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Abstract: In this paper, the disturbance attenuation properties for classes of linear
hybrid systems perturbed by exterior disturbances are investigated, and a hybrid
l1 robust optimal control problem is studied. First, a procedure is developed to
determine the minimal l∞ induced gain of linear hybrid systems. However, for
general hybrid systems, the termination of the procedure is not guaranteed. Then,
the decidability issues are briefly discussed. Finally, we study the robust l1 optimal
controller synthesis problem. It is shown that the optimal performance level can
be achieved by a piecewise linear state feedback control law for the linear hybrid
systems, and a systematic approach to design such feedback control is proposed.
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1. INTRODUCTION

The last decade has seen increasing research ac-
tivities in hybrid/switched systems. However, the
literature on robust control of hybrid/switched
systems is still relatively sparse. In this paper,
we will focus on the induced gain analysis and
robust optimal control for classes of linear hy-
brid/switched systems which are perturbed by
exterior disturbances.

There are some related works in the literature on
analyzing the induced gain in switched systems. In
(Zhai et al., 2001), the L2 gain of continuous-time
switched linear systems was studied using an aver-
age dwell time approach and piecewise quadratic
Lyapunov functions. In (Hespanha, 2003), the
root-mean-square (RMS) gain of a continuous-
time switched linear system with slow switch-
ing was computed in terms of the solutions to
a collection of Riccati equations. Both of these
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robust performance problems are in the signal’s
energy sense, and assume that the disturbances
are constrained to have finite energy, i.e., bounded
L2 norm. In practice, there are disturbances that
do not satisfy this condition and act more or
less continuously over time. Such disturbances are
called persistent, and can not be treated in the
above framework. In this paper we consider l∞

induced gains to deal with the robust performance
problems in the signal’s magnitude sense, i.e., time
domain specifications.

The persistent disturbance attenuation proper-
ties for hybrid/switched systems have been con-
sidered in our previous work (Lin and Antsak-
lis, 2003a; Lin and Antsaklis, 2003c; Lin and
Antsaklis, 2004). In (Lin and Antsaklis, 2003c),
a class of uncertain switched linear systems af-
fected by both parameter variations and exterior
disturbances was considered, and the uniformly
ultimate boundedness control problem was stud-
ied for both discrete-time and continuous-time
case. Under the assumption that each subsys-



tem admits a finite persistent disturbance atten-
uation level, it was shown in (Lin and Antsak-
lis, 2003c) that, by proper switching, the closed-
loop switched systems can reach a better distur-
bance attenuation level than any single subsys-
tem’s. An optimal disturbance attenuation prop-
erty for uncertain switched systems and its decid-
ability issue were discussed in (Lin and Antsak-
lis, 2003a). The results for optimal disturbance
attenuation property analysis were extended to
classes of general uncertain hybrid systems in (Lin
and Antsaklis, 2004). All of these previous works
are analysis results on the disturbance attenuation
property without addressing the controller design.
This paper is an extension of (Lin and Antsak-
lis, 2004) and addresses the robust optimal hybrid
controller synthesis problem.

This paper is organized as follows. In Section
2, we first define the linear hybrid systems with
persistent external disturbances. Then, the l∞ in-
duced gain analysis problem for the linear hybrid
system and its robust optimal controller synthesis
problem are formulated. After introducing some
necessary preliminary results in Section 3, the
l∞ induced gain analysis problem is investigated
in Section 4, and a bisection based procedure is
proposed to determine a non-conservative bound
on the optimal disturbance attenuation level. The
decidability issues of the proposed procedure are
briefly discussed. The robust optimal controller
synthesis problem is studied in Section 5. A sys-
tematic approach to design an explicit hybrid
state feedback control law is introduced. It is
interesting that the optimal performance level can
be achieved by a time-invariant piecewise linear
state feedback control law, which is deduced from
a conic partition of a (non-convex) performance
region, for linear hybrid systems. The techniques
are based on polyhedral algebra and linear pro-
gramming. Finally, concluding remarks are made.

