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Abstract: A solution is presented to the problem of selecting sample points
in an optimal fashion. These points are used for interpolation and smoothing
procedures, and, in particular, we derive necessary optimality conditions for the
sample points. An example is presented concerning generalized smoothing splines
that illustrate the generality as well as the numerical feasibility of the proposed
approach.Copyright c©2005 IFAC.
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1. INTRODUCTION

In this paper, we consider the problem of selecting
the data points in an optimal fashion for inter-
polating or smoothing procedures. In particular,
we show how the solution to the interpolation
problem can be related to trajectories from gen-
erated switched, autonomous dynamical systems,
that explicitly depend on the sample times. Op-
timal timing control, based on classic variational
techniques, will then be employed in order to find
locally optimal sample times.

Note that the only available results for similar
problems are given by the Tschebyscheff poly-
nomials. Given a function h(t) ∈ CN−1(t0, tf ),
the unique polynomial PN−1 that interpolates the
data points h(t1), . . . , h(tN ) satisfies

|h(t)−PN−1(t)| ≤ max
t0≤ξ≤tf

|hN(ξ)| max
t0≤ξ≤tf

∏N
i=1|ξ − ti|

N !

, H(t1, . . . , tN )

as shown in (Davis, 1975). Moreover, the solution
to the problem mint1,...,tN

H(t1, . . . , tN ) is given
by the Tschebyscheff polynomials. However, this
result only holds for exact polynomial interpola-
tion. Since we are interested in solving a more gen-
eral problem, with general curve and cost types,
the Tschebyscheff polynomials will not provide
much assistance.

The outline of this paper is as follows: in Section
2, we discuss the connection between interpola-
tion (or smoothing) and optimal control. This is
followed by a derivation of necessary optimality
conditions on the sample times, together with the
presentation of a gradient-based numerical algo-
rithm, in Section 3. The paper concludes with an
example in Section 4, in which optimal sample
times are generated in the case of generalized
smoothing splines.



2. SAMPLING, INTERPOLATION, AND
SMOOTHING

The connection between data interpolation (and
smoothing) and optimal control is a well-studied
subject. For example, (Mangasarin et al., 1969;
Schumaker, 1981) showed how to relate a number
of polynomial interpolation procedures, including
the classic cubic splines, to certain optimal control
problems. This line of thought was continued
by (Wahba, 1990) in the field of statistical data
smoothing , showing how polynomial smoothing
splines resulted from the minimization of

min
∫ tf

t0

dkp(t)
dtk

dt +
N∑

i=1

(p(τi)− ξi)2ωi, (1)

given k ≥ 0, ωi > 0, i = 1, . . . , N . Here, the
resulting polynomial is given by p(t) ∈ <, and
it should be noted that if k = 2, the resulting
polynomial p(t) is a smoothing cubic spline, while
k = 3 gives a fourth order polynomial spline, and
so on. In the expression above, the data points
are given by (τ1, ξ1), . . . , (τN , ξN ), with t0 < τ1 <
· · · < τN < tf , where the measurements ξi ∈ <
are presumably obtained from ξi = h(τi) + εi,
given some underlying curve h(t), corrupted by
measurement noise εi, i = 1, . . . , N .

This view of curve fitting as an optimal control
problem was expanded in (Martin et al., 1997),
where generalized interpolating splines were con-
structed through optimal control. In particular,
the underlying dynamics was given by a control-
lable and observable, single-input single-output
linear control system

ẋ = Ax + Bu, x ∈ <n, u ∈ <
y = Cx, y ∈ <.

(2)

The resulting curve y(t) would constitute a
polynomial, trigonometric, exponential, or mixed
spline, depending on the spectrum of A. This
approach was moreover taken further in (Sun et
al., 2000), where generalized smoothing splines
were obtained from

min
u∈L2[t0,tf ]

∫ tf

t0

u2(t)dt +
N∑

i=1

ωi(y(τi)− ξi)2, (3)

given the underlying system in Equation 2.

