

STRATEGY CREATION, DECOMPOSITION AND
DISTRIBUTION IN PARTICLE NAVIGATION: MEMORY MODULE

Ulaş Beldek1,3, Kemal Leblebicioğlu2,3

1 Department of Electronic and Communications Engineering,
Çankaya University, Ankara, Turkey

2 Electrical and Electronic Engineering Department, METU, Ankara, Turkey
3 Computer Vision and Intelligent Systems Research Lab, METU, Ankara, Turkey

beldek@metu.edu.tr, kleb@metu.edu.tr

Abstract: In particle navigation problem strategy development is crucial. The
difficulties encountered by the particles during their navigation tasks require
different approaches in problem solving. One way to overcome the difficulties is to
divide the problem into simple modules and develop solutions for these modules
separately. Basically, two different modules are sufficient in addition to the main
body to develop a successful solver. The first module (conflict module), which is
developed by genetic programming, is used when the particles are in conflict. The
second module (memory module) helps the particles to escape from local regions.
Copyright © 2005 IFAC

Keywords: Genetic Algorithms, Agents, Optimization, Path Planning, Robot
Navigation, Rule-Based Systems.

1. INTRODUCTION

There are lots of problems where a strategy has to be
developed in order to produce a feasible solution.
Strategy generation by computer is a difficult task
where a lot of effort should be spent. Genetic
programming (GP) by its probabilistic nature is
among the techniques (Angelina and Kinnear, 1996;
Koza, 1992) that one can create satisfactory solutions
for problems involving strategical decision-making.
GP depends on nature’s dynamics. The rule is
simple; the entity that adapts itself to its environment
better has more chance to continue living in the
future (Koza, 1992). GP is applicable to almost any
problem (Gary, et al., 1996; Gray et al., 1998;
Tackett, 1993), if it is possible to define the problem
in terms of its determinants (actions, variables,
constants, operators, processes) and relations
between these determinants. Multi-agent structures
can be used to accomplish a group of tasks (Fogarty,
et al., 1995). Sometimes cooperation and
communication have to be provided between agents

to obtain successful solutions (Brazier, et al., 2001;
Van Eijk, et al., 2000; Baeg, et al., 1995). Agents can
act simultaneously or in a special order to resolve the
problems they encounter. Strategy generation for
particle navigation necessitates dealing with many
different tasks simultaneously. GP is a suitable
environment to generate these agents (Werner and
Dyer, 1992; Luke and Spector, 1996; Iba, 1998;
Beldek, et al., 2001). Iba (1998) used some
mathematical relations to obtain agent structures.
Depending on the breeding technique an agent
(strategy) is capable of navigating one particle
(heterogeneous breeding) or whole particles
(homogeneous breeding). For the same problem the
agents are created from if-then statements and action
types by Beldek, et al., (2001). Both of the studies
(Iba, 1998; Beldek, et al., 2001) weren’t totally
effective in dealing with all the scenarios. Finding a
compact strategy is very hard or sometimes
impossible since long time duration will be needed to
train agents on many scenarios. Another bad aspect
is the robustness of the final strategy. That is, the best

mailto:beldek@metu.edu.tr
mailto:kleb@metu.edu.tr

strategy may be inadequate in some of the situations.
An idea that comes to mind is not to try to develop a
compact strategy but to divide the tasks into sub-
tasks, find procedures to overcome these sub-tasks
and then combine the results to obtain a suitable
solution (Benaroch, 2001). What Beldek, et al.,
(2002) has done is exactly based on this idea. The
conflicts between particles are solved in a separate
module. The resultant agent was successful in
solving the conflicts but the particles were still
unable to overcome the tasks completely because
wall structures may deter the particles while they are
trying to reach their destinations. So a new module
will be designed for a particle to be able to escape
from a local region during its voyage towards its
destination. This module is supposed to make the
particle remember its previous actions and move
accordingly. The uses of the conflict module,
standard navigation module and this memory module
will be examined in different scenarios.

2. PARTICLE NAVIGATION PROBLEM

The robot (particle) navigation problem is supposed
to take place in a 10x10 grid area. Figure 1 shows a
typical scenario. All the cells in the grid area can take
one object. Either the cell is occupied by a particle or
there could be an obstacle inside the cell. The
particles are labeled as 1, 2, 3 and 4 whereas the
obstacles are designated as darker regions in the grid
area. The particles are able to move up, down, left
and right as long as the obstacles and the boundaries
of the scenario allow. It is aimed to move the
particles to some pre-defined locations in the
scenarios. Some conflicting situations are
encountered especially when two particles try to pass
in opposite directions in very narrow regions.

