be expressed as follows: 
x(k+1)=A(µ(x))x(k)+B(µ(x))u(k),              (2) 
where A(µ(x))=Σm

l=1µl(x)Al, B(µ(x))=Σm
l=1µl(x)Bl, 

µ(x)=[ µ1(x), µ2(x),..., µm(x)]. 
 
For a multi-input continuous-time dynamic fuzzy 
model, it can be represented as (Sun ZengQi. 1998): 
Rl

pc: If x1(t) is Ml
1 and ... xn(t) is Ml

n, 
Then A=x& lx(t)+Blu(t),                 (3) 

l=1,2,...,m, where Rl
pc denotes the lth fuzzy rule, Al,  

Bl denote the same meaning in the discrete time case. 
Ml

i, Ml
i(xi(t)), x(t), u(t) and µl(x(t)) correspond to Fl

i, 
Fl

i(xi(k)), x(k), u(k) and µl(x(k)) in the discrete time 
case respectively. 
As the same, using a singleton fuzzifier, product 
inference and a center-average defuzzifier, the global 
dynamic fuzzy model can be expressed as following: 

=x& A(µ(x))x(t)+B(µ(x))u(t),          (4) 
 

3. STABILITY ANALYSIS FOR DYNAMIC 
FUZZY MODELS 

 
If the discrete-time dynamic fuzzy model in Eq.(2) or 
the continuous-time one in Eq.(4) captures the 
essential features of the true model, it can be taken as 
the design model. Then utilizing the technique of 
“parallel distributed compensation”, a model-based 
fuzzy controller can be designed directly. The main 
idea is to design a compensator for each rule of the 
dynamic fuzzy model (1) or (3) (Hua O.Wang, et al. 
1996). For each rule, linear control design techniques 
can be used. The fuzzy controller shares the same 
fuzzy sets with the dynamic fuzzy model. Suppose 
the following fuzzy controller has been designed: 
For the discrete-time case, it can be expressed by the 
following m rules: 

Rl
cd: If x1(k) is Fl

1 and ... xn(k) is Fl
n,  

Then u(k)= −Llx(k),                     (5) 
For the continuous-time case, it can be expressed as 
follows: 
Rl

cc: If x1(t) is Ml
1 and ... xn(t) is Ml

n,  
Then u(t)= −Klx(t),                     (6) 

l=1,2,...,m, where Ll∈Rp×n, Kl∈Rp×n. 
There are two strategies to determine the global 
control. One strategy is that the global control is 
equal to the local control whose membership is 
dominant and the other strategy is that the global 
control is equal to the fuzzy “blending” of local 
controllers. According to the first strategy, we have 
u(k)= −Σm

l=1µl(x)Lrx(k)= −Lrx(k) 
(the discrete-time case),         (7) 

or 
u(t)= −Σm

l=1µl(x)Krx(t)= −Krx(t) 
(the continuous-time case),       (8) 

where r satisfies µr(x)=max{µl(x)|1≤l≤m}. And with 
respect to the second strategy, we have 
u(k)= −Σm

l=1µl(x)Llx(k)  
(the discrete-time case),         (9) 

or 
u(t)= −Σm

l=1µl(x)Klx(t) 
(the continuous-time case),      (10) 

Substitute Eq.(7), (9) into Eq.(2) and substitute 
Eq.(8), (10) into Eq.(4) respectively, then the 
closed-loop systems are described by the following 
models: 
x(k+1)= Σm

i=1µi(x)( Ai−BiLr) x(k)             (11) 
=x& Σm

i=1µi(x)(Ai−BiKr)x(t)                  (12) 
x(k+1)= Σm

i=1Σm
j=1µi(x) µj(x)( Ai−BiLj) x(k)     (13) 

