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Abstract: The tuning of PID controllers can essentially be posed as the problem
of selecting open-loop zeros such as to obtain a desired system response. In this
paper, the general case wherein stable open-loop system zeros can be cancelled is
considered, allowing more freedom in placing open-loop zeros, as opposed to just
two zeros in the case of a PID controller. Subsequently, optimal open-loop zeros
are computed such as to minimize the deviation from a desired reference impulse
response, while maintaining the relative degree and the type of the reference
system, thus giving the controlled system desired input tracking and disturbance
rejection properties. Copyright © 2005 IFAC
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1. INTRODUCTION

Transfer function responses are of considerable
interest in the area of control systems and in fil-
ter design. Closed—form continuous—time transfer
function responses are derived in (Hauksdottir,
1996) and extended to the case of repeated
eigenvalues in (Hauksdottir and Hjaltadottir,
2003), (Herjolfsson, 2004), (Evarsson, 2005) and
(Hauksdottir et al., 2005). Naturally, the closed
form lends itself well to analysis and opens up
many new interesting applications, e.g., solving
for optimal zero locations by minimizing tran-
sient responses (Hauksdottir, 1996); tracking a
given reference step response in (Hauksdottir,
2002, 2004b), (Herjolfsson, 2004), (Herjolfsson et
al., 2005), (KEvarsson, 2005); and solving the
model reduction problem in (Hauksdottir, 2000),
(Evarsson, 2005), (AEvarsson et al., 2005). The
closed—form expressions are further used in the
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direct computation of coefficients for PID con-
trollers in (Herjolfsson, 2004) and (Herjolfsson and
Hauksdottir, 2003).

Continuous—time transfer function responses are
strongly affected, not only by the eigenvalues or
poles, but the numerator coefficients, or equiv-
alently, the system’s zeros, as well. Controllers
that affect open—loop zeros can be designed, one
example of such a controller is the well known PID
controller. The direct computation of coefficients
for PID controllers in (Herjolfsson, 2004) and
(Herjolfsson and Hauksdéttir, 2003), essentially
involves computation of optimal open-loop zeros
tracking a desired reference impulse response. In
(Hauksdottir, 2004 a), the approach is extended to
a more general case wherein stable open-loop zeros
are cancelled, allowing more freedom in placing
open-loop zeros, as opposed to just two zeros in
the case of a PID controller.

In this paper, the work in (Hauksdéttir, 2004 a) is
reformulated and extended to include the case of
repeated eigenvalues. The problem is formulated
in Section 2, including input tracking and distur-
bance rejection properties as well as specification



of the reference system. Linear continuous—time
system responses are summarized in Section 3
(Evarsson, 2005), (Hauksdottir et al., 2005). The
optimal open-loop zeros are computed in Section
4 (Evarsson, 2005), by minimizing the impulse
response deviation between the reference and the
actual system, including an example. Conclusions
and future work are discussed in Section 5.

2. PROBLEM FORMULATION

Consider the closed-loop control system setup
shown in Fig. 1. The plant zeros are given by

Fig. 1. Closed-loop control system setup.
Bp = prBpm (1)

where B, is type zero and the Laplace variable s
has been dropped to simplify notation. The term
SLP belongs to the post-disturbance part of the
plant and includes all open-loop pure integrators
between the disturbance D and the output Y. All
B polynomials are of the generic form

B=bys™ +bis™ 1+ ...+ by, (2)

The plant poles are assumed stable® and are given
by

Ap = ApbApa- (3)

A, is also type zero, i.e., the term % grouped by
the controller includes all open—loop pure integra-
tors from the input R to the disturbance D. All
A polynomials are of the generic form

A=s"+a1s" ' +... +a,
=(s+A)T (s +A)B (s H A (4)

The plant is affected by the disturbance input
D and its output is Y. The closed-loop control
system is driven by the input R and the controller,
driven by the error E, is of the form

B,
sN By

(5)

The controller cancels the stable plant zeros B,

by inverse compensation, the term SLN includes all

3 For the case of unstable plant poles, an inner-loop state—
feedback type controller can be designed, stabilizing the
plant.

controller and pre-disturbance plant integrators.
The controller zeros B. will be selected such as
to optimally track a reference impulse response,
maintaining the relative degree and the type of
the reference system.