Notation: The letters E ,P ,S · · · denote sets,
∂P the boundary of set P , and int{P} its in-
terior. A polytope (bounded polyhedral set) P
will be presented either by a set of linear in-
equalities P = {x : Fix ≤ gi, i = 1, · · · , s},
and compactly by P = {x : Fx ≤ g}, or by
the dual representation in terms of the convex
hull of its vertex set {xj}, denoted by Conv{xj}.
For x ∈ R

n, the l1 and l∞ norms are defined
as ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ = maxi |xi| re-

spectively. l∞ denotes the space of bounded vec-
tor sequences h = {h(k) ∈ R

n} equipped with
the norm ‖h‖l∞ = supi ‖hi(k)‖∞ < ∞, where
‖hi(k)‖∞ = supk≥0 |hi(k)|.

2. PROBLEM FORMULATION

We consider discrete-time piecewise linear hybrid
systems of the form

x(t+1) = Aqx(t)+Bqu(t)+Ed(t), if x ∈ Pq (1)

where x(t) ∈ R
n (t ∈ Z

+) is the state variable,
u(t) ∈ Uq ⊂ R

m is the control input, and the
disturbance input d(t) is contained in D ⊂ R

r,
the l∞ unit ball, i.e., D = {d : ‖d‖l∞ ≤ 1}.
It is assumed that Uq is polytopes assigned to
each mode q. Let the finite set Q stand for the
collection of discrete modes q. The partition of the
state space X is given as a finite set of polyhedra
{Pq : q ∈ Q}, where Pq ⊆ X and

⋃
q∈Q Pq = X .

A possible evolution of the piecewise linear hybrid
systems from a given initial condition x0 ∈ X can
be described as follows. First, there exists at least
one discrete mode q0 ∈ Q such that x0 ∈ Pq0 ;
let the mode q0 be called the feasible mode for
state x0. Then the next continuous variable state
is given by the transition x1 = Aq0x0 +Bq0u+Ed
for some possible disturbance d ∈ D and specific
u ∈ Uq0 . Then the above procedure is repeated for
state x1 to determine the next possible state x2,
and so on.

Associated with the piecewise linear hybrid sys-
tem (1), an output z(t) is considered.

z(t) = Cx(t) (2)

where C ∈ R
p×n and z(t) ∈ R

p.

For this linear hybrid system (1)-(2), we are in-
terested in determining a non-conservative bound
for the l∞ induced norm from d(t) to z(t), which
is defined as

µinf = inf{µ|∃q ∈ Q, u ∈ Uq : ‖z(t)‖l∞ ≤ µ, ∀‖d(t)‖l∞ ≤ 1}

The first problem considered in this paper can be
formulated as follows.

Problem 1. (Robust Performance Analysis). Given
the piecewise linear hybrid system (1)-(2), de-
termine the minimal l∞ induced gain from d(t)
to z(t) that can be achieved by some admissible
control law.

The control law refers to a map c : X ×Z
+ → Q×

∪q∈QUq. The control law c is hybrid in the sense
that it includes both a rule for active discrete
mode selection and continuous variable control
signal determination. A hybrid control law c is
called admissible, if at every time instant t, the
discrete mode q(x, t) being selected is a feasible
mode for state x(t), i.e., x(t) ∈ Pq(x,t), and
the continuous control signal being determined
satisfies u(x, t) ∈ Uq(x,t).

The second problem is to construct such an admis-
sible control law that guarantees the l∞ induced
gain from d(t) to z(t).

Problem 2. (Robust Optimal Control). Given lin-
ear hybrid systems (1)-(2), construct an admissi-
ble control law, such that the minimal l∞ induced
gain from d(t) to z(t), µinf , is achieved.



The robust optimal controller synthesis problem is
studied in Section 5. It is interesting to notice that
the optimal performance level can be achieved by
a piecewise linear state feedback control law.

3. PRELIMINARY RESULTS

The basic idea employed in this paper is to trans-
late the required level of performance into con-
straints on the controlled system, which can be
dealt with by the invariant set theory. Therefore,
we introduce the controlled robust invariant set
for the linear hybrid systems as follows.
Definition 3. The set Ω ⊂ X is controlled robust
invariant for the linear hybrid system (1)-(2) if
for all the initial condition x0 ∈ Ω, there exist
admissible control laws, such that x(t) ∈ Ω, ∀t ≥
0, despite disturbances.