=x& Σm
i=1Σm

j=1µi(x) µj(x)( Ai−BiKj) x(t)         (14) 
For the stability analysis of dynamic fuzzy models 
described by Eq.(11) to (14), most results is to find a 
common positive-definite matrix P and require all or 
part of local models satisfy certain linear matrix 
inequations. Because of neglecting the effect of 
membership functions, these stability conditions are 
conservative in some sense. In our previous work, the 
new sufficient conditions for the stability of dynamic 
fuzzy models described by Eq.(11) and (12) have 
been presented. They are quoted as following (Ding 
HaiShan and Mao JianQin. 2003): 
Denote Sji=Ai−BiLj, Qji=ST

jiPSji−P, λji=max{λ(Qji)} as 
the largest eigenvalue of the matrix Qji, where P is an 
arbitrary fixed n dimension positive-definite matrix, 
( i, j=1,...,m ). To divide the m2 eigenvalues into m 
parts. Each part is divided into “positive” sub-part 



Λr
+ and “inpositive” sub-part Λr

-. That is: {λr1, λr2, ..., 
λrm}=Λr

+∪Λr
-={ ,…, }∪{ ,…, }, 

( r=1,...,m ), where l+n=m, 1≤i
1riλ

lriλ
1rjλ

nrjλ

s, jt≤m, ( s=1,..., l ; 
t=1, ..., n). 
 
Theorem 1：The fuzzy dynamic system described by 
Eq.(11) is asymptotically stable if there exists an n 
dimension matrix P>0, such that ST

rrPSrr−P<0 hold 
for r=1,..., m and λrr+ +…+ <0 hold for r=1,..., 

m. (proof see (Ding HaiShan and Mao JianQin. 
2003)) 

1riλ
lriλ

 
Denote Hji=Ai−BiKj, λji=max{λ(HT

jiP+PHji)} as the 
largest eigenvalue of the matrix HT

jiP+PHji, where P 
is an arbitrary fixed n dimension positive-definite 
matrix, ( i, j=1,...,m ). To divide the m2 eigenvalues 
into m parts. Each part is divided into “positive” 
sub-part Λr

+ and “inpositive” sub-part Λr
-. That is: 

{λr1, λr2, ..., λrm}=Λr
+∪Λr

-

={ ,…, }∪{ ,…, }, 

( r=1,...,m ), where l+n=m, 1≤i
1riλ

lriλ
1rjλ

nrjλ

s, jt≤m, ( s=1,..., l ; 
t=1, ..., n). 
 
Theorem 2：The fuzzy dynamic system described by 
Eq. (12) is asymptotically stable if there exists an n 
dimension matrix P>0, such that HT

rrP+PHrr<0 hold 
for r=1,..., m and λrr+ +…+ <0 hold for r=1,..., 

m. (proof see (Ding HaiShan and Mao JianQin. 
2003)). 

1riλ
lriλ

 
In what follows, the stability conditions of the 
dynamic fuzzy models described by Eq.(13) and 
Eq.(14) will be given. For convenience of depiction, 
divide the m2 eigenvalues λji into “positive” part Λ+ 
and “inpositive” set Λ-. For the discrete-time case, 
λji=max{λ(Qji); for the continuous-time case, 
λji=max{λ(HT

jiP+PHji), i, j=1,...,m. 
 
Theorem 3: The fuzzy dynamic system described by 
Eq.(13) is asymptotically stable if there exists an n 
dimension matrix P>0, such that ST

rrPSrr−P<0 hold 
for r=1,...,m and λrr+∑ +Λ∈ji jiλ λ <0 hold for r=1,..., 

m. 
Proof: See the Appendix. 
 
Please notice that model (13) can be also written as 
x(k+1)= Σm

i=1Σm
j=1µi(x) µj(x)( Ai−BiLj) x(k) 

=Σm
i=1Σm

j=1µi(x) µj(x)[(Ai−BiLj+Aj−BjLi)/2]x(k). 
Denote Gji=(Ai−BiLj+Aj−BjLi)/2 and 

λji=max{λ(Gji
TPGji−P)}, i, j=1,..., m. The following 

theorem will be derived. 
 
