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Abstract: The problem of distinguishing density-independent (DI) from density-
dependent (DD) demographic time series has been addressed in the past via
hypothesis testing based on parametric bootstrapping (PBLR) and, in later works,
by Information Criteria such as FPE or SIC. Here, we address the problem in a
novel way using Structural Risk Minimization (SRM). DI and DD time series
corrupted with noise are extensively simulated using a drift (DI) and a Ricker
(DD) model; on each generated time series, both models are identified, and then
one is selected by FPE, SIC and SRM. The probability of density-[in]dependence
recognition is statistically assessed and compared with the results obtained via
PBLR in a previous work.
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1. INTRODUCTION

A widely addressed problem in ecology is the
identification of the basic mechanisms underlying
the observed course of population abundances. In
its simplest form, the problem is to identify a
suitable relationship of the type Nt+1 = f(Nt),
where Nt is the total abundance at time t. T. R.
Malthus, the founder of modern demography, in
his famous work of 1798 proposed a simple linear
model Nt+1 = λNt, which yields the geometric
growth Nt = λtN0. By taking logarithms, the
equation becomes

ln

(

Nt+1

Nt

)

= a (1)

where a = ln(λ). This model is usually referred
to in demography as drift model. Depending on a,
the population increases indefinitely or tends to

the extinction. The main assumption underlying
the Malthusian model is that the environment can
provide each individual with the same amount of
resources necessary to survival and reproduction,
regardless of the population density. This is actu-
ally called the density-independence hypothesis.

However, no population grows indefinitely; as den-
sity rises, competition takes place between indi-
viduals (for example for food, water, or repro-
duction), slowing down or halting the popula-
tion increase. In this case, density-independence
is no longer a suitable assumption and the drift
model becomes inadequate. One of the most flex-
ible models describing density dependence is the
one introduced in 1948 by the Canadian biologist
William E. Ricker:

ln

(

Nt+1

Nt

)

= a + bNt (a > 0, b < 0) (2)



It is worth noting that the only nontrivial equilib-
rium of such a model corresponds to N = −a/b.
This equilibrium is stable for a < 2, and there are
damped oscillations for 1 < a < 2.

Since the recognition of density-dependence is of
great practical importance in the design of proper
policies for sustainable management and exploita-
tion of natural populations, this topic stimulated
a great research effort over the past three decades.
Earlier works were based on hypothesis-testing
approaches, the two hypotheses being usually con-
stituted by the drift and the Ricker model. For
instance, Dennis and Taper proposed a power-
ful hypothesis testing framework based on para-
metric bootstrapping of likelihood ratios (PBLR)
(Dennis and Taper, 1994). However, as hypothesis
testing suffered sometimes from the problem of
low power, several authors (Taper and Gogan,
2002) proposed the use of information criteria
(IC) to choose the best among a suite of alter-
native models including both density-independent
and density-dependent demographies. The Final
Prediction Error (FPE) and in particular the
Schwartz Information Criterion (SIC) appear to
be the most widely used by ecologists. It is worth-
while to mention that traditional IC’s are based
on asymptotic arguments, which therefore hold
just for large datasets, and assume a set of com-
mon hypotheseses such as the linearity of both
the target function underlying the data and the
approximating functions used as models, which do
not hold in real case studies.

As a viable alternative to classical IC, we propose
the use of the model selection criterion developed
within Statistical Learning Theory (SLT) called
Structural Risk Minimization (SRM) (Vapnik,
1995). SLT is a modelling framework of great
generality, which works with finite samples with-
out assuming any particular condition about the
data, or the class of the approximating functions.
The very core of SLT is the concept of VC-
dimension h, a complexity index for classes of
functions; for the comprehension of the proposed
application it is enough to know that in the linear
case, VC-dimension corresponds to the number of
free parameters of the model. On the contrary,
VC-dimensions of nonlinear models are generally
unknown, and this constitutes in fact a major
obstacle to a wide application of SLT findings.