Invariant set theory has been studied in the litera-
ture for decades, see for example the survey paper
(Blanchini, 1999). In the literature of hybrid sys-
tems, a similar concept, maximal safety set, was
studied for example in (Lygeros et al., 1999; Vidal
et al., 2001; Berardi et al., 2003). In this paper, the
invariance checking and calculation for Ω is based
on the backward reachability analysis and robust
predecessor operator, which is defined below.
Definition 4. The robust one-step predecessor set,
pre(Ω), is the set of states in X , for which there
exist admissible control laws to drive these states
into Ω in one step, despite disturbances, i.e.,
pre(Ω) = {x(t) ∈ X|∃q ∈ Q, u(t) ∈ Uq : x(t) ∈ Pq,

Aqx(t) + Bqu(t) + Ed(t) ∈ Ω, ∀d(t) ∈ D}
We can also define the one-step predecessor set
under the q-th mode, preq(Ω), as the set of all
states x ∈ Pq, for which an admissible control
signal u ∈ Uq exists and guarantees that the
system will be driven to Ω by the transformation
Aqx + Bqu + Ed for all allowable disturbances. It
is easy to verify that

pre(Ω) =
⋃
q∈Q

preq(Ω) (3)

Therefore, we only need to calculate the one-
step predecessor set for each q-th subsystem. The
predecessor set of a piecewise linear set Ω under
a single mode, i.e., preq(Ω), has been studied
extensively in the literature and can be computed
by Fourier-Motzkin elimination (Motzkin, 1952)
and linear programming techniques (Blanchini,
1999; Kerrigan, 2000). Notice that the difficulty
in calculating preq(Ω) comes mainly from the
fact that the region Ω is typically non-convex.
Even if one starts with convex sets, the procedure
deduces non-convex sets for hybrid systems after
an one-step predecessor operation. Although the
convexity is not preserved, the one-step prede-
cessor set for a (non-convex) piecewise linear set

Ω, pre(Ω), is still a piecewise linear set and can
be written as finite union of polyhedra (Lin and
Antsaklis, 2003b). Therefore, one can apply the
predecessor operation recursively, which will be
explored in the next section.

4. ROBUST PERFORMANCE ANALYSIS

In this section, we will focus on the first problem
and determine the minimal l∞ induced gain from
d(t) to z(t) that can be achieved by some admis-
sible control laws for the closed-loop linear hybrid
systems. For such purpose, we first introduce the
performance level µ set as

Ωµ = {x : ‖Cx‖∞ ≤ µ} = {x :
[

C
−C

]
x ≤

[
µ̄
µ̄

]
}

where µ̄ stands for a column vector with µ as its
elements. Note that Ωµ is a polytope containing
the origin in its interior.

A value µ < +∞ is said to be admissible if
µ > µinf . Clearly, a sufficient condition for µ to be
admissible is that the hybrid performance level set
Ωµ is controlled robust invariant. Therefore, the
l∞ induced gain analysis problem is transformed
into checking the controlled robust invariance of
the disturbance attenuation performance level set.

In order to get necessary and sufficient condition
for the admissibility of µ, we introduce the follow-
ing definition.
Definition 5. The set C∞(Ωµ) is the maximal con-
trolled robust invariant set contained in Ωµ for
the linear hybrid system (1)-(2) if C∞(Ωµ) is
controlled robust invariant and contains all the
controlled robust invariant sets contained in Ωµ.

