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Abstract: A simple method of identifying plant and controller operating in closed-loop
is developed by the orthogonal decomposition technique. Under the assumption that the
system is open-loop as well as closed-loop stable, a subspace identification algorithm of
identifying the deterministic part is derived based on two successive LQ decompositions.
The idea is somewhat related to the two-stage method (Van den Hof and Schrama, 1993)
and to the projection method (Forssell and Ljung, 2000); but the present subspace based
method can easily be applied to multivariable systems. Also, the algorithm is quite simple
and has high accuracy. Some simulation results show that the present method yields
better numerical results compared with a method based on joint input-output approach,
especially if the disturbance is a colored noise. Copyright c�2005 IFAC
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1. INTRODUCTION

The identification problem for closed-loop systems
has received much interest recently (Chiuso and Picci,
2003; Codrons et al., 2002; Forssell and Ljung, 1999;
Qin and Ljung, 2003; Jansson, 2003; Van den Hof
and Schrama, 1993; Verhaegen, 1993), since there are
many cases where open-loop experiments are impos-
sible because of the problem of safety, stability, etc.
(Van den Hof, 1997; Forssell and Ljung, 1999). A
main difficulty in the identification of the closed loop
system is due to the existence of correlation between
plant inputs and disturbances, resulting in biased esti-
mates of the plant parameters.

Closed loop identification methods are divided into
three groups: (i) direct approach, (ii) indirect ap-
proach, and (iii) joint input-output approach. These
approaches have advantages and disadvantages, see
(Forssell and Ljung, 1999).

In fact, the direct approach is simple and useful be-
cause it ignores the feedback loop, although the esti-
mate is biased due to a possible correlation between
the disturbance and the input. For the indirect ap-
proach, the knowledge of the controller transfer func-
tion is needed. Moreover, since the estimates of the
plant are of higher order, we need some model reduc-
tion procedures. The joint input-output approach has
merit in that no knowledge of the controller is needed
and an estimate of the plant is unbiased; however, the
dimension of the estimated plant becomes higher as in
the indirect approach.

In this paper, under the assumption that the plant and
controller are open-loop stable, we present a simple
closed-loop identification procedure based on the or-
thogonal decomposition (ORT) method developed in
(Picci and Katayama, 1996b; Picci and Katayama,
1996a). This method has at least two advantages: one
is that it can be naturally applied to MIMO systems,



and the other is that the present method does not in-
clude a model reduction step needed in the joint input-
output approach (Katayama et al., 2002; Katayama et
al., 2005).

This paper is organized as follows. Section 2 presents
the problem formulation, and in Section 3, the joint
input-output data is decomposed into the determinis-
tic and stochastic components. In Section 4, we de-
rive a subspace identification method for closed-loop
systems based on the deterministic component. Some
numerical results are included in Section 5. Section 6
concludes the paper.
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Fig. 1. Closed-loop system.

2. PROBLEM FORMULATION

Consider the identification of the closed-loop system
shown in Fig. 1. It is assumed that the plant is time-
invariant and is given by

���� � � ������� ��������� (1)

where � ��� and���� are the plant and the noise filter,
respectively. The input and output of the plant � ���
are � � �

� and � � �
� , respectively, � � �

�

is a white noise with mean � and covariance matrix
�� � �, and ���� is a minimum phase transfer
function satisfying ���� � ��. The control signal
is generated by

���� � 	���� � 
����	����� ����� � � ������� (2)

where external inputs 	� � �
� and 	� � �

� are
set points or test signals for identification, and where
� � �

� is a white noise with mean � and covariance
matrix �� � �, and where � ��� is a minimum phase
transfer function satisfying � ��� � ��.

We make assumptions for the feedback system.

A1: We assume that the feedback system is well-
posed in the sense that ��
 �� are determined
uniquely. This condition is certainly satisfied if
�� � � ���
��� and �� � 
���� ��� are non-
singular. For simplicity, we assume that the plant is
strictly proper, i.e. � ��� � �.

A2: The feedback system is stable, and the plant and
controller are also stable.

A3: The external inputs �	�
 	�� satisfy PE conditions
and are uncorrelated with white noises � and �.

A4: There is no feedback from ��
 �� to �	�
 	��.

A5: External inputs and noises �	�
 	�
 �
 �� are 2nd-
order jointly stationary processes with mean zero.

The present identification problem of closed-loop sys-
tem is stated as follows.

