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Abstract: This paper presents a new method, named as the variability method, to
estimate the cyclo-period of a discrete-time cyclostationary signal. The method is
essentially based on the time-varying correlation and/or mean, whose estimators are
associated with some statistics of blocked signals; a plot of variability of these statistics
as a function of the blocking operator index visually reveals a periodic pattern, from
which the cyclo-period is obtained. The variability method is validated via simulation
and real-life examples. Copyright (©) 2004 IFAC
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1. INTRODUCTION

A discrete-time cyclostationary signal is a sig-
nal whose mean and correlation are periodic se-
quences. Cyclostationary signals often arise due
to the time-varying nature of physical phenom-
ena, e.g., the weather (Martin, 1999), and certain
man-made operations, e.g., the amplitude mod-
ulation, fractional sampling and multirate filter-
ing (Gardner, 1994; Giannakis, 1999). The study
of cyclostationary signals has applications in the
area of signal processing and control, e.g., blind
channel identification and equalization by frac-
tional sampled signals (Tong et al., 1994; Tong
et al., 1995), filter bank optimization by mini-
mizing averaged variances of reconstruction errors
(Sakai and Ohno, 1997; Ohno and Sakai, 1996),
system identification by introducing cyclostation-
ary external excitation (Gardner, 1990; Gian-
nakis, 1995) and by fast sampling system outputs
(Sun et al., 2000; Wang et al., 2004).
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The cyclo-period, defined as the least common
multiple of periods of mean and correlation se-
quences, is the most fundamental parameter of
a cyclostationary signal; hence, estimation of the
cyclo-period should be regarded as the first step
whenever the cyclo-period is required to be known
a priori. The purpose of this paper is to present a
new method to estimate the cyclo-period from a
time series, i.e., given a realization of a cyclosta-
tionary signal x with unknown cyclo-period p,

{z ()} = {2 (0),2(1), -, 2 (N-1)}, (1)

how to estimate p?

In the literature, there were some methods aiming
to or being applicable to cyclo-period estimation.
Herbst (1965) tested the periodic fluctuation in
the variance function of a cyclostationary signal
via periodogram, which can be adapted to es-
timating the cyclo-period. Tian (1988) inferred
the period from the mean function using the so-
called cumulated autocovariances. Observing a
phenomenon that the period of the mean func-
tion may be different from that of the variance
function, Martin and Kedem (1993) formed a



new periodic sequence having the period equal
to the least common multiple of periods of the
mean and variance functions of the original cy-
clostationary signal, and then detected the pe-
riod via the periodogram associated with the new
sequence. Hurd and Gerr (1991) obtained the
cyclo-period from the bispectrum, which was es-
timated using the two-dimensional periodogram.
Dandawaté and Giannakis (1994) aimed at the
detection of cyclostationarity under a broader
context, almost cyclostationary signals, through
a statistical x? test based on the cyclic covariance
and cyclic spectrum, where the cyclo-period was
actually estimated as well. Among these methods,
Hurd-Gerr’s, Martin-Kedem’s, and Dandawaté-
Giannakis’s methods are more complete than the
others and will be compared with our proposed
method.

The new method to be proposed, referred to
as the variability method, has many attractive
features comparing to the other three methods
mentioned earlier. First, it is not sensitive to
stationary noises while Hurd-Gerr’s and Martin-
Kedem’s methods are. Second, it can deal with a
cyclo-period inconsistency problem, while Hurd-
Gerr’s and Dandawaté-Giannakis’s methods can-
not. Third, it is equally applicable to different
types of ill-cyclostationary signals, while Martin-
Kedem’s method cannot handle a special ill-
cyclostationarity.

The rest of the paper is organized as follows.
Section 2 introduces the definition of cyclostation-
arity and the blocking operator. Theoretical foun-
dation of the variability method is established in
Section 3, while Section 4 illustrates the variabil-
ity method through examples. Section 5 concludes
the paper.

Some standard notation is used throughout the
paper. E[| denotes expectation. Symbols Z and
Zy stand for the set of integers and the set
of nonnegative integers, respectively. Expressions
| -] and | - | denote the nearest integer func-
tion and the floor function, respectively. Function
ged(m, n) means the greatest common divisor of
two integers m and n.