With reference to linear regression problems, it
has been shown (Cherkassky et al., 1999) that
SRM can consistently overperform traditional In-
formation Criteria (SIC, FPE, etc.) for different
dataset sizes and noise levels, with stronger ad-
vantages for smaller datasets and higher noise lev-
els, which are quite usual conditions in ecological
modelling.

In our experimental framework, we generate noisy
artificial time series by using both the drift and
the Ricker model. For each generated time series,
both models are identified and one of them is
selected according to FPE, SIC or SRM. We have
designed our simulation experiments consistently
to (Dennis and Taper, 1994), because our aim is
to compare our results with PBLR, which is very
well assessed in ecological modelling.

The paper is organized as follows: Section 2 de-
tails the model selection approaches, Section 3 de-
scribes the experimental methodology, Section 4
and 5 illustrate the results obtained for the recog-
nition of the density-independent and density-
dependent demography, Section 6 describes an
application to 3 populations of large mammals.

2. THE MODEL SELECTION PROBLEM

From an abstract viewpoint we can think of the
model selection problem as the problem of approx-
imating the functioning of a true system; such
a system receives an input vector x, character-
ized by a probability distribution P (x) and corre-
spondingly returns an output y, according to the
conditional distribution P (y|x). Both P (x) and
P (y|x) are unknown. We assume that the system
is represented by the unknown relationship:

y = g(x) + ε (3)

where ε is an independent identically distributed
zero mean random noise.

A model selection procedure is aimed at choosing
the best approximating function among a set of
several candidates fj(x, ω), where ω denotes the
parameters specifying the function, and the sub-
script j refers to one of different classes of func-
tions. For example, class j might be a polynomial
of degree j.

The choice is based on a finite number q of samples
(xi,yi), i = 1, . . . , q. If, as usual, the quality of the
approximation is measured through the squared
error, the optimal approximating function should
in principle minimize the following prediction risk

functional :

Rj(ω) =

∫

(y − fj(x, ω))2dP (x, y) (4)

which is however unknown because the joint prob-
ability distribution function P (x, y) = P (y|x)P (x)
is unknown.

On the other hand, what can be experimentally
measured by using the q samples is the empirical

risk :

Rj(ω)emp =
1

q

i=q
∑

i=1

(yi − fj(xi, ω))2 (5)



Information Criteria attempt to estimate the un-
known prediction risk (4) as the known empirical
risk (5), penalized by some measure of the model
complexity. Once an accurate estimate of the pre-
diction risk is found, the model that minimizes the
estimated prediction risk with respect to both the
class j of functions and the parameters defining
each function inside the class is chosen. In general,
for a function fj having dj free parameters, ICs
take the form:

estimated risk(fj) = Rj(ω)emp r (pj) (6)

where r(p) is the penalization function and pj

denotes the ratio dj/q. In this paper we consider
the following Information Criteria:

FPE estimated risk(fj) = Rj(ω)emp

[

(1 + pj)

(1 − pj)

]

(7)

SIC estimated risk(fj) =

= Rj(ω)emp[1 +
ln(q)

2
pj(1 − pj)

−1] (8)

These classical approaches are motivated by
asymptotic arguments (q → ∞) for linear mod-
els and indeed risk estimates provided by FPE
and SIC are asymptotically equivalent. They also
assume that the target function g(x) is contained
in the set of candidate approximating functions
fj(x,ω) . It is worthwhile to note that the experi-
ments performed in this paper with artificial time
series will actually satisfy such an assumption,
which is not met in real world case studies.

As for the PBLR approach, it can briefly sum-
marized as follows: it is a hypothesis test, where
model i is contrasted against model j. The test
statistic is the ratio Λij of the likelihood function
Li maximized over the parameters values of model
i, to the likelihood Lj , also maximized over the
parameters of model j. The decision is made in
favor of Model i if Λij > c, where c is a cutoff
value selected so that the probability of wrongly
choosing Model i when data arise from Model j
is fixed at a small number, known as test size.
Under the PBLR approach, the cutoff value is
estimated via parametric bootstrapping (Dennis
and Taper, 1994).