Theorem 4 
The fuzzy dynamic system described by Eq.(13) is 
asymptotically stable if there exists P>0, such that 
GT

rrPGrr−P<0 hold for r=1,...,m and 
λrr+∑ +Λ∈ji jiλ λ <0 hold for r=1,..., m. 

Proof: See the Appendix. 
 
For the continue-time case, there is: 
Theorem 5: The fuzzy dynamic system described by 
Eq.(14) is asymptotically stable if there exists P>0, 
such that HT

rrP+PHrr<0 hold for r=1,...,m and 

λrr+∑ +Λ∈ji jiλ λ <0 hold for r=1,...,m. 

Proof: See the Appendix. 
 
Notice that model (14) can be also written as 

=x& Σm
i=1Σm

j=1µi(x) µj(x)( Ai−BiKj) x(t) 
=Σm

i=1Σm
j=1µi(x) µj(x)[(Ai−BiKj+ Aj−BjKi)/2]x(t). 

If we define jiH =(Ai−BiLj+Aj−BjLi)/2 and 

λji=max{λ( PH T
ji + jiHP )}, i, j=1,...,m, The 

following theorem will be derived. 
 
Theorem 6: The fuzzy dynamic system described by 
Eq.(14) is asymptotically stable if there exists P>0, 
such that PH T

rr + rrHP <0 hold for r=1,...,m and 
λrr+∑ +Λ∈ji jiλ λ <0 hold for r=1,...,m. 

Proof: See the Appendix. 
 
Remark: Theorems from 1 to 6 only involves of 
corresponding eigenvalues which are easy to obtain. 
So they are convenient to be used in stability analysis 
of dynamic fuzzy models. 
Although these stability conditions are not related 
with membership functions apparently, it can be seen 
from proofs that they are obtained under the 
consideration of the properties of membership 
functions. And the interaction of local dynamic 
models is considered by means of eigenvalues. So 
they are more general than some existing results. The 
advantages of theorem 1 and theorem 2 have been 
given in (Ding HaiShan and Mao JianQin. 2003). 
Theorem 4 is more general than theorem 3 in (Hua 
O.Wang, et al. 1996). Theorem 3 in (Hua O.Wang, et 
al. 1996) requests that Gij

TP Gij −P<0 hold for i≤j≤m. 
While theorem 4 in this paper only requests that λrr<0 



hold for r=1,...,m, which is equivalent to 
Grr

TPGrr−P<0 hold for r=1,...,m. So theorem 3 in 
(Hua O.Wang, et al. 1996) is the special case of 
theorem 4. For the same reason, theorem 5 also 
includes theorem 1 in (Sun ZengQi. (1998) as a 
special case.  
 
In what follows, two numerical examples will be 
given to illustrate the effectiveness of the theorems. 
Example 1: Consider the discrete-time dynamic fuzzy 
model used in (Hua O.Wang, et al. 1996): 
R1

pd: If x2(k) is F1
2 (e.g. “Small”) 

Then x(k+1)=A1x(k)+B1u(k), 
R2

pd: If x2(k) is F2
2 (e.g. “Big”) 

Then x(k+1)=A2x(k)+B2u(k), 
Where x(k)=[ x1(k) x2(k)]T and B1=[1 1]T, B2=[−2 1]T, 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
5.01

1A , . ⎥
⎦

⎤
⎢
⎣

⎡ −−
=

01
5.01

2A

Membership functions and the PDC controller are 
chosen as the same as the ones in (Hua O.Wang, et al. 
1996), that is L1=[0.65 −0.5] and L2=[0.87 −0.11]. 
If the positive definite matrix P is chosen to be 

, we will have that 

S

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

3.206.0
06.08.0

P

T
12PS12−P<0 is not satisfied. So we are not able to 

use theorem 2 in (Hua O.Wang, et al. 1996). But 
using theorem 3 in this paper, there is λ11= −0.2923, 
λ12= 0.1891, λ21= −0.7475, λ22= −0.2647, Λ+={λ12} 
and 

λ11+∑ +Λ∈ji jiλ λ =λ11+λ12<0 

λ22+∑ +Λ∈ji jiλ λ =λ22+λ12<0. 

