
ZERO OPTIMIZING CONTINUOUS�TIMETRACKING AND DISTURBANCE REJECTINGCONTROLLERSAnna So�ía Hauksdóttir 1, Gísli Herjólfsson 1,Bergþór Ævarsson 1, Sven Þ. Sigurðsson 2Abstra
t: The tuning of PID 
ontrollers 
an essentially be posed as the problemof sele
ting open-loop zeros su
h as to obtain a desired system response. In thispaper, the general 
ase wherein stable open-loop system zeros 
an be 
an
elled is
onsidered, allowing more freedom in pla
ing open-loop zeros, as opposed to justtwo zeros in the 
ase of a PID 
ontroller. Subsequently, optimal open-loop zerosare 
omputed su
h as to minimize the deviation from a desired referen
e impulseresponse, while maintaining the relative degree and the type of the referen
esystem, thus giving the 
ontrolled system desired input tra
king and disturban
ereje
tion properties. Copyright 
©2005 IFACKeywords: Linear Continuous�Time Systems, Zero Optimizing Controllers,Tra
king, Disturban
e Reje
tion
1. INTRODUCTIONTransfer fun
tion responses are of 
onsiderableinterest in the area of 
ontrol systems and in �l-ter design. Closed�form 
ontinuous�time transferfun
tion responses are derived in (Hauksdóttir,1996) and extended to the 
ase of repeatedeigenvalues in (Hauksdóttir and Hjaltadóttir,2003), (Herjólfsson, 2004), (Ævarsson, 2005) and(Hauksdóttir et al., 2005). Naturally, the 
losedform lends itself well to analysis and opens upmany new interesting appli
ations, e.g., solvingfor optimal zero lo
ations by minimizing tran-sient responses (Hauksdóttir, 1996); tra
king agiven referen
e step response in (Hauksdóttir,2002, 2004b), (Herjólfsson, 2004), (Herjólfsson etal., 2005), (Ævarsson, 2005); and solving themodel redu
tion problem in (Hauksdóttir, 2000),(Ævarsson, 2005), (Ævarsson et al., 2005). The
losed�form expressions are further used in the
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dire
t 
omputation of 
oe�
ients for PID 
on-trollers in (Herjólfsson, 2004) and (Herjólfsson andHauksdóttir, 2003).Continuous�time transfer fun
tion responses arestrongly a�e
ted, not only by the eigenvalues orpoles, but the numerator 
oe�
ients, or equiv-alently, the system's zeros, as well. Controllersthat a�e
t open�loop zeros 
an be designed, oneexample of su
h a 
ontroller is the well known PID
ontroller. The dire
t 
omputation of 
oe�
ientsfor PID 
ontrollers in (Herjólfsson, 2004) and(Herjólfsson and Hauksdóttir, 2003), essentiallyinvolves 
omputation of optimal open-loop zerostra
king a desired referen
e impulse response. In(Hauksdóttir, 2004a), the approa
h is extended toa more general 
ase wherein stable open-loop zerosare 
an
elled, allowing more freedom in pla
ingopen-loop zeros, as opposed to just two zeros inthe 
ase of a PID 
ontroller.In this paper, the work in (Hauksdóttir, 2004a) isreformulated and extended to in
lude the 
ase ofrepeated eigenvalues. The problem is formulatedin Se
tion 2, in
luding input tra
king and distur-ban
e reje
tion properties as well as spe
i�
ation



of the referen
e system. Linear 
ontinuous�timesystem responses are summarized in Se
tion 3(Ævarsson, 2005), (Hauksdóttir et al., 2005). Theoptimal open-loop zeros are 
omputed in Se
tion4 (Ævarsson, 2005), by minimizing the impulseresponse deviation between the referen
e and thea
tual system, in
luding an example. Con
lusionsand future work are dis
ussed in Se
tion 5.2. PROBLEM FORMULATIONConsider the 
losed-loop 
ontrol system setupshown in Fig. 1. The plant zeros are given by
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Fig. 1. Closed-loop 
ontrol system setup.
Bp = BpbBpa, (1)where Bp is type zero and the Lapla
e variable shas been dropped to simplify notation. The term

