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Abstract: In particle navigation problem strategy development is crucial. The 
difficulties encountered by the particles during their navigation tasks require 
different approaches in problem solving. One way to overcome the difficulties is to 
divide the problem into simple modules and develop solutions for these modules 
separately. Basically, two different modules are sufficient in addition to the main 
body to develop a successful solver. The first module (conflict module), which is 
developed by genetic programming, is used when the particles are in conflict. The 
second module (memory module) helps the particles to escape from local regions. 
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1. INTRODUCTION 
 
There are lots of problems where a strategy has to be 
developed in order to produce a feasible solution. 
Strategy generation by computer is a difficult task 
where a lot of effort should be spent. Genetic 
programming (GP) by its probabilistic nature is 
among the techniques (Angelina and Kinnear, 1996; 
Koza, 1992) that one can create satisfactory solutions 
for problems involving strategical decision-making. 
GP depends on nature’s dynamics. The rule is 
simple; the entity that adapts itself to its environment 
better has more chance to continue living in the 
future (Koza, 1992). GP is applicable to almost any 
problem (Gary, et al., 1996; Gray et al., 1998; 
Tackett, 1993), if it is possible to define the problem 
in terms of its determinants (actions, variables, 
constants, operators, processes) and relations 
between these determinants. Multi-agent structures 
can be used to accomplish a group of tasks (Fogarty, 
et al., 1995). Sometimes cooperation and 
communication have to be provided between agents 

to obtain successful solutions (Brazier, et al., 2001; 
Van Eijk, et al., 2000; Baeg, et al., 1995). Agents can 
act simultaneously or in a special order to resolve the 
problems they encounter. Strategy generation for 
particle navigation necessitates dealing with many 
different tasks simultaneously. GP is a suitable 
environment to generate these agents (Werner and 
Dyer, 1992; Luke and Spector, 1996; Iba, 1998; 
Beldek, et al., 2001). Iba (1998) used some 
mathematical relations to obtain agent structures. 
Depending on the breeding technique an agent 
(strategy) is capable of navigating one particle 
(heterogeneous breeding) or whole particles 
(homogeneous breeding). For the same problem the 
agents are created from if-then statements and action 
types by Beldek, et al., (2001). Both of the studies 
(Iba, 1998; Beldek, et al., 2001) weren’t totally 
effective in dealing with all the scenarios. Finding a 
compact strategy is very hard or sometimes 
impossible since long time duration will be needed to 
train agents on many scenarios.  Another bad aspect 
is the robustness of the final strategy. That is, the best 
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strategy may be inadequate in some of the situations. 
An idea that comes to mind is not to try to develop a 
compact strategy but to divide the tasks into sub-
tasks, find procedures to overcome these sub-tasks 
and then combine the results to obtain a suitable 
solution (Benaroch, 2001). What Beldek, et al., 
(2002) has done is exactly based on this idea. The 
conflicts between particles are solved in a separate 
module. The resultant agent was successful in 
solving the conflicts but the particles were still 
unable to overcome the tasks completely because 
wall structures may deter the particles while they are 
trying to reach their destinations. So a new module 
will be designed for a particle to be able to escape 
from a local region during its voyage towards its 
destination. This module is supposed to make the 
particle remember its previous actions and move 
accordingly. The uses of the conflict module, 
standard navigation module and this memory module 
will be examined in different scenarios. 
 
 

2. PARTICLE NAVIGATION PROBLEM 
 
The robot (particle) navigation problem is supposed 
to take place in a 10x10 grid area. Figure 1 shows a 
typical scenario. All the cells in the grid area can take 
one object. Either the cell is occupied by a particle or 
there could be an obstacle inside the cell. The 
particles are labeled as 1, 2, 3 and 4 whereas the 
obstacles are designated as darker regions in the grid 
area. The particles are able to move up, down, left 
and right as long as the obstacles and the boundaries 
of the scenario allow. It is aimed to move the 
particles to some pre-defined locations in the 
scenarios. Some conflicting situations are 
encountered especially when two particles try to pass 
in opposite directions in very narrow regions.  
 