3. GENETIC PROGRAMMING

3.1. Terminals and Operations

Some terminals and operations are designed in order
to construct the chromosomes (individuals) to be
used in GP. The terminals are chosen from
movement types and the operations are chosen from
‘if-then’ statements. The individuals are constructed
by combining operations with the terminals
meaningfully creating a hierarchical tree-like
structure. These are the strategies that orient the
particles. The strategies are capable of moving the
particles depending on the destination and the local
environment information. In this study, the symbols
for the terminals and operations and their meaning
are as follows:

Terminals:

• a: go one step in the direction of your
orientation and keep your orientation the
same.

• b: go one step backward but don’t change
your orientation.

• c: turn 90 degrees clockwise and go one
step

• d: turn 90 degrees counter-clockwise and go
one step.

• e: do not move and do not change your
orientation.

• f: make a random movement and change
your orientation in the movement direction.

• g: move in the direction of your destination.

Operations:

• + (Takes two arguments): it returns the first
argument if there is an obstacle in front of
the particle being controlled; otherwise it
returns the second argument.

• A (Takes two arguments): It returns the first
argument if there is another moving particle
in front of the particle being controlled;
otherwise it returns the second argument.

• B (Takes two arguments): It returns the first
argument if the controlled particle is in a
region where two opposite sides of the
particle is occupied by obstacles and other
two opposite sides are free cells; otherwise
it returns its second argument.

• F (Takes two arguments): It returns its first
argument if the controlled particle and the
destination of the same particle are lying in
same perpendicular or horizontal alignment;
otherwise it returns its second argument.

• R (Takes two arguments): It returns its first
argument if the cell in front of the controlled
particle is obstacle-free; otherwise it returns
its second argument.

The terminals symbolized by ‘g’ moves a particle in
the direction of its destination, so they enable the
particle to go in diagonal directions, if possible (if the
obstacles allow them to move). The trees
(individuals) are rule-based strategies. In Figure 2, a
typical tree structure is shown.

The movement of a particle controlled by the tree
structure in Figure 2 can be described as follows:
First of all, it is checked if there is another particle in
front of the controlled particle. If this is true then the
controller checks if the particle and its destination lay
in the same horizontal or vertical alignment. If the
second statement is true the particle moves in
backwards but still facing the original direction. If
the statement is false the particle moves in forward
direction. In case the first statement is false, the
controller checks if the particle is in a place where
there are obstacles at two opposite sides and the other
two opposite sides are free cells. If this statement is
true, the particle makes a movement in the direction
of its destination. If the statement is false, it turns in
clockwise direction and goes one step.

Fig. 1

Fig. 2

This
MAT
top to
progr
be re
simul

3.2 G

Cross
genet
gener
simul
gener
10%
elitist
crosso
point
and 2

Three
assign
value
all the
given
indivi
respe
indivi
destin
small
partic
carryi
be ass
must
value
the fi
al. (2

If there is more than one scenario, an average fitness
must be assigned for an individual. So fitness values
of independent scenarios are added and the sum is
divided to number of scenarios in order to obtain an
average fitness value for an individual

3.3. Homogeneous and Heterogeneous Breeding

One can use two different control approaches to
orient the particles in a maze (Iba, 1998). First way is
1 2

4 3
. A scenario example.

. A tree structure example.

tree structure is represented as a string in
LAB. The chain of command in the tree is from
 bottom and from left to right similar to LISP

amming. E.g., the tree structure in Figure 2 can
presented as the string ‘AFbaBgc’ in our
ations.