2. PRELIMINARY

A discrete-time signal z, real-valued and uni-
variate?, is said to be cyclostationary or cyclo-
wide-sense-stationary (CWSS), if its mean and
correlation are periodic sequences (Gladyshev,
1961; Gardner, 1994). In particular, x is called

2 The two restrictions are not necessary for the definition
of cyclostationarity; they are introduced only for the sake
of an easier presentation.

first-order cyclostationary (Giannakis, 1999) if its
mean m (t) := F [z(t)] is periodic:

my (t+1p1) =my (), VLIEZ;,  (2)

x is second-order cyclostationary (Giannakis,
1999) if its correlation

Ray (87) i= Rua (1,1 +7) := Efz(t)z(t +7)] (3)

is periodic in t for a fixed 7 such that

Ryw (t+ Ipo;7) = Rew (6;7),VELEZ.  (4)

Note that p; and ps are the smallest positive inte-
gers such that (2) and (4) hold, respectively. Due
to the time dependence, m,(t) and R, (t;7) are
usually named the time-varying mean and corre-
lation, respectively. A cyclo-period inconsistency
problem occurs frequently, i.e., p1 # p2; thus,
the cyclo-period p is defined as the least common
multiple of p; and ps, and z is said to be cyclosta-
tionary with period p, abbreviated as (CWSS),,. If
p1 =p2 =1, (2) and (4) say that cyclostationary
signals with period 1 reduce to stationary or wide-
sense stationary (Papoulis, 1965).

The n-fold discrete blocking operator L, is de-
fined as the mapping from a scalar sequence =z
to a n-dimensional vector sequence z,, where
underlining denotes blocking (Meyer and Bur-
rus, 1975; Vaidyanathan, 1993):

20 (1) z (nt)
ai (t) z (nt+1)
poz,=| | = . %)
20D (1) (nt+n—1)

3. VARIABILITY ANALYSIS

The purpose of this section is to build a theoretical
foundation for the variability method.

3.1 Relationship between Two Estimators

We present an estimator of R, (¢;7) defined in (3)
and an estimator of “correlation” of z") defined
in (5), and explore the relationship between the
two estimators.

Given {z (t) i\;l in (1), an asymptotically unbi-
ased and consistent estimator of R, (t;7) can be
shown to be




where 0 < t < p—land 0 < 7 < N —p3
Even though x( )’s are jointly stationary only at
n = [p (Sathe and Vaidyanathan, 1993; Sakai and
Ohno, 1997), the natural correlation estimator
defined for stationary signals can still be applied
to obtain the following statistics,

%Jl'r

Byt (1) = wlrn+ ki)

-
3|z —
—_

r=0

x(rn+ky+7n), (7)

whelreO§T<LN/nJ—10<I~31<n—17
k1 < ko, and ztF?) = glha/nlgpka=nlke/nD) fope o
is a forward shift operator, ie, qx(t) =xz(t+1).

Theorem 1. Given a fixed 7 and {z (t) i\]:?)l in (1),
if N>n, N> pand N > 7, the two estimators
in (6) and (7) are connected as

|
-

Rxﬁf’xiﬁ““) (0) ~ Rer(rn+k;7), (8)

0

%HH

r

where p = p/ged (p,n) and 0 < k < n — 1. The
difference is ignorable for a large N and reduces
to zero under some configurations, e.g., 7 = 0 and
N is a common multiple of n and p.

Proof: 1t follows from definitions of the two esti-
mators and the periodicity implied in (4). Details
are omitted due to space limitation.

3.2 Largest Variability at n = lp

N n—1
For a fixed 7, the sequence {R 8) (o) (O)}
Tn T k=0

has the largest variability at n = Ip for | € Z,
which is intuitively true:

o If n=I[pforleZ, (8) reduces to
p—1

Rayw (rlp + k; 1)

Rzglmmswf) (0)

’B\IP—‘
H
»—to

"Ul

’B|I>—‘
H
(e}

—Rm( 7)

where the second equality is from (4). Cy-
clostationarity implies that Ru, (k;7)’s are
generally not the same for all integers k, i.e.,
some variability exists among the sequence.

e If p and n are coprime or relatively prime, it
can be shown that (8) becomes

. 1w
R ), 04m (0) = = E
n n p 70

3 Eq. (3) implies that Ryy (t; —7) = Ray (t;7).

Thus, Rz(k)x(k+r) (0) is invariant to k and the
variability of the sequence is zero.
e Besides the above two cases, Rx(mz(HT) (0) is
A’Vl n p_l
the average of some subset of {Rzm (K 7')}
k=0
hence, there may exist some variability, but

the variability is generally smaller than that
at n = Ip because of the averaging effect.

This heuristic argument is formally stated in The-
orem 2, which needs a new definition for some
special cyclostationary signals.

Definition 1. A discrete-time (CWSS),, signal z
is called ill-cyclostationary in correlation at
lag 7 if R, (t;7)’s are the same for all ¢, i.e.,

RIZ(O;T):Ra:m(]-;T): ':Rm(pfl;T).