Identification of Closed-Loop Systems: We derive
a subspace method to identify the state space model
of the plant � ��� and controller 
��� based on a
finite measurement data �	����
 	����
 ����
 ����
 � �
�
 	
 � � � 
 � � 	� � ��, where � � �.

3. ORTHOGONAL DECOMPOSITION IN
HILBERT SPACE: BASIC IDEA

In this section, we compute the deterministic compo-
nents of the joint input-output process � � ��
 ��
in the closed-loop system based on the ORT method
(Picci and Katayama, 1996b).

Define 	 �

�
	�
	�

�
and � �

�
�

�

�
. Let � and � de-

note vector spaces obtained by taking all finite linear
combinations of 	 and �, respectively. Also we define
� 
� ��� by all finite linear combinations of 	 and
�. Then we obtain a Hilbert space by closing the vec-
tor space � with respect to the norm induced by the
scalar product ��
 �� � ����� for �
 � � �, where
���� denotes the mathematical expectation. The or-
thogonal projection onto the subspace� is denoted by
the symbol ��� � 	 ��.

Let � be the present time. We define the linear spaces
of 2nd-order random variables spanned by the infinite
past and future of the exogenous input vector at � as

�
�
� 
� �
���	��� 	 � � ��

and
�
�
� 
� �
���	��� 	 � 
 ��

Then, we see that� � ��� ��
�
� . Moreover, we define

�
�
� and��

� similarly.

From Assumption A4, there is no feedback from the
output� to the input 	. The feedback-free condition is
that the future of 	 is conditionally uncorrelated with
the past of � given the past of 	, so that this condition
can be written as

�
�
� ���

� 	 ��� (3)

Also from Assumption A3, the input 	 satisfies the PE
condition, which is equivalent to the fact that the input
space � has a direct decomposition

� � ��� � ��� 
 �
�
� � ��� � ���

This is guaranteed if the spectral density matrix �����
of 	 is positive definite on the unit circle �	�	 � ��.

According to (Picci and Katayama, 1996b), it follows
from the condition (3) that

�����
� 	 �� � �����

� 	 ��� �
 � � �
 
�
 � � � (4)



In particular, since ���� ���
���, we have

������� 	 �� � ������� 	 ������ (5)

implying that the smoothed estimate ������� 	 �� is
causal. Thus it can be expressed as a linear combina-
tion of the present and past inputs.

Now we define

����� � ������� 	 �� � ������� 	 ������ (6)

Then we see that ����� is a part of � that is linearly
related to the past inputs 	; thus ����� is expressed
as a moving average of 	���
 	�� � ��
 � � � . Hence,
�� is called the deterministic component of �. The
orthogonal projection of � onto the complementary
space ��, called the stochastic component of �, is
given by

����� � ���� � �����

� ���� � ������� 	 ��

This shows that the estimation error is uncorrelated
with the whole history of the exogenous input 	.

Lemma 1. (Picci and Katayama, 1996b) Under the
assumption that the exogenous inputs are feedback-
free, the output process � has the orthogonal decom-
position

���� � ����� � ����� (7)

where

��������
�
� ���� � �
 � �
 � � �
 
�
 � � �

Applying this decomposition results to the feedback
system shown in Fig. 1, we have equations satisfied
by the deterministic and stochastic components.

Lemma 2. The deterministic and stochastic compo-
nents respectively satisfy the independent equations

����� � � �������� (8a)

����� � 	���� � 
����	����� ������ (8b)

and

����� � � �������� ��������� (9a)

����� � �
�������� � � ������� (9b)

Proof. From (1), (2) and (7),

����� � ����� � � ��������� � ������ ���������

����� � ����� � 	���� � 
����	����� ������ ������

� � �������

Since �
 �
 ��
 �� are orthogonal to �, the orthogonal
projections of the above equations onto � and ��

yield (8) and (9), respectively. �

Remark 1. We see that the realization of deterministic
and stochastic components are decoupled, since the
two components are mutually uncorrelated. It should
be, however, noted that though true for ideal case with

infinite data, this observation is not true practically.
For, in the case of finite input-output data, the estimate
of the stochastic component �� is influenced by the
unknown initial condition associated with the estimate
of the deterministic component �� as discussed in
(Picci and Katayama, 1996a); however the effect due
to unknown initial conditions surely decreases for
sufficiently long data.