Therefore the close-loop dynamic fuzzy model is 
asymptotically stable. Using theorem 3 in (Hua 
O.Wang, et al. 1996) or theorem 4 in this paper, the 
same conclusion is also derived. 
But if the positive definite matrix P is chosen to be 

, theorem 2 and 3 in (Hua 

O.Wang, et al. 1996) as well as theorem 3 in this 
paper all lose its effectiveness. However, according 
to theorem 4 in this paper, we obtain λ

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

3.27.0
7.01.2

P

11= −0.7487, 
λ12= 0.3282, λ21= 0.3282, λ22= −0.6816 by calculating 
directly. So Λ+={λ12, λ21} and  

λ11+∑ +Λ∈ji jiλ λ =λ11+λ12+λ21<0 

λ22+∑ +Λ∈ji jiλ λ =λ22+λ12+λ21<0. 

So we can conclude that the closed-loop dynamic 
fuzzy model is asymptotically stable. The simulation 
results of this example are shown as Fig.1 and Fig. 2 
(Hua O.Wang, et al. 1996). 
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Fig. 1 Open-loop response of x1(k)  

at x(0) = [0.9 –0.7]T
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Fig. 2 Close-loop response of x1(k)  

at x(0) = [0.9 –0.7]T

Example 2: Consider the inverted pendulum system 
used in (G.Feng,S.G.Cao,N.W.Rees,C.K.Chak.1997), 
where a PDC controller is designed. The system is 
described by the following five rules: 
R1

pc: If x1(t) is “near 0” and x2(t) is “near 0” 
Then =x& A1x(t)+B1u(t), 

R2
pc: If x1(t) is “near 0” and x2(t) is “near ±4” 

Then =x& A2x(t)+B2u(t), 
R3

pc: If x1(t) is “near ±π/3” and x2(t) is “near 0” 
Then =x& A3x(t)+B3u(t), 

R4
pc: If x1(t) is “near π/3” and x2(t) is “near 4” or x1(t) 

is “near −π/3” and x2(t) is “near −4” 
Then =x& A4x(t)+B4u(t), 

R5
pc: If x1(t) is “near π/3” and x2(t) is “near −4” or 

x1(t) is “near −π/3” and x2(t) is “near 4” 
Then =x& A5x(t)+B5u(t), 

where, x(t)=[ x1(t) x2(t)]T and 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

5399.02437.7
10

5399.02437.7
10

08512.5
10

04706.14
10

02941.17
10

5

43

21

A

AA

AA

     ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=
0.1765

0
B

0.1765
0

B 21

⎥
⎦

⎤
⎢
⎣

⎡
−

===
0.0779

0
BBB 543  



The local feedback control gains are as follows (Ding 
HaiShan and Mao JianQin. 2003): 
K1=[−297.2750 −39.6601],K2=[−281.2776 −39.6601] 
K3=[−526.6508 −89.8588],K4=[−544.5263 −82.9281] 
K5=[−544.5263 −96.7895] 
In this example, membership functions are as the 
same as the ones in (Ding HaiShan and Mao JianQin. 
2003) and the global control is equal to the fuzzy 
“blending” of local controllers. 
The positive definite matrix P is chosen to be  