This method of using smoothing generalized
splines has for instance been applied by (Kano
et al., 1993) to the production of calligraphic
Japanese characters . The idea is to let the data
points encode the position of the paint brush as
well as the thickness of the stroke at strategically
selected points, with quite remarkable results.
However, it is not, as of yet, clear how exactly
these points should be selected. In this paper

we address this problem of optimal sample point
selection through optimal timing control.

From a general point-of-view, we can assume
that the underlying system dynamics is given
by ẋ = F (x, u), where x ∈ <n, u ∈ <q, and
F is smooth. Independent of interpolating or
smoothing procedure, the resulting control law
will in general depend on time t as well as the
sample times τ = (τ1, . . . , τN )T ∈ <N . Moreover,
u will not be smooth (or even continuous) at
the sample times, while it will be smooth for all
other times. We can thus let the resulting optimal
control law be given by

u(t, τ) = Gi(t, τ), ∀t∈ [τi−1, τi),

where i = 1, . . . , N + 1, τ0 = t0 and τN+1 = tf .
In other words, the now autonomous yet switched
system is given by

ẋ = F (x,Gi(t, τ)) , fi(x, t, τ), ∀t ∈ [τi−1, τi).

Moreover, if we assume that the data points are
generated from an underlying curve h(t) ∈ <, and
if we let the output from the dynamical system be
y(t) = g(x(t)) ∈ <, we can define L(x(t), t) as

L(x(t), t) = (g(x(t))− h(t))2,

and try to minimize the following cost

min
τ

J(τ) = min
τ

∫ tf

t0

L(x(t), t)dt,

subject to

ẋ = fi(x, t, τ), t ∈ [τi−1, τi), i = 1, . . . , N + 1
x(t0) = x0.

This general, optimal timing control problem will
be addressed in the next section, followed by a
discussion about how the results should be used
when producing generalized, smoothing splines. It
should, however, be noted already at this point
that if the system dynamics fi(x, t, τ) did not
depend on the switching times τ explicitly, the
optimal timing control problem would be solved
(Egerstedt et al., 2003; Shaikh et al., 2002; Suss-
mann, 2000; Xu et al., 2002). In fact, in (Egerstedt
et al., 2003), it was found that the gradient of the
cost was given by

dJ

dτi
= λ(τi)(fi(x(τi))− fi+1(x(τi)),

given the costate equation

λ̇ = −∂L

∂x
− λ

∂fi

∂x
, t ∈ [τi−1, τi)

λ(tf ) = 0.

Hence, the task undertaken in this paper is to
extend this result to the case when fi does in fact
depend on τ .



3. OPTIMAL TIMING CONTROL

As before, consider the autonomous, switched
dynamical system

ẋ = fi(x, t, τ), t ∈ [τi−1, τi)
x(t0) = x0,

(4)

where {fi(x, t, τ)}N+1
i=1 is a given sequence of

smooth mappings from <n×<×<N to <n. More-
over, let L be a smooth function from <n×< → <,
and let as before the cost J be given by

J(τ) =
∫ tf

t0

L(x(t), t)dt.

Note that J may very well be non-convex which
means that only local optima can be expected
to be obtained from gradient-based algorithms,
which will be the case in this paper. The com-
putation of the gradient of J with respect to the
switching times is in fact the contribution in this
section, and it will be based on the classic varia-
tional approach where the dynamical constraints
are adjoined to the cost function via the costate
variable λ.

3.1 Gradient Computation

We have

J0 =
N+1∑

i=1

(∫ τi

τi−1

(L(x(t), t)+λ(fi(x(t), t, τ)−ẋ)) dt

)
.