Remark 2. Since � ��� and 
��� are stable, we can
apply the ORT method to (8) to obtain the state space
realizations of these transfer matrices. Now suppose
that � ��� and 
��� are so identified. Then, from (9),
we have

������ 
� ������ � �������� � ��������

and

������ 
� ����� � 
�������� � � �������

Applying the stochastic subspace identification method
due to (Katayama and Picci, 1999), we can identify the
noise models ���� and � ��� from realizations of the
stationary processes ��� and ���, respectively.

4. IDENTIFICATION OF OPEN-LOOP SYSTEMS

From (8), we have two deterministic equations

����� � � �������� (10)

and

������ 	���� � 
����	����� ������ (11)

We define

������ � ������ 	����
 ������ � ������ 	����

Then, the plant and controller are expressed as the
block diagrams shown in Fig. 2.
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Fig. 2. Plant and controller in terms of deterministic
components.

Notice that these are relations satisfied by determinis-
tic components ���
 ��� and ����
 ����, where the noise
components are removed in these relations. Thus Fig.
2 displays two independent open-loop systems for the
plant and controller, so that we can use these relations
to identify the open-loop plant � ��� and the controller

���. This idea is closely related to the two-stage
method (Van den Hof and Schrama, 1993) and the
projection method (Forssell and Ljung, 1999), therein
the sensitivity function of the closed-loop system is
identified by using ARMA or FIR models to generate
filtered estimate of the input process �.

Thus the scenario of closed-loop identification with an
open-loop stable plant and/or controller is summarized
as follows.



Identification algorithm of plant and controller

Step 1: By using LQ decomposition, we compute
the deterministic components of the joint input-output
process ���
 ��� and then compute ����
 ����.

Step 2: Apply the ORT method to the input-output
data ���
 ��� to compute � ��� � ���
 ��
 
��.

Step 3: Apply the ORT method to the input-output
data ����
 ���� to compute the controller transfer matrix

��� � ���
 ��
 
�
 ���.

5. SUBSPACE IDENTIFICATION METHOD

In this section, we derive a subspace identification
method of the plant following the scenario described
above. The subspace identification of the controller is
similar.

Let the order of the plant be �. We see that any basis
vector ����� yields a state space representation of
�����, i.e.,

����� �� � ������ ������� (12a)

����� � 
����� ������� (12b)

where � � �
	�	 , and the estimate of the plant is

given by � ��� � 
��� ������ �� � .

Suppose that we are given the data 	���, ����, ���� for
� � �
 	
 � � � 
 � � �� �. As usual, we define a block
Hankel matrix

�
��
�


�
�

�
�������������

	��� 	�	� � � � 	���
	�	� 	��� � � � 	�� � ��

...
...

. . .
...

	��� 	�� � �� � � � 	�� �� � ��
	�� � �� 	�� � 	� � � � 	�� ���
	�� � 	� 	�� � �� � � � 	�� �� � ��

...
...

. . .
...

	�	�� 	�	� � �� � � � 	�	� �� � ��

�
�������������

and ��, �
 and ��, �
 are defined in the same way.
Moreover, we define data matrices �, � and � as

� �

�
��
�


�
� ����������

� �

�
�

��

�
� ������

� �

�
��
�


�
� ������

From (12), we have a matrix input-output equation

��
 � �� ��� ���
��
 (13)

where ��� denotes the deterministic component, and
��, �� and ��� are given by

� Since � ��� is assumed to be strictly proper, the actual � matrix
is zero.
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����� 
����� � � � �
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����

��� �
�
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The algorithm based on the ORT method is described
as follows.

Identification Algorithm – ORT method

Step 1: Compute LQ decomposition
�
� ��
�

�
� �

�
� �� � �
 ��  �� �
 ��  ��  ��

�
�
�
�!



�

!

�

!

�

�
� (14)

Then the deterministic components are given by

�
��
��

�
�

�
���
��

���
���
��


�
��� �

�
 ��

 ��

�
!

� (15)

Step 2: Compute the LQ decomposition
�
���
��

���
���
��


�
��� �

�
���
"�� � � �
"�� "�� � �
"�� "�� "�� �
"�� "�� "�� "��

�
���

�
���

�!

�

�!

�

�!

�

�!

�

�
���

Again, using the idea of the ORT, we obtain the
“deterministic part” as

�
���
��

���
���
��


�
��� �

�
���
"�� �
"�� "��
"�� "��
"�� "��

�
���
�
�!