for stability analysis. ⎥
⎦

⎤
⎢
⎣

⎡
=

4938.04378.0
4378.07909.13

P

Calculate λji corresponding to Hji. We have 
λ11=−4.3516, λ12=−3.8136, λ13=−1.1630, λ14=−1.2969, 
λ15=−0.0442, λ21=−4.8605, λ22=−4.3516, λ23=−0.7276, 
λ24= −0.7597, λ25=0.4938, λ31= −0.4613, λ32=0.1746, 
λ33= −4.3516, λ34= −5.0013, λ35= −4.2042, λ41=0.8547, 
λ42=1.4823, λ43= −3.7019, λ44= −4.3516, λ45= −3.5545, 
λ51= −0.3315, λ52=0.3033, λ53= −4.4690, λ54= −5.1166, 
λ55= −4.3516.  
So ∑ +Λ∈ji jiλ λ ={λ25 , λ32 , λ41 , λ42 , λ52}. It is easy to 

verify that λrr+ ∑ +Λ∈ji jiλ λ <0 hold for r=1,…,5. 

According to theorem 5, the pendulum system is 
asymptotically stable. 
When calculate λji corresponding to jiH , it will be 

found that ∑ +Λ∈ji jiλ λ = . So according to theorem 

6, the pendulum system is also asymptotically stable. 
However, H

∅

31
TP+PH31 is not a negative definite 

matrix. So theorem 1 in (Sun ZengQi. 1998) cannot 
help anything here. 
Fig 1 displays the simulation result with initial 
condition x(t)=[0.6 0.2]T and fig 2 displays the 
simulation result with initial condition x(t)=[1 0]T, 
where the angles are in radian. Simulations verify the 
correctness of the conclusion derived by theorems in 
this paper. 
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Fig. 3 Response of the angle of the pendulum 

for x(0)=[0.6 0.2]T
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Fig. 4 Response of the angle of the pendulum 

for x(0)=[1 0]T

 
4. CONCLUSION 

 
Stability analysis of dynamic fuzzy models, whose 
controller is designed by the design technique of 
PDC, is considered. New relaxed sufficient 
conditions to guarantee the asymptotical stability are 
presented. The conditions are simple and they are 
less conservative compared with existing results. 
This is shown by theoretic analysis and numerical 
examples. 
 

APPENDIX−PROOFS 
 
Proof of theorem 3. First, if there exits an n 
dimension matrix P>0, such that ST

rrPSrr−P<0, it is 
equivalent with λrr<0, (r=1,..., m). So we have λrr∈Λ−. 
Choosing as a Lyapunov function candidate 
V(x(k))=xT(k)Px(k), hence its difference along the 
solution of Eq.(13) is 
∆V(x(k)) = V(x(k+1)) − V(x(k)) 

= xT(k+1)P x(k+1) − xT(k)P x(k) 
=xT(k){[Σm

i=1µi(x)(Σm
j=1µj(x)(Ai− 

BiLj)T)]P[Σm
k=1µk(x)(Σm

l=1µl(x)(Ak

−BkLl))−P]x(k) 
Denote Ei=Σm

j=1µj(x)(Ai−BiLj), then we have 
∆V(x(k)) = xT(k)[(Σm

i=1µi(x)Ei
T)P 

(Σm
k=1µk(x)Ek)−P]x(k) 

= xT(k)[Σm
i=1µ2

i(x)(Ei
 TPEi −P) 

+Σm
i=1Σm

k=i+1µi(x) µk(x)(Ei
 TPEk  

−P+ Ek
 TPEi −P)]x(k) 

= xT(k){Σm
i=1µ2

i(x)(Ei
 TPEi −P) 

+ Σm
i=1Σm

k=i+1µi(x) µk(x)[Ei
 TPEk  

−P+ Ek
 TPEi −P−( Ek

 

−Ei)TP( Ek
 −Ei)]}x(k) 

≤xT(k)[Σm
i=1µ2

i(x)(Ei
 TPEi −P) 



+ Σm
i=1Σm

k=i+1µi(x) µk(x)(Ei
 TPEk  

−P+ Ek
 TPEi −P)]x(k) 

= xT(k)[Σm
i=1Σm

k=1µi(x) µk(x)  
(Ei

 TPEi −P)]x(k) 
= xT(k)[Σm

i=1µi(x)(Ei
 TPEi −P)]x(k) 