Now, by i(t) we understand i(t) = j when t ∈
[τj−1, τj), and we consider the variation in J due
to a perturbation in τk only. Hence, we replace
fi(x, t, τ) with fi(x, t, τk) for the sake of notational
ease. The variation is obtained through the small
perturbation τk → τk + εθk, where ε ¿ 1, which
results in the state variation x → x+ εη. The cost
function for the perturbed system is

Jε=
∫ τk

t0

[
L(x+εη, t)+λ(fi(t)(x+εη, t, τk+εθk)−ẋ−εη̇)

]
dt

+
∫ τk+εθk

τk

[L(x+εη, t)+λ(fk(x+εη, t, τk+εθk)−ẋ−εη̇)]dt

+
∫ tf

τk+εθk

[
L(x+εη, t)+λ(fi(t)(x+εη, t, τk+εθk)−ẋ−εη̇)

]
dt

A first order approximation of the continuously
differentiable functions fi and L gives

Jε−J0 =
∫ tf

t0

(
∂L

∂x
εη+λ

(
∂fi(t)

∂x
εη+

∂fi(t)

∂τk
εθk−εη̇

))
dt

+
∫ τk+εθk

τk

λ(fk(x, t, τk)−fk+1(x, t, τk))dt.

By following the development in (Egerstedt et
al., 2003), we chose the continuous costate

λ̇ = −∂L

∂x
− λ

∂fi

∂x
, t ∈ [τi−1, τi)

λ(tf ) = 0,
(5)

which, through integration by parts, simplifies the
variation δJ = (Jε − J0)/ε to the following

δJ =
(∫ tf

t0

λ
∂fi(t)

∂τk
dt + λ(τk)(fk−fk+1)|t=τk

)
θk.

We thus have that the k:th component of the
gradient of J with respect to τ is given by

dJ

dτk
=

∫ tf

t0

λ
∂fi(t)

∂τk
dt+λ(τk)(fk − fk+1)|t=τk

(6)

which allows us to use gradient-based algorithms
for selecting locally optimal sample points in our
interpolation and smoothing problems, as we will
see in the next section. But, we start by a brief dis-
cussion of the numerical aspects of this approach.

3.2 Gradient Descent

The reason why the formula derived in the previ-
ous paragraphs is particularly easy to work with
is that it gives us access to a very straight-forward
numerical algorithm.

For each iteration k, let τ(k) be the set of switch-
ing times, and compute the following:

(1) Compute x(t) forward in time on [t0, tf ] by
integrating Equation 4 from x(t0) = x0.

(2) Compute λ(t) backward in time from tf to t0
by integrating Equation 5 from λ(tf ) = 0.

(3) Use Equation 6 to compute dJ/dτ(τ(k)).
(4) Update τ as

τ(k + 1) = τ(k)− l(k)
(

dJ

dτ
(τ(k))

)T

,

where l(k) is the stepsize, e.g. given by the
Armijo algorithm (Armijo, 1966).

(5) Repeat.

Note that this method will only converge to a local
minimum. But, as we will see, it can still give quite
significant reductions in cost.

3.3 Example - Linear Approximations

In this example, we try to approximate a continu-
ous function h : [t0, tf ] → R by a function x such
that for i = 1, ..., N + 1 and ∀t ∈ [τi−1, τi)

x(t) = h(τi−1) + (t− τi−1)
h(τi)− h(τi−1)

τi − τi−1
,

where τ0 = t0 and τN+1 = tf . This autonomous
switched system is simpler than the general case
considered previously since the derivative function



ẋ(t) = fi(x(t), τ) on [τi−1, τi) here only depends
on τi−1 and τi, i.e.

ẋ(t)=fi(τi−1, τi)=
h(τi)−h(τi−1)

τi−τi−1
on [τi−1, τi).

We now apply the developed algorithm to the
problem of determining τ1, ..., τN in order to min-
imize the cost function

J(τ)) =
∫ τN+1

τ0

(h(t)− x(t))2dt.

Figure 1 shows how the algorithm converges. The
following parameters were used:




h(t) = 5 sin(
2πt

300
) + 3 sin(

2πt

100
) +

t2

20000
− t

50

[t0, tf ] = [0, 200] , N = 4 and l = 1.
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Fig. 1. Optimal linear approximation

The lowest figure in Figure 1 shows how fast
the algorithm converges. The optimal solution is
reached after a very few iterations, in spite of a
”bad” initial guess and a constant step size l.