 

3. GENETIC PROGRAMMING 
 
 
3.1. Terminals and Operations 
 
Some terminals and operations are designed in order 
to construct the chromosomes (individuals) to be 
used in GP. The terminals are chosen from 
movement types and the operations are chosen from 
‘if-then’ statements. The individuals are constructed 
by combining operations with the terminals 
meaningfully creating a hierarchical tree-like 
structure. These are the strategies that orient the 
particles. The strategies are capable of moving the 
particles depending on the destination and the local 
environment information. In this study, the symbols 
for the terminals and operations and their meaning 
are as follows: 
 
Terminals: 

• a: go one step in the direction of your 
orientation and keep your orientation the 
same. 

• b: go one step backward but don’t change 
your orientation.  

• c: turn 90 degrees clockwise and go one 
step 

• d: turn 90 degrees counter-clockwise and go 
one step. 

• e: do not move and do not change your 
orientation. 

• f: make a random movement and change 
your orientation in the movement direction. 

• g: move in the direction of your destination. 
 
Operations: 

• + (Takes two arguments): it returns the first 
argument if there is an obstacle in front of 
the particle being controlled; otherwise it 
returns the second argument. 

• A (Takes two arguments): It returns the first 
argument if there is another moving particle 
in front of the particle being controlled; 
otherwise it returns the second argument. 

• B (Takes two arguments): It returns the first 
argument if the controlled particle is in a 
region where two opposite sides of the 
particle is occupied by obstacles and other 
two opposite sides are free cells; otherwise 
it returns its second argument. 

• F (Takes two arguments): It returns its first 
argument if the controlled particle and the 
destination of the same particle are lying in 
same perpendicular or horizontal alignment; 
otherwise it returns its second argument. 

• R (Takes two arguments): It returns its first 
argument if the cell in front of the controlled 
particle is obstacle-free; otherwise it returns 
its second argument. 

 
The terminals symbolized by ‘g’ moves a particle in 
the direction of its destination, so they enable the 
particle to go in diagonal directions, if possible (if the 
obstacles allow them to move). The trees 
(individuals) are rule-based strategies. In Figure 2, a 
typical tree structure is shown. 
 
The movement of a particle controlled by the tree 
structure in Figure 2 can be described as follows: 
First of all, it is checked if there is another particle in 
front of the controlled particle. If this is true then the 
controller checks if the particle and its destination lay 
in the same horizontal or vertical alignment. If the 
second statement is true the particle moves in 
backwards but still facing the original direction. If 
the statement is false the particle moves in forward 
direction. In case the first statement is false, the 
controller checks if the particle is in a place where 
there are obstacles at two opposite sides and the other 
two opposite sides are free cells. If this statement is 
true, the particle makes a movement in the direction 
of its destination. If the statement is false, it turns in 
clockwise direction and goes one step.  
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If there is more than one scenario, an average fitness 
must be assigned for an individual. So fitness values 
of independent scenarios are added and the sum is 
divided to number of scenarios in order to obtain an 
average fitness value for an individual  
 
 
3.3. Homogeneous and Heterogeneous Breeding 
 
One can use two different control approaches to 
orient the particles in a maze (Iba, 1998). First way is 
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tree structure is represented as a string in 
LAB. The chain of command in the tree is from 
 bottom and from left to right similar to LISP 

amming. E.g., the tree structure in Figure 2 can 
presented as the string ‘AFbaBgc’ in our 
ations.  

P Application 

over, reproduction and regeneration are the 
ic operations used in order to obtain a new 
ation. The population size is taken as 100 in our 
ations. 80% of the new individuals in the next 
ation are produced by the crossover operation, 
are reproduced and 10% are regenerated. The 
 method is also used in reproduction. In a 
ver operation the probability of the crossover 
being a terminal is adjusted to be between 15% 
5%.  

 different criteria are considered in order to 
 a fitness for an individual. A large fitness 

 must be assigned to the individual that brings 
 particles to their goals. Also a reward must be 

 according to the duration in which an 
dual completes all its tasks. Secondly, a   
ctable fitness value must be assigned to the 
dual that brings some of the particles to their 
ations. Naturally this new fitness value must be 
er than that of an individual that brings all the 
les to their destinations. Thirdly, an individual 
ng a particle close to its destination must also 
igned a sufficient fitness value, but this fitness 
be smaller than previously described fitness 

s. This fitness assignment has the same logic as 
tness assignment procedure used by Beldek, et 
001). 