These classical approaches can be contrasted with
the VC-theory approach where, for a sample of
finite length q, one can calculate a bound for
the risk functional (4). For “practical” regres-
sion problems, the following inequality holds with

probability
(

1 − 1√
q

)

(Cherkassky et al., 1999):

Rj(ω)) ≤

≤ Rj(ω)emp

[

1 −

√

pj − pj ln pj +
ln(q)

2q

]−1

+

(9)

where pj =
hj

q
(hj is the VC-dimension of the j-

th class of functions). If the models are linear, hj

coincides with the number of free parameters, so
pj =

dj

q
. The SRM approach consists in choosing

the model that minimizes the right-hand-side of
(9). Therefore, in practice SRM is yet another way
of penalizing the empirical risk Remp.

With reference to our application, the problem
of predicting the rate of demographic increase
between year t and year t + 1 can be obtained
by setting







y = ln(
Nt+1

Nt

)

x = Nt

3. THE MODEL SELECTION
EXPERIMENTAL METHODOLOGY

To test the model selection criteria, we generate
artificial noisy time series, adopting a log-normal
noise:

Nt+1 = Nt exp(a + bNt + nZt) (10)

where n is a parameter defining the noise level and
Z a standard normal white noise (µ = 0, σ2 = 1).
Coefficient b is clearly set to 0 when the drift
model is simulated.

An ensemble of stochastic simulations is charac-
terized by the following set of parameters, which
constitute the simulation setting :

• the initial condition N0;
• the model coefficients (a, b);
• the noise level n;
• the simulation length q.

The simulation settings investigated for each
model have been designed consistently to (Dennis
and Taper, 1994), in order to allow for a coherent
comparison of the results of the various criteria
with PBLR. The experimental model selection
methodology, repeated 500 times for each simu-
lation setting, is as follows:

(1) stochastic simulation: perform a q-steps noisy
simulation by means of equation (10), using
the current simulation setting;

(2) identification: estimate the parameters of the
Ricker and the drift model by means of linear
least squares;

(3) acceptability check: as for the PBLR method-
ology, discard the Ricker model if the esti-
mate of b is positive, and in this case auto-
matically select the drift model for all the



criteria. In fact, b should be a negative pa-
rameter, since intraspecific competition neg-
atively affects the population growth rate;

(4) model selection: choose the best model ac-
cording to FPE, SIC and SRM.

4. DENSITY-INDEPENDENCE DETECTION

n FPE SIC SRM

0.05 88% 100% 98%
0.55 72% 99% 94%
1.1 66% 99% 92%
1.6 63% 99% 92%

a FPE SIC SRM

0.05 57% 98% 91%
0.55 70% 99% 94%
1.1 79% 99% 96%
1.6 83% 99% 96%

q FPE SIC SRM

10 71% 96% 90%
20 72% 100% 93%
40 73% 100% 97%
60 74% 100% 98%

average FPE SIC SRM

72% 99% 94%

Table 1. Percentages of correct detec-
tion of the drift demography for dif-
ferent levels of model parameters. Per-
centages are averaged over all the sim-
ulations that share the parameter value

shown in the first column.

Simulation settings adopted for the drift model
have been obtained by combining in all the possi-
ble ways the following values:

• a = [0.05; 0.55; 1.1; 1.6];
• n = [0.05; 0.55; 1.1; 1.6];
• q = [10; 20; 40; 60];
• N0 = [64].

We use therefore 64 different simulation settings,
for a total of 32000 simulations.

Within the PBLR hypothesis testing framework,
the drift and the Ricker model constitute respec-
tively the null and the alternative hypothesis.
The test size, i.e. the probability of rejecting the
drift model when it really underlies the data,
has been set to 5% by the authors (Dennis and
Taper, 1994). Their extensive simulation of the
drift model demonstrated that the effective size
of the PBLR test actually met its nominal size.

By contrast, Information Criteria and SRM do not
deal with test size, or similar concepts; simply, one
chooses the model with the lower estimated risk.

The outcomes of model detection for FPE, SIC,
SRM are given in Table 1. The correct recognition
percentages of SIC and SRM are close to 100%
and are in practice insensitive to any variation

in the simulation settings; SIC is slightly more
advantageous than SRM. Instead, FPE is sistem-
atically worse (20-30 percentage points lower on
average); its effectiveness suffers from high noise
levels or low values of a, while it is quite insensitive
to the dataset size.