The uniqueness of the maximal controlled robust
invariant set C∞(Ωµ), if non-empty, follows im-
mediately from the fact that the union of two
controlled robust invariant sets is still controlled
robust invariant, and that C∞(Ωµ) is a subset of
Ωµ. In order to calculate the maximal controlled
robust invariant set in Ωµ, we introduce the one-
step controllable set of Ωµ as

C1(Ωµ) = pre(Ωµ) ∩ Ωµ. (4)

and recessively define the i-step controllable set
Ci(Ωµ) as

Ci(Ωµ) = C1(Ci−1(Ωµ)) = pre(Ci−1(Ωµ)) ∩ Ci−1(Ωµ)

for i ≥ 2. The sequence of finite-step controllable
sets Ci(Ωµ) has the following property.
Proposition 6. The sequence of finite step control-
lable sets Ci(Ωµ) is decreasing in the sense of

Ci(Ωµ) ⊆ Ci−1(Ωµ),

for i ≥ 1 and C0(Ωµ) = Ωµ. The maximal
controlled invariant set in Ωµ for the piecewise
linear hybrid system (1) is given by



C∞(Ωµ) =
∞⋂

i=0

Ci(Ωµ).

Based on the maximal controlled robust invariant
set C∞(Ωµ), we state now the basic result of
this section which will be used to give a solution
to the disturbance attenuation property analysis
problem.
Proposition 7. A value µ (< +∞) is admissible,
i.e., µ > µinf , if and only if the maximal con-
trolled robust invariant subset of Ωµ, C∞(Ωµ), is
non-empty.

This result suggests the following constructive
procedure for finding a robust performance bound.

Procedure 1. Checking whether µ > µinf

(1) Initialization: Set i = 0 and set C0 = Ωµ.
(2) Compute the set Ci+1(Ωµ) = pre(Ci(Ωµ)) ∩

Ci(Ωµ).
(3) If 0 /∈ Ci+1 then stop, the procedure has

failed. Thus, the output does not robustly
meet the performance level µ.

(4) If the Ci(Ωµ) = Ci−1(Ωµ), then stop, and set
C∞(Ωµ) = Ci(Ωµ).

(5) Set i = i + 1 and go to step 1.

This procedure can then be used together with a
bisection method on µ to approximate the optimal
value µinf arbitrarily close, which solves the dis-
turbance attenuation property analysis problem.
If the procedure stops at step 3, we conclude that
µ < µinf and we can increase the value of the
output bound µ. This comes from the fact that if
C∞(Ωµ) 6= ∅ then 0 ∈ Ci+1. Else, if the procedure
stops at step 4, we have determined an admissible
bound for the output, say µ > µinf , that can be
decreased.

Unfortunately, the reachability problem for gen-
eral hybrid systems is undecidable (Alur et al.,
2000). Therefore, the bisection method on µ that
approximates the optimal value µinf can not be
guaranteed to terminate in finite number of steps.
Hence, a natural question is under what condi-
tion the procedure can terminate in finite number
of steps, i.e., decidable. To specify the decidable
subclass of linear hybrid systems for the robust
performance problems, two kinds of simplification
may be employed. One way is to simplify the
continuous variable dynamics of the hybrid sys-
tems, see for example (Alur et al., 2000; Vidal et
al., 2001). However, this approach may not be at-
tractive to control applications, where simple con-
tinuous variable dynamics may not be adequate
to capture the system’s dynamics. Alternatively,
one may restrict the discrete event dynamics of
the uncertain linear hybrid systems. In (Lin and
Antsaklis, 2003a), we followed the second route
and obtained a decidable subclass of the linear
hybrid systems, called switched linear systems,

by simplifying the discrete event dynamics. In
particular, for the switched linear systems, we do
not consider partition of the state space Pq, i.e.,
set Pq to be R

n. In other words, the transitions
between any two modes may happen at any point
in the state space. Detailed discussions on decid-
ability along this line can be found in (Lin and
Antsaklis, 2003a; Lin and Antsaklis, 2004).

5. HYBRID CONTROLLER DESIGN
Our objective in this section is to design a hybrid
control law, c, such that the closed-loop hybrid
systems achieve the possible minimal l∞ induced
gain from d(t) to z(t), µinf . It has been shown in
the previous section that the disturbance attenua-
tion problem is solved if and only if the set Ωµ has
nonempty controlled invariant subset, C∞(Ωµ). In
addition, we know that the robust optimal control
problem can be solved if and only if the closed loop
trajectories remain in the maximal invariant sub-
set of the performance level set C∞(Ωµinf

). In this
section, we will present a systematic procedure for
the hybrid controller design, which robustly drives
the system, with proper initial conditions, to guar-
antee that the states remain within C∞(Ωµinf

) de-
spite the disturbances. For notational simplicity,
we denote the maximal controlled invariant subset
C∞(Ωµinf

) as C in the sequel. Note that C is a
(maybe non-convex) piecewise linear set.