2.1 Input Tracking

The input tracking for a setup such as in Fig.
1 is easily obtained in a standard manner. The
transfer function from the input R to the error E
is given by

E 1 B 1
R I+ SNBéps szp 1+ sgiip;;p
B SN+PAp (6)
- sNtPA, + B.Bp,

where By, are the unstable plant zeros. For a unit
step input R when N + P > 1, the steady state
error is given by

sNtP A, 1

Css = lIE%SSNwLPA,, ¥ B.Bpus 0.

Similarly, the steady state error for a unit ramp
input R when N + P > 2 is given by

sNJrPAp 1
ss — li )
s = N0 TSNP A, + BBy 52
N+P71A
= lim —— L 0. (8

s—0 SN+PAP + Bchu N

2.2 Disturbance Rejection

Likewise, the disturbance rejection for the closed
loop is easily obtained in a standard manner. The
transfer function from the disturbance input D to
the error F is given by

By By
E o sPApq o sPApq
D - B, Bp BcBpu
1+SNBPS sPA, 1+3N+PAP
N
—S BpaApb

= ) (9)
sN+P A, + B.Bpy

Then, the steady state error for a unit step dis-
turbance input D when N > 1 is given by
—SNBpaApb 1

L=l S0 1
Cos = I SNTPA, + BB,y s 0. (10)

The steady state error for a unit ramp disturbance
input D when N > 2 is given by

N
€ss = lim s =" Bpadp i
88 s—0 SN+PAP —+ Bchu 52

—sN-1p A b
=i PazPe  — . 11
o0 sSNYP A + BBy (1)




2.8 Reference System Specification
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Fig. 2. Closed-loop reference system.

The design criteria is specified as a desired refer-
ence closed-loop transfer function and the refer-
ence open-loop transfer function is subsequently
solved for, see Fig. 2. The transfer function from
the input R, to Y, is given by

B,
SNTP A BT

LB = (12)
1+ swBer

R, Ad

sN+PA + B,’

where B, and A, are type zero. Solving for B,
and A, gives

B, = B¢ (13)

and

A, = s~ WP (gl _ Behy, (14)

In order to ensure that A, is a regular polynomial
in s and that we have an N + P type system with
the inner—loop relative degree of «,

Bt = bips T BN T by (19)
and
Ail = @2WN+P)ta=1 4 ;cl 2(N+P)+a—2

rl
+"'+a7c~l(N+P+a—1)sN+P+B$l' (16)

3. LINEAR CONTINUOUS-TIME SYSTEM
RESPONSES

Consider the standard transfer function given by

bgs™ +bys™ L 4 - by
s" +aps"Tl - Fay

B bos™ + bys™ L+ 4+ b, (17)

(s 4+ A)D(s4+ Ag)2 - (s + A)d
It is assumed that the system’s eigenvalues —\q,
—MXa2, ..., —A, are distinct and repeated dy, ds,
..., d, times, respectively, and furthermore it is
assumed that the system is causal, i.e., m < n.

Y
U

The impulse responses are of the generic form
(Evarsson, 2005), (Hauksdottir et al., 2005)

yr(t) = BHE(t), t>0 (18)

where

B = [by b1 - bo (19)

contains the numerator coefficients and

hot hoz --- hov
hi1 hia -+ hiy
H= } ] ] (20)

hml hm? hmv

is an (m + 1) x n matrix. The first line in (20) is
given by

Ho = [hor hoz -+ hov |, (21)
where each
hoi = [ kil Kiz -+ Kid, | (22)

contains the partial fraction coefficients of a unity
numerator Laplace transform given by

1

s"+apsm 4+ +ay,
1

T AT (s + A

5/;):

“ooE

The unity numerator partial fraction coefficients
are easily computed by

v

R =[] (“hi+Ag) % (24)

q=1,97%

and for j =1,2,3,...,d; — 1

v

di—j
1 d
= Y R (CTY e (25)
Tdi— ; e (=i 4+ Ap)1

p=1,p#i

Then,

hki = h(kfl)iWi, k = 13 2) sy M, (26)

where
TN, 0 or e 0 7
1 -\
Wi=| o0 1 —x° (27)
S
| 0 0 1 —X\i|

is a d; x d; matrix.