Finally, we remark that about 30% of times the
Ricker model is discarded because of a positive
estimate of parameter b.

5. DENSITY-DEPENDENCE DETECTION

It is well known (Dennis and Taper, 1994) that
parameter b does not influence the probability
of recognizing density-dependence as long as it
is not zero; its numerical value is a scale factor,
which reflects the units in which the population
is measured. In fact, setting Pt = bNt in the
Ricker model equation, we obtain ln Pt+1

Pt
= a +

Pt. Therefore, we fixed b = −0.01 in all the
simulations.
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Fig. 1. Proportion of correct detection for the
Ricker density-dependent demography as a
function of the initial density N0 (case with
a = 0.3, N = 30).

The first issue investigated is the effect of the
initial population size N0 on the model recogni-
tion effectiveness. Coherently with (Dennis and
Taper, 1994), we adopted the following simulation
settings:

• a = [0.3; 1.2];
• b = [−0.01];
• n = [0.05];
• q = [10]
• N0 = [10; 20; 30; 30; 40; 100; 130; 150; 200; 250].

Figure 1 reports the results in the case a=0.3. All
the criteria show a similar behavior, from a quali-
tative point of view: in particular, the percentage
of correct detection is minimum when the starting
condition N0 is close to N = −a/b. In fact, for
both values of a, N is a stable equilibrium and the
density-dependent model moves toward the equi-
librium. Therefore, small deviations of the initial
population from the equilibrium do not allow the
exploration of the dynamical characteristics of the
model, thus making the recognition more difficult.
When we compare the effectiveness of the model
selection approaches, we see that FPE is best,



followed by SRM and then by SIC and PBLR.
Quite likely, FPE’s recognized tendency to over-
parameterize plays here in a favorable way. When
the initial condition is close to the equilibrium -
the most difficult situation- it has an advantage of
about 40 percentage points over SRM, which has
a further advantage of about 25 percentage points
over both SIC and PBLR.

On the other hand, correct detection is easier for
higher values of parameter a; for a = 1.2, for
instance, all the criteria behave satisfactorily and
also the minimum around N is much less appar-
ent. In fact, a = 1.2 corresponds to oscillations
around N .
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Fig. 2. Ricker model recognition as a function of
q and a.

In a further series of experiments, we investigate
the effect of the time series length q and the
drift parameter a (Figures 2a-b). The simulation
settings, coherent with (Dennis and Taper, 1994),
are as follows:

• a = [0.3; 1.2] ;
• b = [−0.01];
• n = [0.05];
• q = [8; 16; 32; 64];
• N0 = [−a/b].

All the simulations are initialized at the equilib-
rium, where model recognition is most difficult.
As expected, the proportion of correct recognition
increases with the time series length with the
exception of SIC for small a, whose performance
is sursprisingly worse for larger q. FPE performs
better than the other criteria specially for very
small time-series length. SIC is the worst perform-
ing method, while SRM consistently outperforms
PBLR, in particular for small q.

In the most critical case, i.e.low a and small
dataset, FPE has an advantage of about 40 points
over SRM, which additionally outperforms PBLR
of 10-20 points; SIC has a recognition percentage
close to 0.
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Fig. 3. Contour plots of Ricker model detection
proportion as a function of a and q.

In a third series of experiments, we investigate the
effect of environmental stochasticity as measured
by the noise level n. Such an issue is investigated
jointly with finer variations of the drift parameter
a. The simulation settings adopted in this case
are given by all the possible combinations of the
following values:

• a = [0.05; 0.25; 0.45; 0.8; 1.6];
• b = −0.01;
• n = [0.05; 0.25; 0.45; 0.8; 1.6];
• q = 10;
• N0 = −a/b.