to use different strategies to control different 
particles. A GP chromosome with this strategy has 
distinct parts associated with each particle. This 
approach is called heterogeneous breeding. In the 
second approach all the particles are controlled by 
the same strategy (homogenous breeding).  
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4.1. Modular Approach 
 
One way to overcome the difficulties in particle 
navigation problem is to use a modular approach. 
Dealing with the challenging parts in different 
modules, resolving these parts and combining the 
solutions obtained in these parts will be beneficial in 
solving the whole problem. Each module will consist 
of a single agent. Each agent will be effective on one 
type of challenging situation and particles will be 
controlled and moved by these agents when 
necessary. So strategies will depend on situations of 
particles, not on particles themselves. This task 
decomposition is supposed to provide efficiency and 
robustness to particle navigation. 
 
Based on the information given by Beldek, et al. 
(2001) and Beldek, et al. (2002), modular approach 
has been applied for two different difficulties. The 
first difficulty arises when two particles try to pass in 
opposite directions in a narrow region where only 
one particle can pass at a time. This situation is called 
as the conflict. The simulation results for this type of 
difficulty are given in the study (Beldek, et al., 
2002), where some scenarios involving two particles 
in conflict are produced. A homogeneous agent, 
which is effective in eliminating the conflicts, is 
developed by using GP search. The tree structure of 
this conflict agent is shown in Figure 3. Secondly this 
conflict agent is used to develop a new agent, which 
is supposed to control the particles in standard 
situations. In order to develop this new agent (named 
as the standard navigation agent from now on), a 
number of scenarios involving four particles, are 
constructed, as well. These scenarios are such that 
the particles may encounter conflicts while they are 
moving to their destinations. The pre-developed 
conflict agent was used for controlling the 
movements of the particles when they are in conflict 
in the new scenarios. The GP search produced the 
standard navigation agent, which controls the 
particles when the particles are not in conflict. The 



standard navigation agent developed is shown in 
Figure 4. Simulation results of the study (Beldek, et 
al., 2002) show that all the conflicts are removed, but 
not all the navigation tasks are accomplished. 
Cooperation of two agents is not sufficient to 
complete all the navigation tasks. It is observed that 
the main problem was the blockage of the particles 
by the thick wall structures formed from 
uninterrupted placement of obstacles. Standard 
navigation agent sometimes becomes unsuccessful 
and the particles are blocked by wall structures 
through their way to destinations. As a result, they 
may be imprisoned in local areas. Constructing a new 
module to remove this blockage problem is the scope 
of our study. 
  
The operations (if-then statements) are able to gather 
and process information from neighboring cells 
around the particles (operations ‘+’, ‘A’, ‘B’, ‘R’) 
and from alignment of current position and 
destination of the particles (operation ‘F’). So data 
about the cells, which are far away from the particles, 
is nearly impossible to be processed by the 
operations defined earlier. This is the main reason 
why the standard navigation agent is sometimes 
ineffective. It is not possible for the particles to 
escape from local regions in most of the cases. In 
order to overcome this difficulty, complicated 
operations might be proposed and another standard 
navigation agent could have been developed by GP. 
But we have preferred to utilize GP to construct 
strategies from simple operations. A simple idea is to 
process information from previous actions of 
particles. This necessitates a memory module. So a 
memory module is proposed in order to solve 
blockage problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Tree structure of conflict solving agent. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Tree structure of standard navigation agent 