Finally, all time dependent factors - effectively lin-
early independent basis functions, are contained
in the n x 1 vector,

E(t) = ) (28)

where
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It should be emphasized that (18) is a gen-
eral closed—form solution for linear continuous—
time system responses corresponding to a general
transfer function of the form (17). There are no
restrictions, the eigenvalues can be real and/or
complex, repeated and/or not and stable and/or
unstable.

It should also be noted that

p=[par o pdy o o pwd, | = BH (30)
is a new easily computable recursive form of par-
tial fraction expansion coefficients for the general
transfer function of the form (17), given by the

well known expression

1 ddi

Y
- - = Ndi —
Hid = ;= j)l dsti— {(”Az) U]

. (31)
s=—X;

4. OPTIMAL IMPULSE RESPONSE
TRACKING

We now wish to match the open-loop impulse
responses of the controlled system, see Fig. 3
for a simplified block diagram, and the reference
system, see Fig. 2, as closely as possible. Note
that we are nonrestrictively assuming that N 4+ P
is selected the same in both cases and therefore
we consider the open—loop impulse response of
the controlled system characterized by the causal
transfer function B.Bp,/Ap, which has the im-
R ~ E BCBle Y
_ SN+PAp

Fig. 3. A simplified block diagram of the con-
trolled system.

pulse response

y]cp(t) = BchquEp (t) (32)

Here By, is an (m. + 1) x (me + mpy + 1)
convolution matrix given by (Herjolfsson, 2004),
(Herjolfsson and Hauksdottir, 2003)

bf#pu bg“ 0O ---0
pu L ppu .l
Bpu=| O P o . (33)
Lo -
0 v 0 bEE bRt

Further,

ho1 e hov
hit - hiy
H, = . . (34)
h(mc+WPU)1 T h(mc+mpu)V

is an (mc + mpy, + 1) X n matrix.

The open—loop impulse response characterized
by the causal transfer function B,/A,, has the
impulse response

yrr-(t) = By HyE.(t). (35)

We then define a cost function measuring the
controlled impulse response deviation from the
reference impulse response as

(yrr(t) — yr1ep(t))? dt

k
0\8

(36)

Differentiating the cost function with respect to
B, and setting the result equal to zero gives

o) [ 0 >
- / o (BrHE,(1) = BBy Hy£(1)) di
— _9B,H, /5 (t)"dt (BpuHp)"
HB%ﬂ/ E,(0)"dt (B H,)"
:—2D+QBCA =0 (37)

where we have defined

D= BH/S

and

A= B, H, /

The fact that the matrix A is invertible, is easily
seen as the matrix B, as in (33) has the same
rank as the number of rows in B,,; the matrix
H, as in (34) has the same rank as the number of
columns in H,; and the matrix [° &,(t)&,(t)Tdt
has the same rank as the number of elements in
Ep(t) (see (28) and (29)), since all the element
functions of &,(t) are linearly independent on
[0, 00).

)T dt (BpuHy)"  (38)

)T dt (BpuH,)" . (39)



This gives us the simple closed-form solution

B.=DA™. (40)

Ep(t) and &,(t) can be written in a similar

manner as given in (28) and (29). Calculat-
ing the (p,o)—th element of the (k,j)—th sub-

block of [%&,(t)Ep(t)Tdt, ie., of the matrix
J5~ Epk(t)Ep; (1) dt s given by

o p+o—2
T ( p-1 )
/gpk(t)gpj(t) dt RS W= (41)

0 P

Similarly, the (p,o)-th element of the (k,j)-th
subblock of [ &-(t)&,(t)dt, i.e., of the matrix
fooo Enk(t)Epj(t)Tdt is given by

. p+o—2
()
/grk(t)gpj(t)Tdt = Oon F Ar)ro 1 (42)

0 P

In general, the relative degree of the inner loop
of the controlled system should preferably be
selected the same as the relative degree of the
inner loop of the reference system, to ease the
matching of the two systems.