Theorem 2. If x is not ill-cyclostationary in corre-

~ n—1
Ryo,00m (0}
has the largest variability at n = Ip for [ € Z,, in
terms of the sample variance

1 n—1 1 n—1 2
-~ Z (ngplgew) 0 -~ Z R k), htr) (0)> -9
k=0 k=0

lation at lag 7, the sequence {

Proof: Omitted due to space limitation.

3.3 Generalization Based on Time-Varying Mean

Given {z (t) i\;l in (1), an asymptotically unbi-

ased and consistent estimator of m, (t) is

A 1 [N/p]-1
mx(t): LN/pJ ; x(kp+t), (10)

where 0 < t < p — 1. Analogously to (7), the
(k)

“mean” estimator for x, ’ is,

[N/n]-1

N B 1
o = INn] 2

r=0

z(rn+k), (11)

where 0 < k < n — 1. Then, the following are
the counterparts of Theorem 1, Definition 1 and
Theorem 2.

Theorem 3. Given {z (t) i\’;ol in (1),it N >n
and N > p, the two estimators in (10) and (11
are connected as

p 1
™ (k>272mx (rmn+ k),

where p = p/ged (p,n) and 0 < k < n — 1. The
difference is ignorable for a large N and reduces
to zero if N is a common multiple of n and p.



Definition 2. A discrete-time (CWSS),, signal z
is called ill-cyclostationary in mean if m,(t)’s
are the same for all integers t, i.e.,

mw(()) = ma:(l) == m:v<p - 1)'

Theorem 4. If z is not ill-cyclostationary in mean,
n—1

the sequence {mz<k>} has the largest variabil-

ity at n = Ip for | € Z,, in terms of the sample
variance

1 n—1 1 n—1 2
DI LD S IS
k=0 k=0

4. EXAMPLES

This section presents examples in a comparative
manner to confirm the performance of the vari-
ability method.

Algorithms: Given {z (t) i\;?)l in (1), the cyclo-

period p can be estimated by the following steps:

(1) Start with n = 2, i.e., block by Ly as
defined in (5). Select an integer lag 7 (usually
0 or 1) if the variability method is based on
the time-varying correlation.

(2) Compute R 0 oot (0) in (7) and/or RO
n (11), and the sample variance in (9) and / or
that in (12).

(3) Repeat Steps 1 and 2 by increasing n until
a reasonable number 7,4, Wwhere N4 > Ip
for some positive integer [. A good rule of
thumb is 5074, < N (Box et al., 1994).

(4) Plot the sample variance as a function of
the blocking operator index n, where the
largest peaks display a periodic pattern at
n = Ip, i.e., p is the smallest integer among
the cluster of the largest peaks.

Example 1 The example is from (Hurd and
Gerr, 1991) (see Eq. (14) therein):

(t) = {1 + cos (21?)] cw(t) + ().

Here w is a white noise with zero-mean and
unit variance, abbreviated as WN(0,1), v is
WN(0,02), and w and v are mutually indepen-
dent. z is second-order cyclostationary with pe-
riod p = 16. First to study the noise-free per-
formance, i.e., 02 = 0, 100 independent trials in
a Monte Carlo blmulamon are implemented and
shown in Figure 1. All four methods estimate the
cyclo-period p = 16 correctly. Second, the effect
of a stationary noise is investigated by increasing
o2 to 5. Figure 2 takes one typical sample of 100
trials. The variability method and Dandawaté-
Giannakis’s method correctly estimate the cyclo-
period, while Hurd-Gerr’s and Martin-Kedem’s

methods fail. In the variability method, a sta-
tionary noise equally contributes to R NOME (0)
or m 2 for a fixed n; its effect is canceled off
in the step of computing the variability of these
statistics.

Sample variance
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Fig. 1. 02 = 0, 100 independent trials (a) The
variability method (n = 16{), (b) Hurd-
Gerr’s method (|1024/64] = 16), (c) Martin-
Kedem’s method (|1024/64] = 16), (d) Dan-
dawaté-Giannakis’s method (|1024/64] =
16), 1024 is the Fast Fourier Transformation
(FFT) length.
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Fig. 2. 02 = 5 (a) The variability method
(n = 16l), (b) Hurd-Gerr’s method, (c)
Martin-Kedem’s method, (d) Dandawaté-
Giannakis’s method (|4096/256] = 16).

The variability method based on time-varying
mean is useful, especially in dealing with the
cyclo-period inconsistency problem (see Section 2).