The results are shown in Figure 3 as contour plots
of the detection proportion in the parameters
plane n− a. The most striking feature is that the
recognition proportion can increase with the noise
level n, with the exception of the FPE criterion.
This result may seem counterintuitive. However,
such an apparent contradiction can be explained
by considering that simulations are started at the
model equilibrium; stochastic fluctuations provide
deviations from the equilibrium and hence make
the correct model selection easier as already noted
by Dennis and Taper with reference to PBLR.
Why this is not true for FPE is not so easy to
explain: quite likely, the FPE tendency to overpa-
rameterization (while implying choosing density
dependence instead of independence) is somehow
hindered by high noise levels.

We can finally conclude that, as for density-
dependence recognition, all the criteria share some
common features, such as the minimum of power
for N0 = −a/b, and the increase of recognition
proportion with a and q. The results allow a
consistent (i.e., confirmed in all the investigations)
conclusion: FPE is in this case the most successful
approach, followed by SRM, PBLR, while SIC is
certainly worst.



Population PBLR FPE SIC SRM

G DI DI DI DI
E1 DD DD DI DD
E2 DD DD DD DD

Table 2. Density-detection case studies.

6. APPLICATION TO FIELD DATA

To compare the various approaches, we apply
them to datasets provided in the original paper
by (Dennis and Taper, 1994) on PBLR. We try
to detect density-dependence in 3 populations
of large mammals: the grizzly bear of the Yel-
lowstone region (population G, years 1973-1991),
the elk of the Yellowstone region (population E1,
years 1968-1979), and the elk of the Grand Teton
National Park (population E2, years 1963-1985).
First, we identify both the drift and the Ricker
model; then we choose one of the two accord-
ing to the different model selection criteria, and
then conclude whether the population is density-
dependent or not. The results of these analyses
are provided in Table 2. For these populations,
the detection of density-[in]dependence is almost
consistent among the different criteria, allowing us
to conclude that the grizzly population is density-
independent, while the two elk populations are
density-dependent. Only in the case of population
E2, SIC chooses the drift model while all the
remaining criteria suggest that the Ricker model is
a better choice; according to the results previously
presented, it is however reasonable to neglect the
SIC indication, which is likely to be too conserva-
tive.

The recognition of density-[in]dependence is al-
most coherent among the different criteria, al-
lowing to conclude that the grizzly population
is density-independent, while the two elk popu-
lations are density-dependent. Only in the case of
population E2, SIC chooses the drift model while
all the remaining criteria indicate the Ricker; ac-
cording to the results previously presented on
artificial data, it is however reasonable to neglect
such SIC indication, which is likely to be too
conservative.

7. CONCLUDING REMARKS

In this work, we address the density-dependence
detection problem by comparing the performances
provided by the traditional SIC and FPE model
selection criteria, the well-established PBLR hy-
pothesis test, and SRM, the model selection cri-
terion developed within the Statistical Learning
Theory framework. Although SRM was shown to
outperform many traditional model selection cri-
teria (Cherkassky et al., 1999), it has been rarely
used in time series analysis up to now.

In our case study, we simulate with noise the
simple drift (DI) and Ricker (DD) model under
a huge variety of different settings, and then
we perform model recognition experiments on
the noisy time series, in order to evaluate the
ability of the different model selection criteria in
distinguishing density-independence from density-
dependence.

Our experimental findings show that (i) SIC is
“conservatively biased”, i.e. it correctly detects
density-independence in all but few cases, but the
recognition of the more parameterized density-
dependent model can be very unsatisfactory. On
the other hand, (ii) FPE displays a somewhat
opposite characteristic; it is the best performing
criterion in recognizing density-dependence, but
is the worst in correctly detecting the less pa-
rameterized drift model. (iii) SRM and PBLR are
better balanced as they provide a very high prob-
ability of recognizing density-independence, and
at the same time behave satisfactorily also when
the Ricker model underlies the time series. How-
ever (iv) SRM consistently overperforms PBLR
in recognizing density dependence specially with
short time series and with simulations started at
the model equilibrium. Therefore, despite SRM
has been formalized under the assumption of in-
dependent identically distributed data, which is
not completely true for density and demographic
growth rates, we can conclude that it is a promis-
ing tool to recognize whether a time series under-
lies density-dependence or not.
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