1
sP belongs to the post-disturban
e part of theplant and in
ludes all open-loop pure integratorsbetween the disturban
e D and the output Y . All
B polynomials are of the generi
 form

B = b0s
m + b1s

m−1 + ... + bm. (2)The plant poles are assumed stable 3 and are givenby
Ap = ApbApa. (3)

Ap is also type zero, i.e., the term 1
sN grouped bythe 
ontroller in
ludes all open�loop pure integra-tors from the input R to the disturban
e D. All

A polynomials are of the generi
 form
A = sn + a1s

n−1 + ... + an

= (s + λ1)
d1(s + λ2)

d2 · · · (s + λν)dν (4)The plant is a�e
ted by the disturban
e input
D and its output is Y . The 
losed-loop 
ontrolsystem is driven by the input R and the 
ontroller,driven by the error E, is of the form

Bc

sNBps

(5)The 
ontroller 
an
els the stable plant zeros Bpsby inverse 
ompensation, the term 1
sN in
ludes all

3 For the 
ase of unstable plant poles, an inner�loop state�feedba
k type 
ontroller 
an be designed, stabilizing theplant.


ontroller and pre-disturban
e plant integrators.The 
ontroller zeros Bc will be sele
ted su
h asto optimally tra
k a referen
e impulse response,maintaining the relative degree and the type ofthe referen
e system.2.1 Input Tra
kingThe input tra
king for a setup su
h as in Fig.1 is easily obtained in a standard manner. Thetransfer fun
tion from the input R to the error Eis given by
E

R
=

1

1 + Bc

sN Bps

Bp

sP Ap

=
1

1 +
BcBpu

sN+P Ap

=
sN+P Ap

sN+P Ap + BcBpu

(6)where Bpu are the unstable plant zeros. For a unitstep input R when N + P ≥ 1, the steady stateerror is given by
ess = lim

s→0
s

sN+P Ap

sN+P Ap + BcBpu

1

s
= 0. (7)Similarly, the steady state error for a unit rampinput R when N + P ≥ 2 is given by

ess = lim
s→0

s
sN+P Ap

sN+P Ap + BcBpu

1

s2

= lim
s→0

sN+P−1Ap

sN+P Ap + BcBpu

= 0. (8)2.2 Disturban
e Reje
tionLikewise, the disturban
e reje
tion for the 
losedloop is easily obtained in a standard manner. Thetransfer fun
tion from the disturban
e input D tothe error E is given by
E

D
=

−
Bpa

sP Apa

1 + Bc

sN Bps

Bp

sP Ap

=
−

Bpa

sP Apa

1 +
BcBpu

sN+P Ap

=
−sNBpaApb

sN+P Ap + BcBpu

. (9)Then, the steady state error for a unit step dis-turban
e input D when N ≥ 1 is given by
ess = lim

s→0
s

−sNBpaApb

sN+P Ap + BcBpu

1

s
= 0. (10)The steady state error for a unit ramp disturban
einput D when N ≥ 2 is given by

ess = lim
s→0

s
−sNBpaApb

sN+P Ap + BcBpu

1

s2

= lim
s→0

−sN−1BpaApb

sN+P Ap + BcBpu

= 0. (11)



2.3 Referen
e System Spe
i�
ation
B

s
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N+P
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Fig. 2. Closed-loop referen
e system.The design 
riteria is spe
i�ed as a desired refer-en
e 
losed-loop transfer fun
tion and the refer-en
e open-loop transfer fun
tion is subsequentlysolved for, see Fig. 2. The transfer fun
tion fromthe input Rr to Yr is given by
Yr

Rr

=
Bcl

r

Acl
r

=

Br

sN+P Ar

1 + Br

sN+P Ar

=
Br

sN+P Ar + Br

, (12)where Br and Ar are type zero. Solving for Brand Ar gives
Br = Bcl

r (13)and
Ar = s−(N+P )(Acl

r − Bcl
r ). (14)In order to ensure that Ar is a regular polynomialin s and that we have an N +P type system withthe inner�loop relative degree of α,