4. APPLICATION TO SMOOTHING SPLINES

As discussed previously, we can view the smooth-
ing problem as a problem of finding the opti-
mal control that drives the output of a given
linear control system close to given data points.
In particular, given the dynamics in Equation 2,
the (unique) optimal solution to the problem in
Equation 3 was in (Sun et al., 2000) found to be

u(t) = γ(t)T (I +WΓ)−1Wξ,

where

W=




ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωN


, ξ=




ξ1

ξ2

...
ξN


=




h(τ1)
h(τ2)

...
h(τN )


,

γ(t)=




γ1(t)
γ2(t)

...
γN (t)


, γi(t)=

{
CeA(τi−t)B if t ≤ τi

0 otherwise,

and where the Grammian Γ is given by

Γ =
∫ tf

t0

γ(s)γ(s)T ds ∈ <N×N .

Note that the definition of the basis functions γi(t)
imply that u may be discontinuous at τi. In fact,
we could define a new set of basis functions

ζi(t)=




0
...
0

CeA(τi−t)B

CeA(τi+1−t)B
...

CeA(τN−t)B




, t∈ [τi−1, τi), i=1, . . . , N,

with ζN+1 = 0. Hence we have the new system

ẋ = Ax + Bu

= Ax + BζT
i (t, τ)(I +WΓ(τ))−1Wξ(τ)

, fi(x, t, τ), t ∈ [τi−1, τi)

y = Cx , g(x),

that is on the prescribed form.

Now, in order to be able to apply the gradient-
based optimization methods, we need to obtain
expressions for ∂L/∂x, ∂fi/∂x, and ∂fi/∂τk. If
we, as before, let L be given by (y(t)− h(t))2, we
get for i = 1, . . . , N + 1

∂fi

∂x
= A

∂L

∂x
= 2C(Cx(t)− h(t))

∂fi

∂τk
= Bγ(t)T (I +WΓ)−1Wδξk

+ Bδγk(t)TW(I +WΓ)−1ξ

−Bγ(t)T (I +WΓ)−1W ∂Γ
∂τk

(I +WΓ)−1Wξ,

where



δξk ,




0
...
0

∂h

∂t
(τk)

0
...
0




← k:th position

δγk(t) ,




0
...
0

∂γk

∂τk
(t)

0
...
0




← k:th position

∂γk

∂τk
(t) =

{
CAeA(τk−t)B if t ≤ τk

0 otherwise

∂Γ
∂τk

=
∫ tf

t0

(
γ(s)δγk(s)T + δγk(s)γ(s)T

)
ds.

Note that for this system, (fk − fk+1)|t=τk
= 0,

which simplifies the derivative of the cost to

dJ

dτk
=

∫ tf

t0

λ
∂fi(t)

∂τk
dt.

4.1 Example

In this paragraph we apply this method to the
system

A =




0 1 0
0 0 1
0 0 0


 , B =




0
0
1


 , C = (1, 0, 0),

which gives the standard cubic smoothing spline.

Results from applying the gradient descent method
using the Armijo step-size over 40 iterations is
shown in Figures 2-4. In that example, the un-
derlying curve was given by h(t) = sin(5t), and
four sample times where selected with ωi = 1,
i = 1, . . . , 4.

5. CONCLUSIONS

In this paper we presented a method where vari-
ational techniques were employed in order to se-
lect optimal sample points for interpolation and
smoothing applications. This method moreover re-
sulted in a numerically straightforward algorithm
that was put to use within the context of gen-
eralized smoothing splines. As such” it produced
results that go well beyond the previously known
results on Tschebyscheff polynomials.
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Fig. 2. The movements of the sample times is
illustrated when creating smoothing splines
for the underlying curve h(t) = sin(5t).
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