Example 2 This is an example in (Martin and
Kedem, 1993) with

m(t)zcos(i—?)—i—w(t),

where w is generated by filtering a WN(0, 1) signal
through an AR filter with parameter 0.3. x is
both first- and second-order cyclostationary with
periods 10 and 5, respectively. Figures 3-(a) and



(b) are obtained via the variability methods based
on m,(t) and R, (¢;0), respectively; the former
estimates p; = 10 and the latter gives p, = 5;
thus, their least common multiple is the correct
cyclo-period p = 10. Martin-Kedem’s method
uses both the mean and variance information (see
Section 1) and thus gives the correct estimate
p = 10, shown in Figure 3-(c). Hurd-Gerr’s and
Dandawaté-Giannakis’s methods are exclusively
based on second-order statistics; therefore, they
give an incorrect estimate, p = 5. Figure 3-
(d) shows the result of Dandawaté-Giannakis’s
method.

oo
SR

ple variance

o
Samy
o000
oo oo ?
N80 B

nnnnnnnnnnnnnnnnn

o

s

13
Statistic T

Periodogram | (/N

w
o

..................

. 3. Cyclo-period inconsistency (a) The vari-
ability method based on mg(t) (n =
10l), (b) The variability method based on
R,:(t;0) (n = 5l), (c) Martin-Kedem’s
method ([1024/102] = 10), (d) Dandawaté-
Giannakis’s method (|1024/204] = 5).
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It seems that for most second-order cyclostation-
ary signals, ngk)x(k) (0) provides enough informa-
tion for cyclo—};erirbd estimation. However, if the
ill-cyclostationarity in correlation at lag 7 = 0
arises (see Definition 1), the variability method
needs to rely upon inlk)wsik#»r) (0) for 7 # 0.

Example 3 A discrete-time Zero-Order-Holder
(ZOH) with an integer factor p, Hp, is an use-
ful operator, e.g., in the closed-loop output fast
sampling (Wang et al., 2004). Tt takes an in-
put sequence x and produces an output sequence
y(t) =z (|t/p]). The output of H; that is driven
by a zero-mean colored noise x can be shown to
be (CWSS)7 and ill-cyclostationary in correlation
at lag 7 = 0. Figure 4-(a) displays the variability
of Rygmygc) (0) as a function of n, where an ape-
riodic pattern occurs, as expected. Figure 4-(b)
is based on Ryglmywl) (0), i.e., 7 = 1, where the
cyclo-period p = 7 is correctly estimated. Since
Martin-Kedem’s method is based on the mean and
variance functions, it cannot deal with such an
ill-cyclostationary signal, which is confirmed by
Figure 4-(c). Both Hurd-Gerr’s and Dandawaté-
Giannakis’s methods succeed in the estimation,

for they are capable of using all the second-order
statistical information; Figure 4-(d) shows the re-
sult obtained by Hurd-Gerr’s method.
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Fig. 4. Ill-cyclostationarity in correlation at
lag 0 (a) The variability method based
on Ry(mym (0), (b) The variability method

based on Ry’(k)y(k«#l) (0) (n =T71), (c) Martin-
Kedem’s method, (d) Hurd-Gerr’s method
(11024/146] = 7).

Finally, we have a real-life example to further
capture the performance of the four cyclo-period
estimation methods.

Example 4 The global irradiance was mea-
sured hourly for three years (1990-1992) at a me-
teorological station DELTA on Ellsmere Island,
N.W.T., Canada. Data and more information are
available at the Taconite Inlet Project website:
http://www.geo.umass.edu/climate/ TILPHTML
/TILPhome.html. As the global irradiance is one
of the measurements of solar radiation, it is plausi-
ble to conjecture that some statistics of the global
irradiance have a 24 hour period rhythm; in other
words, the global irradiance can be modeled as
a cyclostationary signal with period 24. The four
cyclo-period estimation methods are applied with
results shown in Figure 5. All give p = 24 that
is consistent with the conjecture; however, their
performances are quite different: The variability
method displays a very clear periodic pattern and
the other three existing methods more or less
suffer from some disturbing lines/peaks. Here the
data length is 4196 and the FF'T lengths are given
in the caption of Figure 5.

5. CONCLUSION

A new method, named as the variability method,
is proposed to estimate the cyclo-period p of
a discrete-time cyclostationary signal x. If z is
blocked by the blocking operator L,, z,, = Lyz
defined in (5), estimators of the time-varying
correlation and mean are associated with some
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Fig. 5. Global irradiance (a) The variability
method (n = 241), (b) Hurd-Gerr’s method
(12048/85] = 24), (c¢) Martin-Kedem’s
method (]4096/170] = 24), (d) Dandawaté-
Giannakis’s method (|4096/170] = 24).

statistics of the blocked signal z,, in Theorems 1
and 3, respectively. When n is an integer multiple
of p, Theorems 2 and 4 show that variability of
these statistics of z,, achieves the maximum, from
which the cyclo-period p is obtained. Simulation
and real-life examples confirm the effectiveness of
the variablity method. Comparing with the other
three existing methods, the variability method
shows many attractive features.
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