Bcl
r = bcl

r0sN+P−1 + bcl
r1sN+P−2 + · · · + bcl

r(N+P−1) (15)and
Acl

r = s2(N+P )+α−1 + acl
r1s

2(N+P )+α−2

+ · · · + acl
r(N+P+α−1)s

N+P + Bcl
r . (16)3. LINEAR CONTINUOUS�TIME SYSTEMRESPONSESConsider the standard transfer fun
tion given by

Y

U
=

b0s
m + b1s

m−1 + · · · + bm

sn + a1sn−1 + · · · + an

=
b0s

m + b1s
m−1 + · · · + bm

(s + λ1)d1(s + λ2)d2 · · · (s + λν)dν
. (17)It is assumed that the system's eigenvalues −λ1,

−λ2, . . ., −λν are distin
t and repeated d1, d2,
. . ., dν times, respe
tively, and furthermore it isassumed that the system is 
ausal, i.e., m < n.The impulse responses are of the generi
 form(Ævarsson, 2005), (Hauksdóttir et al., 2005)

yI(t) = BHE(t), t > 0 (18)where
B =

[

bm bm−1 · · · b0

] (19)


ontains the numerator 
oe�
ients and
H =











h01 h02 · · · h0ν

h11 h12 · · · h1ν... ... ...
hm1 hm2 · · · hmν











(20)is an (m + 1) × n matrix. The �rst line in (20) isgiven by
H0 =

[

h01 h02 · · · h0ν

]

, (21)where ea
h
h0i =

[

κi1 κi2 · · · κidi

] (22)
ontains the partial fra
tion 
oe�
ients of a unitynumerator Lapla
e transform given by
Yb =

1

sn + a1sn−1 + · · · + an

=
1

(s + λ1)d1(s + λ2)d2 · · · (s + λν)dν
. (23)The unity numerator partial fra
tion 
oe�
ientsare easily 
omputed by

κidi
=

ν
∏

q=1,q 6=i

(−λi + λq)
−dq (24)and for j = 1, 2, 3, . . . , di − 1

κij =
1

di − j

di−j
∑

q=1

κi(j+q)(−1)q

ν
∑

p=1,p6=i

dp

(−λi + λp)q
,(25)Then,

hki = h(k−1)iWi, k = 1, 2, . . . , m, (26)where
Wi =



















−λi 0 · · · · · · 0

1 −λi

. . . ...
0 1 −λi

. . . ...... . . . . . . . . . 0
0 · · · 0 1 −λi



















(27)is a di × di matrix.Finally, all time dependent fa
tors - e�e
tively lin-early independent basis fun
tions, are 
ontainedin the n × 1 ve
tor,
E(t) =











E1(t)
E2(t)...
Eν(t)











(28)where



Ei(t) =















e−λit

te−λit...
t(di−1)

(di − 1)!
e−λit















. (29)It should be emphasized that (18) is a gen-eral 
losed�form solution for linear 
ontinuous�time system responses 
orresponding to a generaltransfer fun
tion of the form (17). There are norestri
tions, the eigenvalues 
an be real and/or
omplex, repeated and/or not and stable and/orunstable.It should also be noted that
µ =

[

µ11 · · · µ1d1
· · · µν1 · · · µνdν

]

= BH (30)is a new easily 
omputable re
ursive form of par-tial fra
tion expansion 
oe�
ients for the generaltransfer fun
tion of the form (17), given by thewell known expression
µij =

1

(di − j)!

