
ZERO OPTIMIZING CONTINUOUS�TIMETRACKING AND DISTURBANCE REJECTINGCONTROLLERSAnna So�ía Hauksdóttir 1, Gísli Herjólfsson 1,Bergþór Ævarsson 1, Sven Þ. Sigurðsson 2Abstrat: The tuning of PID ontrollers an essentially be posed as the problemof seleting open-loop zeros suh as to obtain a desired system response. In thispaper, the general ase wherein stable open-loop system zeros an be anelled isonsidered, allowing more freedom in plaing open-loop zeros, as opposed to justtwo zeros in the ase of a PID ontroller. Subsequently, optimal open-loop zerosare omputed suh as to minimize the deviation from a desired referene impulseresponse, while maintaining the relative degree and the type of the referenesystem, thus giving the ontrolled system desired input traking and disturbanerejetion properties. Copyright ©2005 IFACKeywords: Linear Continuous�Time Systems, Zero Optimizing Controllers,Traking, Disturbane Rejetion
1. INTRODUCTIONTransfer funtion responses are of onsiderableinterest in the area of ontrol systems and in �l-ter design. Closed�form ontinuous�time transferfuntion responses are derived in (Hauksdóttir,1996) and extended to the ase of repeatedeigenvalues in (Hauksdóttir and Hjaltadóttir,2003), (Herjólfsson, 2004), (Ævarsson, 2005) and(Hauksdóttir et al., 2005). Naturally, the losedform lends itself well to analysis and opens upmany new interesting appliations, e.g., solvingfor optimal zero loations by minimizing tran-sient responses (Hauksdóttir, 1996); traking agiven referene step response in (Hauksdóttir,2002, 2004b), (Herjólfsson, 2004), (Herjólfsson etal., 2005), (Ævarsson, 2005); and solving themodel redution problem in (Hauksdóttir, 2000),(Ævarsson, 2005), (Ævarsson et al., 2005). Thelosed�form expressions are further used in the
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diret omputation of oe�ients for PID on-trollers in (Herjólfsson, 2004) and (Herjólfsson andHauksdóttir, 2003).Continuous�time transfer funtion responses arestrongly a�eted, not only by the eigenvalues orpoles, but the numerator oe�ients, or equiv-alently, the system's zeros, as well. Controllersthat a�et open�loop zeros an be designed, oneexample of suh a ontroller is the well known PIDontroller. The diret omputation of oe�ientsfor PID ontrollers in (Herjólfsson, 2004) and(Herjólfsson and Hauksdóttir, 2003), essentiallyinvolves omputation of optimal open-loop zerostraking a desired referene impulse response. In(Hauksdóttir, 2004a), the approah is extended toa more general ase wherein stable open-loop zerosare anelled, allowing more freedom in plaingopen-loop zeros, as opposed to just two zeros inthe ase of a PID ontroller.In this paper, the work in (Hauksdóttir, 2004a) isreformulated and extended to inlude the ase ofrepeated eigenvalues. The problem is formulatedin Setion 2, inluding input traking and distur-bane rejetion properties as well as spei�ation



of the referene system. Linear ontinuous�timesystem responses are summarized in Setion 3(Ævarsson, 2005), (Hauksdóttir et al., 2005). Theoptimal open-loop zeros are omputed in Setion4 (Ævarsson, 2005), by minimizing the impulseresponse deviation between the referene and theatual system, inluding an example. Conlusionsand future work are disussed in Setion 5.2. PROBLEM FORMULATIONConsider the losed-loop ontrol system setupshown in Fig. 1. The plant zeros are given by
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Fig. 1. Closed-loop ontrol system setup.
Bp = BpbBpa, (1)where Bp is type zero and the Laplae variable shas been dropped to simplify notation. The term

1
sP belongs to the post-disturbane part of theplant and inludes all open-loop pure integratorsbetween the disturbane D and the output Y . All
B polynomials are of the generi form

B = b0s
m + b1s

m−1 + ... + bm. (2)The plant poles are assumed stable 3 and are givenby
Ap = ApbApa. (3)

Ap is also type zero, i.e., the term 1
sN grouped bythe ontroller inludes all open�loop pure integra-tors from the input R to the disturbane D. All