P Application

over, reproduction and regeneration are the
ic operations used in order to obtain a new
ation. The population size is taken as 100 in our
ations. 80% of the new individuals in the next
ation are produced by the crossover operation,
are reproduced and 10% are regenerated. The
 method is also used in reproduction. In a
ver operation the probability of the crossover
being a terminal is adjusted to be between 15%
5%.

 different criteria are considered in order to
 a fitness for an individual. A large fitness

 must be assigned to the individual that brings
 particles to their goals. Also a reward must be

 according to the duration in which an
dual completes all its tasks. Secondly, a
ctable fitness value must be assigned to the
dual that brings some of the particles to their
ations. Naturally this new fitness value must be
er than that of an individual that brings all the
les to their destinations. Thirdly, an individual
ng a particle close to its destination must also
igned a sufficient fitness value, but this fitness
be smaller than previously described fitness

s. This fitness assignment has the same logic as
tness assignment procedure used by Beldek, et
001).

to use different strategies to control different
particles. A GP chromosome with this strategy has
distinct parts associated with each particle. This
approach is called heterogeneous breeding. In the
second approach all the particles are controlled by
the same strategy (homogenous breeding).

A

 F B
4. SIMULATION STUDIES

b a g c

4.1. Modular Approach

One way to overcome the difficulties in particle
navigation problem is to use a modular approach.
Dealing with the challenging parts in different
modules, resolving these parts and combining the
solutions obtained in these parts will be beneficial in
solving the whole problem. Each module will consist
of a single agent. Each agent will be effective on one
type of challenging situation and particles will be
controlled and moved by these agents when
necessary. So strategies will depend on situations of
particles, not on particles themselves. This task
decomposition is supposed to provide efficiency and
robustness to particle navigation.

Based on the information given by Beldek, et al.
(2001) and Beldek, et al. (2002), modular approach
has been applied for two different difficulties. The
first difficulty arises when two particles try to pass in
opposite directions in a narrow region where only
one particle can pass at a time. This situation is called
as the conflict. The simulation results for this type of
difficulty are given in the study (Beldek, et al.,
2002), where some scenarios involving two particles
in conflict are produced. A homogeneous agent,
which is effective in eliminating the conflicts, is
developed by using GP search. The tree structure of
this conflict agent is shown in Figure 3. Secondly this
conflict agent is used to develop a new agent, which
is supposed to control the particles in standard
situations. In order to develop this new agent (named
as the standard navigation agent from now on), a
number of scenarios involving four particles, are
constructed, as well. These scenarios are such that
the particles may encounter conflicts while they are
moving to their destinations. The pre-developed
conflict agent was used for controlling the
movements of the particles when they are in conflict
in the new scenarios. The GP search produced the
standard navigation agent, which controls the
particles when the particles are not in conflict. The

standard navigation agent developed is shown in
Figure 4. Simulation results of the study (Beldek, et
al., 2002) show that all the conflicts are removed, but
not all the navigation tasks are accomplished.
Cooperation of two agents is not sufficient to
complete all the navigation tasks. It is observed that
the main problem was the blockage of the particles
by the thick wall structures formed from
uninterrupted placement of obstacles. Standard
navigation agent sometimes becomes unsuccessful
and the particles are blocked by wall structures
through their way to destinations. As a result, they
may be imprisoned in local areas. Constructing a new
module to remove this blockage problem is the scope
of our study.

The operations (if-then statements) are able to gather
and process information from neighboring cells
around the particles (operations ‘+’, ‘A’, ‘B’, ‘R’)
and from alignment of current position and
destination of the particles (operation ‘F’). So data
about the cells, which are far away from the particles,
is nearly impossible to be processed by the
operations defined earlier. This is the main reason
why the standard navigation agent is sometimes
ineffective. It is not possible for the particles to
escape from local regions in most of the cases. In
order to overcome this difficulty, complicated
operations might be proposed and another standard
navigation agent could have been developed by GP.
But we have preferred to utilize GP to construct
strategies from simple operations. A simple idea is to
process information from previous actions of
particles. This necessitates a memory module. So a
memory module is proposed in order to solve
blockage problem.

Fig. 3. Tree structure of conflict solving agent.