�

�!

�

�
(16)

Step 3: Combining (13) and (16), ��
 is expressed as

"�� �!


� � "�� �!



� � �� ��� ���"�� �!



� (17)

Post-multiplying (17) by �!� yields"�� � �� ���
�!�.

Under the assumption that ���
�!� has row full rank,

we have

������ � ���"��� (18)

Compute the SVD of "�� as

"�� �
�
�� ��

	 ��� �
� ��

� �
# 

�

# 

�

�

� ����#


� � ����#



� � ����#



� (19)

Then, we define the extended observability matrix
as

�� 
� ���
�

�

�
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Fig. 3. Bode plots of the estimated plant by the present
method (white noise).
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Fig. 4. Bode plots of the estimated plant by the joint
input-output method (white noise).

Step 4: We see that �

�� are obtained by using the
shift-invariance property of the observability matrix
��. Pre-multiplying (17) by � 


� yields

�

� "�� � �



� ����
��"��

Since ����
�� is linear with respect to ��
��,
we can obtain the least-squares estimate of them.

It should be noted that ����� ��� � 	�$ must hold in
order to apply this algorithm. But, since Assumption
A3 and eq. (2) imply that � has PE condition of order
	�$, so that �� has also PE condition of order 	�$.

6. NUMERICAL EXAMPLE

In this section, we give two numerical examples,
comparing the proposed method with the joint input-
output method (Katayama et al., 2002). In the first
case, the output disturbance is a white noise, and in
the second case, we assume that the output disturbance
is a colored noise. A mathematical model is a slightly
modified version of the one used in (Verhaegen, 1993).
The transfer functions of the plant, controller and
noise models are given by

� ��� �
����������� � ������� � ���	��� � 
�
� � �����

�� � ����� � ������ � ���
�� � 
���� � ���


���� �
��

�� � ����
�� � �������� � ���
	� � ������

�� � ��
	�� � 
����� � ���	� � ��
�

���� � �
 � ��� � �
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Fig. 5. Bode plots of the estimated plant by the present
method (colored noise).
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Fig. 6. Bode plots of the estimated plant by the joint
input-output method (colored noise).

The inputs 	� and 	� are Gaussian white noises with
means zero and variances ��� � �, ��� � �, and � is a
white noise with mean zero and variance ��� � �%	.

For simulation studies, we take � � 	���, � � ��
and generated ten data sets, where in each case differ-
ent Gaussian random numbers with specific variances
are generated. Since���� � �, the disturbance on the
output is a white noise.

Figs. 3 and 4 show Bode plots of plant estimated by
the present ORT-based method and the joint input-
output method due to (Katayama et al., 2002), respec-
tively. We clearly see that the present method gives
better results than the joint input-output method.

Now we consider the case where the output noise & is
a colored noise, where the noise filter is given by

���� �
�� � �%���� � �%����� �%����

�� � 	%���� � 	%��� � �%����

Other conditions are the same as before. Figs. 5 and 6
display Bode plots of plant estimated by the present
method and the joint input-output method, respec-
tively. Also, Figs. 7 and 8 display poles of the esti-
mated plant corresponding to Figs. 5 and 6, respec-
tively. For the case where the disturbance is a colored
noise, some of the estimated poles obtained by the
joint input-output method are located outside the unit
circle as in Fig. 8, while those obtained by the ORT-
based method are clustered near the true poles as in
Fig. 7. Thus we can safely say that the present ORT-
based method provides better results than the joint
input-output method (Katayama et al., 2002).
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Fig. 7. Poles of the estimated plant by the present
method (colored noise).
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Fig. 8. Poles of the estimated plant by the joint input-
output method (colored noise).

7. CONCLUSIONS

In this paper, under the assumption that the system is
open-loop stable, a subspace identification algorithm
is derived based on two successive LQ decompositions
of a data matrix generated by exogenous inputs and
plant input-outputs. The idea is somewhat related to
the existing methods: the two-stage method (Van den
Hof and Schrama, 1993) and the projection method
(Forssell and Ljung, 1999). But, the present ORT-
based method can easily be applied to multivariable
systems. Also, though limited to open-loop stable
closed-loop systems, the algorithm is quite simple
and has high accuracy. Some simulation results show
that the present method yields better numerical results
compared with the method based on joint input-output
approach.
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