Ei
 TPEi−P =[Σm

j=1µj(x)( Ai− BiLj)T] 
P[Σm

l=1µl(x)( Ai− BiLl)] −P 
=Σm

j=1Σm
l=1µj(x)µl(x)(Sji

TPSli−P) 
=Σm

j=1Σm
l=1µ2

j(x)(Sji
TPSji−P) 

+Σm
j=1Σm

l=j+1µj(x)µl(x)(Sji
TPSli

−P+Sli
TPSji−P) 

=Σm
j=1Σm

l=1µ2
j(x)(Sji

TPSji−P) 
+Σm

j=1Σm
l=j+1µj(x)µl(x)[Sji

TPSji

−P+Sli
TPSli−P−(Sji

−Sli)TP(Sji−Sli)] 
<Σm

j=1Σm
l=1µ2

j(x)(Sji
TPSji−P) 

+Σm
j=1Σm

l=j+1µj(x)µl(x)(Sji
TPSji

−P+Sli
TPSli−P) 

=Σm
j=1µj(x)Qji

Therefore, we have 
∆V(x(k)) < xT(k)(Σm

i=1µi(x) Σm
j=1µj(x)Qji)x(k) 

≤ (∑ −Λ∈ji
xiλ µ )( µj(x) λji

+∑ +Λ∈ji
xiλ µ )( µj(x) λji)||x(k)||2

≤(Σm
i=1µi(x)2λii+ 
∑ +Λ∈ji

xiλ µ )( µj(x) λji)||x(k)||2

At arbitrary time k, without generalization, suppose 
that µr(x)=max{µl(x)|1≤l≤m}, then we have 
∆V(x(k))≤µr(x)2(λrr+∑ +Λ∈ji jiλ λ )||x(k)||2<0. 

Because of the randomicity of t, ∆V(x(k))<0 always 
holds. So the fuzzy dynamic system described by Eq. 
(13) is asymptotically stable.                 □ 
Proof of theorem 4. Denote Gji=(Ai−BiLj+Aj−BjLi)/2. 
It is only needed to substitute λji=max{λ(Gji

TPGji−P)} 
into the proof of theorem 3. The rest is similar to that 
of theorem 3.                              □ 
Proof of theorem 5. First, similar as the proof of 
theorem 3, we have λrr∈Λ− and choosing as a 
Lyapunov function candidate V(x(t))=xT(t)Px(t), then 
its derivative along the solution of Eq.(14) is 

))(( txV& = Px(t)+x)(txT& T(t)P  )(tx&

= xT(t)Σm
i=1Σm

j=1µi(x) µj(x) ( Ai− BiKj)TP x(t) 
+ xT (t) P Σm

i=1Σm
j=1µi(x) µj(x) ( Ai

− BiKj) x(t) 
=Σm

i=1Σm
j=1µi(x) µj(x)xT(t)[( Ai− BiKj)TP 

+P ( Ai− BiKj)] x(t) 
≤ (∑ −Λ∈ji

xiλ µ )( µj(x) λji + 

∑ +Λ∈ji
xiλ µ )( µj(x) λji)||x(t)||2

≤(Σm
i=1µi(x)2λii+∑ +Λ∈ji

xiλ µ )( µj(x) λji)||x(t)||2

At arbitrary time t, without generalization, suppose 
that µr(x)=max{µl(x)|1≤l≤m}, then we have 

))(( txV& ≤µr(x)2(λrr+∑ +Λ∈ji jiλ λ )||x(t)||2<0. 

Because of the randomicity of t, <0 always 

holds. So the fuzzy dynamic system described by Eq. 
(14) is asymptotically stable.                 □ 

))(( txV&

Proof of theorem 6.Denote jiH =(Ai−BiKj+Aj−BjKi)/2. 

 It is only needed to substitute 
λji=max{λ( PH T

ji + jiHP )} into the proof of theorem 

5. The rest is similar to that of theorem 5.       □ 
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