A similar invariant control problem has been con-
sidered in (Lin and Antsaklis, 2003b), in which
a receding horizon control based approach was
proposed to obtain the appropriate discrete modes
and control signals by solving a collection of linear
programming problems at each step. However, the
computation burden is usually heavy for practical
applications. Therefore, an explicit state feedback
controller is desirable, especially for large dimen-
sional systems or applications with fast dynamics.

In this section, we will design the hybrid control
law in an explicit state feedback form. For such
purpose, we partition the region C into a finite
number of convex subregions. First, we coarsely
divide C into a finite union of convex piecewise
linear sets Ci, i.e., C =

⋃m
i=1 Ci, which satisfy the

property

preq(
m⋃

i=1

Ci) =
m⋃

i=1

preq(Ci), (5)

for all feasible mode q. It is easy to show the
existence of such partition. It is assumed that the
polytopic region Ci can be represented as

Ci = {x : F ix ≤ gi},
with proper dimensional matrix F i and vector gi,
for all i = 1, 2, · · · , m.

Secondly, we refine the above polyhedral partition
by subdividing each polyhedra Cj into



Ci,j
q = preq(Ci)

⋂
Cj, i, j = 1, · · · , m, q ∈ Q. (6)

Note that Ci,j
q is a convex polyhedral set and it

has the following property.
Proposition 8. A controlled invariant set C can be
written as the following polytopic partition

C =
⋃
q∈Q

⋃
i,j

Ci,j
q , (7)

where Ci,j
q is defined in (6).

Proof : First,
⋃

i,j Ci,j
q =

⋃
i,j(preq(Ci)

⋂ Cj) =⋃
i(preq(Ci))

⋂
(
⋃

j Cj) = preq(
⋃

i Ci)
⋂ C

= preq(C)
⋂ C. Secondly, because preq(C)

⋂ C ⊆
C, for all q ∈ Q, so

⋃
q∈Q(preq(C)

⋂ C) ⊆ C.
On the other hand, C is controlled invariant, so
C ⊆ pre(C) =

⋃
q∈Q preq(C). 2

These polytopic subregion Ci,j
q has the following

property. For all the states x contained in the
polytopic subregion Ci,j

q , there exist admissible
control signals u ∈ Uq such that drive x into
Ci (not Ci,j

q itself) along mode q for all admis-
sible disturbances. This property comes from the
definition that Ci,j

q = preq(Ci)
⋂ Cj , so x ∈ Ci,j

q

implies x ∈ preq(Ci). The possible next step state
x′, which is guaranteed to be contained in Ci,
also falls into another polytopic subregion Ci′,i

q′ , for
some q′ ∈ Q and i′ ∈ {1, 2, · · · , m}. For the state
x′, there also exist control signals u ∈ Uq′ to drive
x′ into Ci′ along mode q′. The procedure repeated
for the next step state, and so on. Therefore,
the state trajectories under such control signals
are contained in the region C =

⋃
i Ci despite

disturbances. This observation suggests that one
may pick the mode q as the active mode for
a polytopic subregion Ci,j

q , and the existence of
the admissible continuous-variable control signal
u ∈ Uq is guaranteed, which makes the region C
(=

⋃
q∈Q

⋃
i,j Ci,j

q ) robust controlled invariant. In
the sequel, we will propose a systematic method to
construct such continuous-variable control signals.
In particular, a linear state feedback control law
is designed for each polytopic subregion Ci,j

q .

For such purpose, an optimization problem for
each vertex of the polytopic subregion Ci,j

q is for-
mulated to calculate an admissible control signal
for the vertex xk

q ∈ vert{Ci,j
q }. Notice that the

vertices can be easily determined by solving some
linear programming problems once the polytopic
region Ci,j

q is specified. The control signal for the
vertex xk

q can be selected as the solution to the
following minmax optimization problem:

min
u∈Uq

max
d∈D

‖F j[Aqx
k
q + Bqu + Ed]‖∞

s.t.