Fig. 4. Tree structure of standard navigation agent

4.2. Memory Module

Memory module is supposed to be used if a particle
is not able to leave some region of the maze for a
long time. Its control strategy depends on continuous
application of intelligent movements depending on
past observations and experiences of particle in order
to rescue the particle from local regions. This is done
as follows. For each particle, coordinates of previous
(10) positions are kept in a vector. The average of
these positions are compared with the current
position of the particle. If the Euclidean distance
between the current position and the average is
smaller than a threshold (it is taken as 3), the particle
is assumed trapped in a local region. Then the
memory module takes control. Module provides a
sequence of actions to enable the particle to escape
the local region. A ε-neighborhood of the particle
(designated as two square units towards each
direction from the particle) is declared as a forbidden
zone for the particle. The closest empty maze
location out of this forbidden zone is established as a
new temporary destination for the particle. The
particle is supposed to move to this new destination
until it escapes the forbidden zone. Whenever the
particle arrives the temporary destination, standard
navigation agent takes the control of the particle
back. Standard navigation agent is not allowed to
carry a particle to its forbidden zone again. But, if
two particles are in conflict, then the conflict agent
takes precedence and the particles are allowed to
enter their forbidden zones if necessary. When the
conflict is resolved, if one of the particles is in its
forbidden zone, memory module takes the duty of
moving the particle out of the forbidden zone.
Otherwise, the standard navigation agent starts
control ling the particle.

R

4.3. Memory Module Simulation Results

Two different simulations have been carried out in
order to observe the effect of memory module on the
overall performance. In the first simulation the
scenarios are the same as the ones used to develop
the standard navigation agent in the study (Beldek, et
al., 2002) (8 scenarios, each involving four particles).
It is aimed to move the particles to their destinations
by using standard navigation agent, conflict module
and memory module, whenever they are necessary.
Since memory module requires a long time to
produce a decision, the number of time steps in the
simulation is chosen as 100. It is allowed to use
memory module after the first 20 steps in order to
allow the agents to reach a solution without using the
memory module. The forbidden zone for a particle is
declared as permanent; so the particle is prohibited to
enter the forbidden zones except during conflict
module utilization. In Figure 5, first scenario is
shown. In this scenario, it is aimed to interchange
places of particles 1 with 2 and 3 with 4. These tasks
are accomplished in 55 steps completely. Similar
results are obtained in the other scenarios. All of the

g B

A

A
F

b g

b

b

c

B

+

R F d

g c f a

g

R

particles have reached their destinations in all the
eight scenarios.

In the second simulation, six different scenarios
(each having two particles) are constructed. The
scenarios contain trap regions to confuse the particles
through their voyages to their destinations. It is vital
for the particles to get out of these regions. The
forbidden region of a particle is designated as a
temporary forbidden zone. These zones are opened to
the access of the associated particles in 40 steps after
they are announced as forbidden zones. Entry of a
particle in a trap region may cause a particle to assign
all the free cells inside and outside of the trap region
as belonging to the forbidden zone, which may result
in closing the passages to destinations and
imprisonment of a particle in that local area. Figures
6 and 7 show the first two scenarios. For the scenario
in Figure 6 it is aimed to bring the particle ‘A’ to the
initial position of the particle ‘B’ and the particle ‘B’
is supposed to go to cell ‘H’. It is observed that both
of the particles reach their destinations but the
particle ‘A’ first enters the trap area and then escapes
out of the region. For scenario shown in Figure 7, it
is aimed to move the particle ‘B’ to the initial
location of the particle ‘A’ and the particle ‘A’ is
supposed to go to cell ‘H’. Both of the tasks are
accomplished at the end of the simulation.
Additionally, in remaining four scenarios all the
navigation tasks are also accomplished.

5. CONCLUSION AND FUTURE STUDIES

In this work, particle navigation problem is studied.
It was previously observed that controlling every
particle by a different strategy is insufficient for
some complex situations (Beldek, et al., 2001). A
new approach for removing the difficulties is
proposed by Beldek, et al., (2002). There, two
modules were developed for two different classes of
difficulties (conflict agent and standard navigation
agent). In this study, in addition, a memory module is
proposed and utilization of three modules
simultaneously in some scenarios is examined. It is
observed that using these three modules whenever
necessary helps removing difficulties and better
results are obtained when compared to previous study
(Beldek, et al., 2001.)

It should be remarked that the memory module is
simply an application of a set of intelligent actions in
order to rescue the particle from local regions. This is
nothing to do with GP. On the other hand, standard
navigation agent and conflict agent are developed by
GP.

Switching of the control between modules is done
automatically according to the difficulties
encountered in the scenarios. This switching
procedure may be developed as an agent by a GP
search.

Fig. 5. First scenario in the first simulation.

Fig. 6. F

Fig. 7. S

In the fu
by GP,
(normal
module,

Angelin

Gene
MA.