ddi−j

dsdi−j

[

(s + λi)
di

Y

U

]∣

∣

∣

∣

s=−λi

. (31)4. OPTIMAL IMPULSE RESPONSETRACKINGWe now wish to mat
h the open-loop impulseresponses of the 
ontrolled system, see Fig. 3for a simpli�ed blo
k diagram, and the referen
esystem, see Fig. 2, as 
losely as possible. Notethat we are nonrestri
tively assuming that N + Pis sele
ted the same in both 
ases and thereforewe 
onsider the open�loop impulse response ofthe 
ontrolled system 
hara
terized by the 
ausaltransfer fun
tion BcBpu/Ap, whi
h has the im-
B B

s A
c pu

p

N+P

R            E Y

Fig. 3. A simpli�ed blo
k diagram of the 
on-trolled system.pulse response
yIcp(t) = BcBpuHpEp(t). (32)Here Bpu is an (mc + 1) × (mc + mpu + 1)
onvolution matrix given by (Herjólfsson, 2004),(Herjólfsson and Hauksdóttir, 2003)

Bpu=













bpu
mpu

· · · bpu
0 0 · · · 0

0 bpu
mpu

· · · bpu
0

. . . ...... . . . . . . . . . 0
0 · · · 0 bpu

mpu
· · · bpu

0













. (33)

Further,
Hp =











h01 · · · h0ν

h11 · · · h1ν... ...
h(mc+mpu)1 · · · h(mc+mpu)ν











(34)is an (mc + mpu + 1) × n matrix.The open�loop impulse response 
hara
terizedby the 
ausal transfer fun
tion Br/Ar, has theimpulse response
yIr(t) = BrHrEr(t). (35)We then de�ne a 
ost fun
tion measuring the
ontrolled impulse response deviation from thereferen
e impulse response as

J =

∞
∫

0

(yIr(t) − yIcp(t))
2
dt (36)Di�erentiating the 
ost fun
tion with respe
t to

Bc and setting the result equal to zero gives
∂J

∂Bc

=

∞
∫

0

∂

∂Bc

(BrHrEr(t) − BcBpuHpEp(t))
2
dt

=−2BrHr

∞
∫

0

Er(t)Ep(t)
T dt (BpuHp)

T

+2BcBpuHp

∞
∫

0

Ep(t)Ep(t)
T dt (BpuHp)

T

=−2D + 2BcA = 0 (37)where we have de�ned
D = BrHr

∞
∫

0

Er(t)Ep(t)
T dt (BpuHp)

T (38)and
A = BpuHp

∞
∫

0

Ep(t)Ep(t)
T dt (BpuHp)

T
. (39)The fa
t that the matrix A is invertible, is easilyseen as the matrix Bpu as in (33) has the samerank as the number of rows in Bpu; the matrix

Hp as in (34) has the same rank as the number of
olumns in Hp; and the matrix ∫ ∞

0 Ep(t)Ep(t)
T dthas the same rank as the number of elements in

Ep(t) (see (28) and (29)), sin
e all the elementfun
tions of Ep(t) are linearly independent on
[0,∞).



This gives us the simple 
losed-form solution
Bc = DA−1. (40)

Ep(t) and Er(t) 
an be written in a similarmanner as given in (28) and (29). Cal
ulat-ing the (ρ, σ)�th element of the (k, j)�th sub-blo
k of ∫ ∞

0
Ep(t)Ep(t)

T dt, i.e., of the matrix
∫ ∞

0
Epk(t)Epj(t)

T dt is given by




∞
∫

0

Epk(t)Epj (t)T dt





ρ,σ

=

(

ρ + σ − 2
ρ − 1

)

(λpk + λpj)ρ+σ−1
. (41)Similarly, the (ρ, σ)�th element of the (k, j)�thsubblo
k of ∫ ∞

0
Er(t)Ep(t)

T dt, i.e., of the matrix
∫ ∞

0
Erk(t)Epj(t)

T dt is given by




∞
∫

0

Erk(t)Epj (t)T dt





ρ,σ

=

(

ρ + σ − 2
ρ − 1

)

(λrk + λrj)ρ+σ−1
. (42)In general, the relative degree of the inner loopof the 
ontrolled system should preferably besele
ted the same as the relative degree of theinner loop of the referen
e system, to ease themat
hing of the two systems.Example: For demonstration purposes, 
onsidera �
titious twelfth�order type one plant withan input disturban
e, where the plant transferfun
tion before the disturban
e is given by