Example: For demonstration purposes, consider
a fictitious twelfth—order type one plant with
an input disturbance, where the plant transfer
function before the disturbance is given by

By _ ! (43)
App 83+ 1152 4+ 40s + 50
1
= . (44
(s+3+i)(s+3—1)(s+5) (44)

The plant transfer function after the disturbance
has two zeros, an integrator and an eightfold pole
in —2, i.e., it is given by

Bpa 2 +4s+5  (s+24i)(s+2—1)

sApa - s(s+2)8 s(s+2)8 -(45)

It is desired to track a well behaved type-two
closed-loop transfer function given by

Y. 6s+9 s+ 1.5

- = 46
R, s2+4+6s+9 (s +3)2’ (46)
thus having the inner loop
B, 6s+9
s(N¥P) A -T2 (47)

where N + P = 2. Then, computing the optimal
B, based on (40) maintaining the same relative
degree as the reference system’s inner loop, results

b() b2 b3 b4 b5
1.2 33.6 433.9 3370.2 17524.2
be br bs bg bio
64330.0 170917.1 331536.7 | 465643.1 | 462490.1
b11 b12 b13
307972.9 123680.9 22615.1

Table 1. Optimal controller coefficients, Be.

B.
sBps
is given in Table 1 and B, is given by

where coefficients in the B,

in the controller

Bps = s> + 45+ 5. (48)

The zero-pole locations of the open—loop origi-
nal plant, the compensated inner loop ﬁ;; and

the open—loop reference transfer function % are

shown in Fig. 4.
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Fig. 4. Open-loop pole/zero locations.
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Fig. 5. Closed-loop step responses with the onset
of a unit step at time = 1 and an onset of a
disturbance of 50 at time = 10.

Subjecting the closed-loop as in Fig. 1, to a step
input at time = 1 and to a disturbance of 50 at
time = 10, results in the response shown in Fig.
5. As may be noted, the controlled system follows
the reference system very closely during the step
input and the disturbance rejection is excellent.



5. CONCLUSIONS AND FUTURE WORK

The tuning of PID controllers can essentially be
posed as the problem of selecting open-loop zeros
such as to obtain a desired system response. In
this paper, the idealogy behind the PID controller
was extended to the general case wherein stable
open-loop system zeros can be cancelled, thus
allowing more freedom in placing open-loop zeros,
as opposed to just two zeros in the case of a PID
controller. Subsequently, optimal open-loop zeros
were computed such as to minimize the deviation
from a desired reference impulse response, while
maintaining the relative degree and the type of
the reference system, thus giving the controlled
system desired input tracking and disturbance
rejection properties. Due to the inverse compensa-
tion of the plant zeros, the controller is in general
causal when the relative degree of the plant and
the reference system are similar. In cases when
the controller is noncausal, which happens if the
plant has a high relative degree and the reference
system has a low relative degree, the controller can
be realized using poles to limit the high frequency
response, as is frequently done in a practical setup
of a PID controller.

Excellent results were obtained, wherein a twelfth—
order system tracked a well behaved reference sys-
tem response. The controlled system was shown
to have excellent input tracking and disturbance
rejection properties.

It is of interest to show that the minimal deviation
between the reference and the controlled system
does occur when the relative degrees of the two
systems are the same. It is further of interest
to explore the stability properties of the closed—
loop controlled system, in particular to obtain
an estimate of the maximum possible deviation
between the controlled system and a well-behaved
and stable reference closed—loop system, such that
stability of the controlled system is guaranteed.
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