A polynomials are of the generi form
A = sn + a1s

n−1 + ... + an

= (s + λ1)
d1(s + λ2)

d2 · · · (s + λν)dν (4)The plant is a�eted by the disturbane input
D and its output is Y . The losed-loop ontrolsystem is driven by the input R and the ontroller,driven by the error E, is of the form

Bc

sNBps

(5)The ontroller anels the stable plant zeros Bpsby inverse ompensation, the term 1
sN inludes all

3 For the ase of unstable plant poles, an inner�loop state�feedbak type ontroller an be designed, stabilizing theplant.

ontroller and pre-disturbane plant integrators.The ontroller zeros Bc will be seleted suh asto optimally trak a referene impulse response,maintaining the relative degree and the type ofthe referene system.2.1 Input TrakingThe input traking for a setup suh as in Fig.1 is easily obtained in a standard manner. Thetransfer funtion from the input R to the error Eis given by
E

R
=

1

1 + Bc

sN Bps

Bp

sP Ap

=
1

1 +
BcBpu

sN+P Ap

=
sN+P Ap

sN+P Ap + BcBpu

(6)where Bpu are the unstable plant zeros. For a unitstep input R when N + P ≥ 1, the steady stateerror is given by
ess = lim

s→0
s

sN+P Ap

sN+P Ap + BcBpu

1

s
= 0. (7)Similarly, the steady state error for a unit rampinput R when N + P ≥ 2 is given by

ess = lim
s→0

s
sN+P Ap

sN+P Ap + BcBpu

1

s2

= lim
s→0

sN+P−1Ap

sN+P Ap + BcBpu

= 0. (8)2.2 Disturbane RejetionLikewise, the disturbane rejetion for the losedloop is easily obtained in a standard manner. Thetransfer funtion from the disturbane input D tothe error E is given by
E
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−sNBpaApb
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. (9)Then, the steady state error for a unit step dis-turbane input D when N ≥ 1 is given by
ess = lim

s→0
s

−sNBpaApb

sN+P Ap + BcBpu

1

s
= 0. (10)The steady state error for a unit ramp disturbaneinput D when N ≥ 2 is given by

ess = lim
s→0
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−sNBpaApb

sN+P Ap + BcBpu

1

s2
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−sN−1BpaApb

sN+P Ap + BcBpu

= 0. (11)



2.3 Referene System Spei�ation
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Fig. 2. Closed-loop referene system.The design riteria is spei�ed as a desired refer-ene losed-loop transfer funtion and the refer-ene open-loop transfer funtion is subsequentlysolved for, see Fig. 2. The transfer funtion fromthe input Rr to Yr is given by
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sN+P Ar

=
Br

sN+P Ar + Br

, (12)where Br and Ar are type zero. Solving for Brand Ar gives
Br = Bcl

r (13)and
Ar = s−(N+P )(Acl

r − Bcl
r ). (14)In order to ensure that Ar is a regular polynomialin s and that we have an N +P type system withthe inner�loop relative degree of α,

Bcl
r = bcl

r0sN+P−1 + bcl
r1sN+P−2 + · · · + bcl

r(N+P−1) (15)and
Acl

r = s2(N+P )+α−1 + acl
r1s

2(N+P )+α−2

+ · · · + acl
r(N+P+α−1)s

N+P + Bcl
r . (16)3. LINEAR CONTINUOUS�TIME SYSTEMRESPONSESConsider the standard transfer funtion given by

Y

U
=

b0s
m + b1s

m−1 + · · · + bm

sn + a1sn−1 + · · · + an

=
b0s

m + b1s
m−1 + · · · + bm

(s + λ1)d1(s + λ2)d2 · · · (s + λν)dν
. (17)It is assumed that the system's eigenvalues −λ1,

−λ2, . . ., −λν are distint and repeated d1, d2,
. . ., dν times, respetively, and furthermore it isassumed that the system is ausal, i.e., m < n.The impulse responses are of the generi form(Ævarsson, 2005), (Hauksdóttir et al., 2005)

yI(t) = BHE(t), t > 0 (18)where
B =

[

bm bm−1 · · · b0

] (19)

ontains the numerator oe�ients and
H =











h01 h02 · · · h0ν

h11 h12 · · · h1ν... ... ...
hm1 hm2 · · · hmν











(20)is an (m + 1) × n matrix. The �rst line in (20) isgiven by
H0 =

[

h01 h02 · · · h0ν

]