Baeg, S
Lim
In: I
'95),

Beldek,
Gene
Yön
Matl
Topl
G.
Otom

Beldek,
Robo
A B
 H

1 2

4 3
irst scenario in the second simulation.

e

t
w

a

.C
(
n

l
a
a

A
 H

B
cond scenario in the second simulation.

ure, it is planned to develop a compact agent
hich will include all the necessary modules
navigation agent, conflict agent, memory
switching between the modules).

REFERENCES

, P.J. and K.E. Kinnear (1996). Advances in
tic Programming II, MIT Press, Cambridge

., S.K. Park, J.M. Choi, M.W Jang and Y.H
1995). Cooperation in Multi-agent Systems,
telligent Computer Communications (ICC

pp 1-12.
U., K. Leblebicioğlu, U. Halıcı (2001).
tic Programlama Yöntemiyle Robot
endirme Probleminin Çözümlenmesi ve
b Uygulaması. In: Otomatik Kontrol Ulusal
ntısı, TOK 2001 (İ. Yüksel, M. Şengirgin,
Şevkat, Ed)., pp 91-98, Endüstri ve
asyon-Eksen Yayıncılık, Bursa.
U., K. Leblebicioğlu, U. Halıcı (2002).
t Yönlendirme Probleminin Genetik

Programlama ile Çözümünde Yeni Yaklaşımlar.
In: 10. Sinyal İşleme ve İletisim Uygulamaları
Kurultayı, SİU 2002 (E. Panayırcı, Ed). Vol 1, pp
278-285, Ayna Reklam Tanıtım, İstanbul.

Benaroch, M. (2001) Declarative representation of
strategic control knowledge. International
Journal of Human-Computer Studies, 55 (6), 881-
917.

Brazier F.M.T., C.M. Jonker, J. Treur, N. J.E.
Wijngaards (2001). Deliberative Evolution in
Multi-Agent Systems, International Journal of
Software Engineering and Knowledge
Engineering, 11 (5), 559-581.

Fogarty, T.C., L. Bull and B. Carse (1995). Evolving
Multi Agent Systems. In: Genetic Algorithms in
Engineering and Computer Science (G. Winter, J.
Periaux, M. Galan, P. Cuesta, Ed.)., pp. 3-22.
John Wiley and Sons, Chichester.

Gray, G.J., D.J.M. Smith, Y. Li, K.C. Sharman and
T. Weinbrenner (1998). Non-linear Model
Structure Identification Using Genetic
Programming, Control Engineering Practice, 6,
1341-1352.

Gray, G.J., D.J.M. Smith, Y. Li and K.C. Sherman
(1996). Structural System Identification Using
Genetic Programming and Block Diagram
Oriented Simulation Tool, Electronic Letters, 32
(15), 1422-1424.

Iba, H. (1998) Evolutionary Learning of
Communicating Agents, Journal of Information
Sciences, 108, 181-205.

Koza, J. (1992). Genetic Programming, On the
Programming of Computers by means of Natural
Selection, MIT Press, Cambridge MA.

Luke, S. and L. Spector (1996). Evolving Teamwork
and Coordination with Genetic Programming, In:
Proceedings of the First Annual Conference on
Genetic Programming (GP-96) (J. Koza, Ed)., pp
150-156, MIT Press, Cambridge MA.

Tackett, W.A. (1993). Genetic Programming for
Feature Discovery and Image Discrimination. In:
Proceedings of 5th International Conference on
Genetic Algorithms ICGA-93 (S Forrest, Ed.).,
pp. 303-319. Morgan Kaufmann, San Francisco
CA.

Van Eijk, R.M., F.S. De Boer, W. Van Der Hoek J.J.
Ch. Meyer (2000). Open Multi-Agent Systems:
Agent Communication and Integration. In:
Intelligent Agents VI, Proceedings of 6th
International Workshop on Agent Theories,
Architectures, and Languages (ATAL'99) (N.R.
Jennings, Y. Lesperance, Ed.)., pp. 218-232,
Springer-Verlag, Heilderberg.

Werner, G.M. and M.G. Dyer (1992). Evolution of
communication in artificial organisms. In:
Artificial Life (C.G. Langton, C. Taylor, J.D.
Farmer, S. Rasmussen, Ed.). Vol 2, pp. 659-687,
Addison-Wesley, New York.

	STRATEGY CREATION, DECOMPOSITION AND