4.2. Memory Module 
 
Memory module is supposed to be used if a particle 
is not able to leave some region of the maze for a 
long time. Its control strategy depends on continuous 
application of intelligent movements depending on 
past observations and experiences of particle in order 
to rescue the particle from local regions. This is done 
as follows. For each particle, coordinates of previous 
(10) positions are kept in a vector. The average of 
these positions are compared with the current 
position of the particle. If the Euclidean distance 
between the current position and the average is 
smaller than a threshold (it is taken as 3), the particle 
is assumed trapped in a local region. Then the 
memory module takes control. Module provides a 
sequence of actions to enable the particle to escape 
the local region. A ε-neighborhood of the particle 
(designated as two square units towards each 
direction from the particle) is declared as a forbidden 
zone for the particle. The closest empty maze 
location out of this forbidden zone is established as a 
new temporary destination for the particle. The 
particle is supposed to move to this new destination 
until it escapes the forbidden zone. Whenever the 
particle arrives the temporary destination, standard 
navigation agent takes the control of the particle 
back. Standard navigation agent is not allowed to 
carry a particle to its forbidden zone again. But, if 
two particles are in conflict, then the conflict agent 
takes precedence and the particles are allowed to 
enter their forbidden zones if necessary. When the 
conflict is resolved, if one of the particles is in its 
forbidden zone, memory module takes the duty of 
moving the particle out of the forbidden zone. 
Otherwise, the standard navigation agent starts 
control ling the particle.  

R  
 
4.3. Memory Module Simulation Results 
 
Two different simulations have been carried out in 
order to observe the effect of memory module on the 
overall performance. In the first simulation the 
scenarios are the same as the ones used to develop 
the standard navigation agent in the study (Beldek, et 
al., 2002) (8 scenarios, each involving four particles). 
It is aimed to move the particles to their destinations 
by using standard navigation agent, conflict module 
and memory module, whenever they are necessary. 
Since memory module requires a long time to 
produce a decision, the number of time steps in the 
simulation is chosen as 100.  It is allowed to use 
memory module after the first 20 steps in order to 
allow the agents to reach a solution without using the 
memory module. The forbidden zone for a particle is 
declared as permanent; so the particle is prohibited to 
enter the forbidden zones except during conflict 
module utilization. In Figure 5, first scenario is 
shown. In this scenario, it is aimed to interchange 
places of particles 1 with 2 and 3 with 4. These tasks 
are accomplished in 55 steps completely. Similar 
results are obtained in the other scenarios. All of the 
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particles have reached their destinations in all the 
eight scenarios.  
 
In the second simulation, six different scenarios 
(each having two particles) are constructed. The 
scenarios contain trap regions to confuse the particles 
through their voyages to their destinations. It is vital 
for the particles to get out of these regions. The 
forbidden region of a particle is designated as a 
temporary forbidden zone. These zones are opened to 
the access of the associated particles in 40 steps after 
they are announced as forbidden zones. Entry of a 
particle in a trap region may cause a particle to assign 
all the free cells inside and outside of the trap region 
as belonging to the forbidden zone, which may result 
in closing the passages to destinations and 
imprisonment of a particle in that local area. Figures 
6 and 7 show the first two scenarios. For the scenario 
in Figure 6 it is aimed to bring the particle ‘A’ to the 
initial position of the particle ‘B’ and the particle ‘B’ 
is supposed to go to cell ‘H’. It is observed that both 
of the particles reach their destinations but the 
particle ‘A’ first enters the trap area and then escapes 
out of the region. For scenario shown in Figure 7, it 
is aimed to move the particle ‘B’ to the initial 
location of the particle ‘A’ and the particle ‘A’ is 
supposed to go to cell ‘H’. Both of the tasks are 
accomplished at the end of the simulation. 
Additionally, in remaining four scenarios all the 
navigation tasks are also accomplished. 
 
 

5. CONCLUSION AND FUTURE STUDIES 
 
In this work, particle navigation problem is studied. 
It was previously observed that controlling every 
particle by a different strategy is insufficient for 
some complex situations (Beldek, et al., 2001). A 
new approach for removing the difficulties is 
proposed by Beldek, et al., (2002). There, two 
modules were developed for two different classes of 
difficulties (conflict agent and standard navigation 
agent). In this study, in addition, a memory module is 
proposed and utilization of three modules 
simultaneously in some scenarios is examined. It is 
observed that using these three modules whenever 
necessary helps removing difficulties and better 
results are obtained when compared to previous study 
(Beldek, et al., 2001.) 
 
It should be remarked that the memory module is 
simply an application of a set of intelligent actions in 
order to rescue the particle from local regions. This is 
nothing to do with GP. On the other hand, standard 
navigation agent and conflict agent are developed by 
GP. 
 
Switching of the control between modules is done 
automatically according to the difficulties 
encountered in the scenarios. This switching 
procedure may be developed as an agent by a GP 
search. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. First scenario in the first simulation. 
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