, (21)where eah
h0i =

[

κi1 κi2 · · · κidi

] (22)ontains the partial fration oe�ients of a unitynumerator Laplae transform given by
Yb =

1

sn + a1sn−1 + · · · + an

=
1

(s + λ1)d1(s + λ2)d2 · · · (s + λν)dν
. (23)The unity numerator partial fration oe�ientsare easily omputed by

κidi
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ν
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−dq (24)and for j = 1, 2, 3, . . . , di − 1
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,(25)Then,

hki = h(k−1)iWi, k = 1, 2, . . . , m, (26)where
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(27)is a di × di matrix.Finally, all time dependent fators - e�etively lin-early independent basis funtions, are ontainedin the n × 1 vetor,
E(t) =
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Eν(t)











(28)where



Ei(t) =
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te−λit...
t(di−1)

(di − 1)!
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. (29)It should be emphasized that (18) is a gen-eral losed�form solution for linear ontinuous�time system responses orresponding to a generaltransfer funtion of the form (17). There are norestritions, the eigenvalues an be real and/oromplex, repeated and/or not and stable and/orunstable.It should also be noted that
µ =

[

µ11 · · · µ1d1
· · · µν1 · · · µνdν

]

= BH (30)is a new easily omputable reursive form of par-tial fration expansion oe�ients for the generaltransfer funtion of the form (17), given by thewell known expression
µij =
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(di − j)!
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. (31)4. OPTIMAL IMPULSE RESPONSETRACKINGWe now wish to math the open-loop impulseresponses of the ontrolled system, see Fig. 3for a simpli�ed blok diagram, and the referenesystem, see Fig. 2, as losely as possible. Notethat we are nonrestritively assuming that N + Pis seleted the same in both ases and thereforewe onsider the open�loop impulse response ofthe ontrolled system haraterized by the ausaltransfer funtion BcBpu/Ap, whih has the im-
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Fig. 3. A simpli�ed blok diagram of the on-trolled system.pulse response
yIcp(t) = BcBpuHpEp(t). (32)Here Bpu is an (mc + 1) × (mc + mpu + 1)onvolution matrix given by (Herjólfsson, 2004),(Herjólfsson and Hauksdóttir, 2003)
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Further,
Hp =











h01 · · · h0ν

h11 · · · h1ν... ...
h(mc+mpu)1 · · · h(mc+mpu)ν











(34)is an (mc + mpu + 1) × n matrix.The open�loop impulse response haraterizedby the ausal transfer funtion Br/Ar, has theimpulse response
yIr(t) = BrHrEr(t). (35)We then de�ne a ost funtion measuring theontrolled impulse response deviation from thereferene impulse response as

J =

∞
∫

0

(yIr(t) − yIcp(t))
2
dt (36)Di�erentiating the ost funtion with respet to

Bc and setting the result equal to zero gives
∂J

∂Bc

=

∞
∫
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∂

∂Bc

(BrHrEr(t) − BcBpuHpEp(t))
2
dt

=−2BrHr

∞
∫
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T dt (BpuHp)

T

+2BcBpuHp

∞
∫
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T dt (BpuHp)

T

=−2D + 2BcA = 0 (37)where we have de�ned
D = BrHr

∞
∫

0

Er(t)Ep(t)
T dt (BpuHp)

T (38)and
A = BpuHp

∞
∫

0

Ep(t)Ep(t)
T dt (BpuHp)

T
. (39)The fat that the matrix A is invertible, is easilyseen as the matrix Bpu as in (33) has the samerank as the number of rows in Bpu; the matrix

Hp as in (34) has the same rank as the number ofolumns in Hp; and the matrix ∫ ∞

0 Ep(t)Ep(t)
T dthas the same rank as the number of elements in

Ep(t) (see (28) and (29)), sine all the elementfuntions of Ep(t) are linearly independent on
[0,∞).