Bpb

Apb

=
1

s3 + 11s2 + 40s + 50
(43)

=
1

(s + 3 + i)(s + 3 − i)(s + 5)
. (44)The plant transfer fun
tion after the disturban
ehas two zeros, an integrator and an eightfold polein −2, i.e., it is given by

Bpa

sApa

=
s2 + 4s + 5

s(s + 2)8
=

(s + 2 + i)(s + 2 − i)

s(s + 2)8
.(45)It is desired to tra
k a well behaved type-two
losed-loop transfer fun
tion given by

Yr

Rr

=
6s + 9

s2 + 6s + 9
= 6

s + 1.5

(s + 3)2
, (46)thus having the inner loop

Br

s(N+P )Ar

=
6s + 9

s2
, (47)where N + P = 2. Then, 
omputing the optimal

Bc based on (40) maintaining the same relativedegree as the referen
e system's inner loop, results

b0 b2 b3 b4 b5
1.2 33.6 433.9 3370.2 17524.2

b6 b7 b8 b9 b10
64330.0 170917.1 331536.7 465643.1 462490.1

b11 b12 b13
307972.9 123680.9 22615.1Table 1. Optimal 
ontroller 
oe�
ients, Bc.in the 
ontroller Bc

sBps
where 
oe�
ients in the Bcis given in Table 1 and Bps is given by

Bps = s2 + 4s + 5. (48)The zero-pole lo
ations of the open�loop origi-nal plant, the 
ompensated inner loop Bc

Ap
andthe open�loop referen
e transfer fun
tion Br

Ar
areshown in Fig. 4.
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Fig. 4. Open�loop pole/zero lo
ations.
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Reference SystemFig. 5. Closed-loop step responses with the onsetof a unit step at time = 1 and an onset of adisturban
e of 50 at time = 10.Subje
ting the 
losed-loop as in Fig. 1, to a stepinput at time = 1 and to a disturban
e of 50 at

time = 10, results in the response shown in Fig.5. As may be noted, the 
ontrolled system followsthe referen
e system very 
losely during the stepinput and the disturban
e reje
tion is ex
ellent.



5. CONCLUSIONS AND FUTURE WORKThe tuning of PID 
ontrollers 
an essentially beposed as the problem of sele
ting open-loop zerossu
h as to obtain a desired system response. Inthis paper, the idealogy behind the PID 
ontrollerwas extended to the general 
ase wherein stableopen-loop system zeros 
an be 
an
elled, thusallowing more freedom in pla
ing open-loop zeros,as opposed to just two zeros in the 
ase of a PID
ontroller. Subsequently, optimal open-loop zeroswere 
omputed su
h as to minimize the deviationfrom a desired referen
e impulse response, whilemaintaining the relative degree and the type ofthe referen
e system, thus giving the 
ontrolledsystem desired input tra
king and disturban
ereje
tion properties. Due to the inverse 
ompensa-tion of the plant zeros, the 
ontroller is in general
ausal when the relative degree of the plant andthe referen
e system are similar. In 
ases whenthe 
ontroller is non
ausal, whi
h happens if theplant has a high relative degree and the referen
esystem has a low relative degree, the 
ontroller 
anbe realized using poles to limit the high frequen
yresponse, as is frequently done in a pra
ti
al setupof a PID 
ontroller.Ex
ellent results were obtained, wherein a twelfth�order system tra
ked a well behaved referen
e sys-tem response. The 
ontrolled system was shownto have ex
ellent input tra
king and disturban
ereje
tion properties.It is of interest to show that the minimal deviationbetween the referen
e and the 
ontrolled systemdoes o

ur when the relative degrees of the twosystems are the same. It is further of interestto explore the stability properties of the 
losed�loop 
ontrolled system, in parti
ular to obtainan estimate of the maximum possible deviationbetween the 
ontrolled system and a well-behavedand stable referen
e 
losed�loop system, su
h thatstability of the 
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