{
F iBqu ≤ gi − F iAqx

k
q − δi

q

u ∈ Uq
(8)

where δi
q = maxd∈D(F iEd) componentwise, which

incorporates the worst effects of the disturbance

d. The optimal action of the controller is one that
tries to minimize the maximum cost, and tries
to counteract the worst disturbance and to keep
the next step state inside the region Cj (not Ci,j

q

itself). Of course, one may choose another cost
functional, but the key point here is that the
above constraints are linear inequalities in u and
nonempty, i.e., feasible. This is simply because
that xk

q ∈ Ci,j
q ⊂ preq(Ci).

Because of the guaranteed feasibility of the above
optimization problem for each vertex of the poly-
tope Ci,j

q , the admissible control signals for each
vertex xk

q exist, which may be denoted as uk
q . In

the next step, we will construct the continuous
variable control signals for the state contained in
region Ci,j

q from the control signals at the vertices.
The arguments are obtained through convexity.

Note that any x ∈ Ci,j
q can be (not uniquely)

written as the convex combination of the ver-
tices of Ci,j

q , that is x =
∑

k αk
q (x)xk

q , where the
convex combination coefficients αk

q (x) ≥ 0 and∑
j αk

q (x) = 1. We set the control signal u(x) for
state x simply as the convex combination of the
control signals at the vertex uk

q . In particular,

u(x) =
∑

k

αk
q (x)uk

q (9)

and u(x) ∈ Uq comes from the convexity of Uq.
And

F i[Aqx + Bqu(x)]

= F i[Aq

∑
k

αk
q (x)xk

q + Bq

∑
k

αk
q (x)uk

q ]

=
∑

k

αk
q (x)F i[Aqx

k
q + Bqu

k
q ]

≤
∑

k

αk
q (x)[gi − δi

q] = gi − δi
q

holds. In other words, for any x ∈ Ci,j
q , the control

signal u(x) given in (9) will drive the next state in
Ci (not Ci,j

q itself) despite disturbances. Therefore,
the control law of the form (9) solves the robust
controlled invariance problem.

In summary, to make the performance level set
C controlled invariant, the control law is given
as follows. For x(t) ∈ Ci,j

q , the discrete mode is
selected as q(t) = q. This is always possible since

x(t) ∈ Ci,j
q = preq(Ci)

⋂
Cj ⊂ Pq.

Secondly, the continuous variable control signal,
u(t), is of the form (9). In this expression, αk

q (x) is
the convex combination coefficients of x(t) by the
vertices of Ci,j

q , and uk
q is the control signal for the

corresponding vertices of Ci,j
q . It has been shown

that the vertex control signal uk
q can be derived

by solving a linear programming problem, which
can be solved off-line.



A control law of the above form (9) can be imple-
mented as a piecewise linear state feedback con-
troller. For example, let Xq

i,j be a matrix whose
columns are formed by the vertex vector of Ci,j

q .
The columns of matrix U q

i,j are the calculated con-
tinuous variable control vector, uk

q , corresponding
to each vertex of Ci,j

q . A piecewise linear state
feedback controller is then obtained by applying
the control

u(x) =
∑

k

αk
q (x)uk

q = U q
i,j(X

qT

i,j Xq
i,j)

−1XqT

i,j x (10)

where (·)T stands for transpose, and (·)−1 inverse
of matrix. The convex combination coefficients
αk

q (x) can be calculated as (XqT

i,j Xq
i,j)

−1XqT

i,j x if

(XqT

i,j Xq
i,j) is invertible. Otherwise another proce-

dure is needed to generate the convex combination
vector coefficients αk

q (x). Note that all the calcu-
lations to derive the matrix Xq

i,j and U q
i,j can be

done off-line by linear programming techniques.
The implementation of the control law only needs
to calculate the convex combination coefficients
vector αk

q (x), which can be done by solving some
linear equations. Therefore, this computational
advantage makes the above method a good can-
didate to deal with high dimensional hybrid sys-
tems.