This gives us the simple losed-form solution
Bc = DA−1. (40)

Ep(t) and Er(t) an be written in a similarmanner as given in (28) and (29). Calulat-ing the (ρ, σ)�th element of the (k, j)�th sub-blok of ∫ ∞

0
Ep(t)Ep(t)

T dt, i.e., of the matrix
∫ ∞

0
Epk(t)Epj(t)

T dt is given by




∞
∫
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=
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)
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. (41)Similarly, the (ρ, σ)�th element of the (k, j)�thsubblok of ∫ ∞
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T dt, i.e., of the matrix
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ρ,σ

=

(

ρ + σ − 2
ρ − 1

)

(λrk + λrj)ρ+σ−1
. (42)In general, the relative degree of the inner loopof the ontrolled system should preferably beseleted the same as the relative degree of theinner loop of the referene system, to ease themathing of the two systems.Example: For demonstration purposes, onsidera �titious twelfth�order type one plant withan input disturbane, where the plant transferfuntion before the disturbane is given by

Bpb

Apb

=
1

s3 + 11s2 + 40s + 50
(43)

=
1

(s + 3 + i)(s + 3 − i)(s + 5)
. (44)The plant transfer funtion after the disturbanehas two zeros, an integrator and an eightfold polein −2, i.e., it is given by

Bpa

sApa

=
s2 + 4s + 5

s(s + 2)8
=

(s + 2 + i)(s + 2 − i)

s(s + 2)8
.(45)It is desired to trak a well behaved type-twolosed-loop transfer funtion given by

Yr

Rr

=
6s + 9

s2 + 6s + 9
= 6

s + 1.5

(s + 3)2
, (46)thus having the inner loop

Br

s(N+P )Ar

=
6s + 9

s2
, (47)where N + P = 2. Then, omputing the optimal

Bc based on (40) maintaining the same relativedegree as the referene system's inner loop, results

b0 b2 b3 b4 b5
1.2 33.6 433.9 3370.2 17524.2

b6 b7 b8 b9 b10
64330.0 170917.1 331536.7 465643.1 462490.1

b11 b12 b13
307972.9 123680.9 22615.1Table 1. Optimal ontroller oe�ients, Bc.in the ontroller Bc

sBps
where oe�ients in the Bcis given in Table 1 and Bps is given by

Bps = s2 + 4s + 5. (48)The zero-pole loations of the open�loop origi-nal plant, the ompensated inner loop Bc

Ap
andthe open�loop referene transfer funtion Br

Ar
areshown in Fig. 4.
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Fig. 4. Open�loop pole/zero loations.
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5. CONCLUSIONS AND FUTURE WORKThe tuning of PID ontrollers an essentially beposed as the problem of seleting open-loop zerossuh as to obtain a desired system response. Inthis paper, the idealogy behind the PID ontrollerwas extended to the general ase wherein stableopen-loop system zeros an be anelled, thusallowing more freedom in plaing open-loop zeros,as opposed to just two zeros in the ase of a PIDontroller. Subsequently, optimal open-loop zeroswere omputed suh as to minimize the deviationfrom a desired referene impulse response, whilemaintaining the relative degree and the type ofthe referene system, thus giving the ontrolledsystem desired input traking and disturbanerejetion properties. Due to the inverse ompensa-tion of the plant zeros, the ontroller is in generalausal when the relative degree of the plant andthe referene system are similar. In ases whenthe ontroller is nonausal, whih happens if theplant has a high relative degree and the referenesystem has a low relative degree, the ontroller anbe realized using poles to limit the high frequenyresponse, as is frequently done in a pratial setupof a PID ontroller.Exellent results were obtained, wherein a twelfth�order system traked a well behaved referene sys-tem response. The ontrolled system was shownto have exellent input traking and disturbanerejetion properties.It is of interest to show that the minimal deviationbetween the referene and the ontrolled systemdoes our when the relative degrees of the twosystems are the same. It is further of interestto explore the stability properties of the losed�loop ontrolled system, in partiular to obtainan estimate of the maximum possible deviationbetween the ontrolled system and a well-behavedand stable referene losed�loop system, suh thatstability of the ontrolled system is guaranteed.6. ACKNOWLEDGMENTSThis work was supported by the University ofIeland Researh Fund.REFERENCESHauksdóttir, A.S. (1996). Analyti expression oftransfer funtion and hoie of numerator o-e�ients(zeros). IEEE Trans. Autom. Con-trol, 41(10), 1482�1488.Hauksdóttir, A.S. (2000). Optimal zeros for modelredution of ontinuous-time systems. In:Proeedings of the 2000 Amerian ControlConferene. Chiago, Illinois. pp. 1889�1893.
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