Some remarks are in order. First, for some states
x(t) ∈ C, there may exist more than one feasi-
ble modes and admissible control signals. Then
some criteria could be designed for the selection
of (q(x(t)), u(x(t))), e.g. the magnitude or energy
of u(x(t)) etc. This flexibility may also lead to
optimal control with respect to other kinds of
cost functions. Secondly, the procedure developed
here answers the robust optimal control problem
in a decidable way even for the general hybrid
systems (1)-(2) under the assumption that C is
controlled invariant. In addition, although we only
synthesize a hybrid control law to guarantee op-
timal l∞ induced gain µinf here, the procedure
can be directly used to achieve any admissible
disturbance attenuation level, µ > µinf .

6. CONCLUDING REMARKS

In this paper, we put the robust performance
analysis problems of linear hybrid/switched sys-
tems into the framework of invariant set theory.
The robust performance problem was transformed
into robust controlled invariance problems for a
specific region decided by the disturbance attenu-
ation level. A bisection based procedure was pro-
posed to determine the optimal disturbance atten-
uation level µinf . The decidability issue of the ro-
bust performance analysis problem was briefly dis-
cussed. Finally, a systematic procedure for explicit
hybrid l1 optimal controller design was given,
which was based on polyhedral algebra and lin-
ear programming techniques. The robust optimal

controller is in the form of a piecewise linear state
feedback control law. It is interesting to note that
in (Bemporad et al., 2002) piecewise linear state
feedback control law, which is obtained through
multi-parametric programming, solves a variety
of optimal control problems of piecewise linear
systems.

REFERENCES

Alur, R., T. Henzinger, G. Lafferriere and G. Pap-
pas (2000). Discrete abstractions of hybrid
systems. Proccedings of the IEEE 88(7), 971–
984.

Bemporad, A., F. Borrelli and M. Morari (2002).
On the optimal control law for linear discrete
time hybrid systems. In: HSCC. Vol. 2289 of
LNCS. pp. 105–119. Springer Verlag.

Berardi, L., E. De Santis, M. D. Di Benedetto and
G. Pola (2003). Approximations of maximal
controlled safe sets for hybrid systems. In:
Nonlinear and hybrid systems in automotive
control. pp. 335–349. Springer Verlag.

Blanchini, F. (1999). Set invariance in control.
Automatica 35(11), 1747–1767.

Hespanha, J. (2003). Root-mean-square gains of
switched linear systems. IEEE Trans. Au-
tomat. Contr. 48(11), 2040–2045.

Kerrigan, E. (2000). Robust Constraint Satisfac-
tion: Invariant Sets and Predictive Control.
PhD thesis. University of Cambridge. UK.

Lin, H. and P.J. Antsaklis (2003a). Disturbance
attenuation properties for discrete-time un-
certain linear switched systems. In: Proc.
42nd IEEE Conf. Decision Control. pp. 5289–
5294.

Lin, H. and P.J. Antsaklis (2003b). Robust track-
ing and regulation control of uncertain piece-
wise linear systems. ISIS technical report,
ISIS-2003-005. Univ. of Notre Dame.

Lin, H. and P.J. Antsaklis (2003c). Uniformly
ultimate boundedness control for uncertain
switched linear systems. ISIS technical re-
port, ISIS-2003-004. Univ. of Notre Dame.

Lin, H. and P.J. Antsaklis (2004). Disturbance
attenuation in classes of uncertain linear hy-
brid systems. In: Proc. 2004 American Contr.
Conf.. pp. 566–571.

Lygeros, J., C. Tomlin and S. Sastry (1999).
Controllers for reachability specifications for
hybrid systems. Automatica 35(3), 349–370.

Motzkin, T. (1952). The theory of linear inequal-
ities. Rand Corp.. Santa Monica, CA.

Vidal, R., S. Schaffert, O. Shakernia, J. Lygeros
and S. Sastry (2001). Decidable and semi-
decidable controller synthesis for classes of
discrete-time hybrid systems. In: Proc. 40th
IEEE Conf. Decision Control. pp. 1243–1248.

Zhai, G., B. Hu, K. Yasuda and A. N. Michel
(2001). Disturbance attenuation properties of
time-controlled switched systems. Journal of
the Franklin Institute 338, 765–779.


