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Abstract: An integrated Rough Set approach is proposed to discover the historical
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outflow. This is accomplished through the Rough Set approach and the use of
performance indices able to recognize the effective rules used in water supply
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reliability the real criteria used for the system management. Copyright c©2005
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1. INTRODUCTION

A better satisfaction of water needs in agriculture
includes issues such as: (a) increasing storage ca-
pacities; (b) improving irrigation conveyance and
distribution systems; (c) enhancing operation of
water supply systems; (d) development of new
sources of water supplies (Pereira et al., 2002).
In regions, such as Sicily, suffering from frequent
water shortages, the operation of irrigation water
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Authors. Project AQUATEC ”Tecnologie Innovative di
Controllo, Trattamento e Manutenzione per la Soluzione
dell’Emergenza Acqua” funded by the Italian Ministry
of Education, Research and Technological Development
(PON 2000-2006).

supply systems could be enhanced by the defini-
tion of efficient reservoir operating rules. Presently
these rules are often inaccurate, due to the diffi-
culties in the evaluation of controlling factors such
as the inter-intra seasonal variability of rainfall-
runoff processes and crop water requirements. In-
corporation of decision support tools into reservoir
management could reduce the risk of failure for
the system to achieve its prescribed goals. This
places the focus on new-generation techniques
and tools emerging to intelligently assist humans
in analyzing data, finding useful knowledge and
in some cases performing analysis automatically
(Bhatty, 1991; An et al., 1996; Raman and Chan-
dramoui, 1997; Rossi et al., 1999; Barbagallo et

al., 2001, 2003). Using such techniques, the defini-



tion of reservoir operating rules has been generally
pursued by expressing the series of releases as
function of reservoir state variables (storage vol-
ume), hydrological input (inflow) and operational
features (outflow) (Young, 1967). Bhaskar and
Whitlatch (1980) tested linear as well as nonlinear
monthly operating rules by regressing the series of
releases with reservoir storage at the beginning of
each month and previous month-current inflow.
Karamouz and Houck (1987), Barbagallo et al.

(2001; 2003) investigated the release policies of
single-purpose reservoirs using the operation and
system-state characteristics (release, stored vol-
ume, inflow) which precede in time the release
for the time period t. Stam et al. (1998) ana-
lyzed reservoir release strategy involving evalu-
ation on how the reservoir storage evolve over
twelve months. Rossi et al. (1999) used a neural
network approach to determine monthly optimal
releases from a reservoir as function of available
information on stored volume and release in the
previous month.

The Rough Set theory (Pawlak, 1982) is a new
tool for discovering relationships hidden in data
and express them in the natural language of deci-
sion rules. In the last years the Rough Set theory
has been applied in multi-criteria decision anal-
ysis, allowing the recognition of relationships be-
tween control variables (Slowinski, 1993; Pawlak
and Slowinski, 1994); relevant applications of the
Rough Set theory cover fields of medicine, phar-
macology, engineering, banking, finances, market
analysis and environmental management (Pawlak,
1997; 2002). Very few applications of the Rough
Set theory focused aspects of water resources
planning and management (An et al., 1996; Chen
et al., 2003) regarding the identification of opti-
mal control strategies for immediate future time
period and the discovery of historical rules for
water systems management. System performance
optimization problems were investigated by Chen
et al. (2003) who have proposed an innovative
approach to integrate the indiscernibility of the
Rough Set theory with neural-fuzzy theory to con-
trol and optimize wastewater treatment processes
in terms of operating cost, control stability and
response in time. An et al. (1996) proposed an
enhanced Rough Set approach for generating pre-
diction rules from a set of observed data to analize
water distribution system processes; in their work
the Authors investigate real systems management
criteria to suggest possible solutions by adopting
optimal control criteria. Following the latter ap-
proach, the work herein presented aims to set up a
methodology based on a Rough Set approach for
the analysis of historical data and the discovery of
practiced operating rules of an irrigation-purpose
reservoir. The paper is organized into five sections.
Following the introduction, the second section il-

lustrates the Rough Set theory. The third section
describes the methodology of implementation of
an integrated Rough Set approach to an irrigation
reservoir as a case study. The fourth section re-
ports the results of the case-study implementation
of the integrated Rough Set approach. The last
section summarises the most important findings.

2. THE ROUGH SET THEORY

The Rough Set theory introduced by Pawlak
(1982) is a mathematical approach to deal with
a specific type of uncertainty in data related to
granulation of the information, i.e. situations in
which objects having equal description are as-
signed to different classes. This type of uncer-
tainty is very different from the uncertainty con-
sidered within the Fuzzy Set theory (Zadeh, 1965;
see also Dubois and Prade, 1980) which deals with
a type of imprecision arising when the bound-
aries of a class of objects are not sharply defined.
Informally, a fuzzy set may be regarded as a
class in which there is a graduality of progression
from membership to non-membership or, more
precisely, in which an object may have a grade
of membership intermediate between unity (full
membership) and zero (non-membership). Since
the type of uncertainty considered by rough set
and fuzzy set is so different, the two theories
appear as complementary rather than competitive
as acknowledged by a large number of studies (see
e.g. Pawlak, 1985; Dubois and Prade, 1990; Greco
et al., 2000). In the field of water management,
many applications of the fuzzy set methodology
are proposed (Shrestha, 1996; Fontane et al., 1997;
Labadie, 2004). Some of these applications try
to define decision rules. Anyway, the approach
to decision rules induction is quite different from
that of Rough Set theory. The main difference
between Fuzzy rule induction and Rough Set ap-
proach is that, generally, Fuzzy set theory does
not allow an information reduction process based
on the relevance of particular subsets of attributes
(reducts and core). Rough set approach has spe-
cific advantages also in comparison with stan-
dard statistical analysis. In fact the ”if . . . , then

. . .” decision rules of Rough Set approach are
expressed in a natural and easily understandable
language without any specific competence. More-
over, statistic analysis, generally, needs that the
considered data must be representative and the
object distributions in the decision classes must
be well-balanced: very often a normal multivariate
distribution of attribute values is required. The
Rough set approach does not require any of these
constraints; this is due to its specific characteristic
which permits to assign to each decision rule the
objects from which it was induced. Thus the user
has all the elements to interpret the decision rules



which constitute a full transparent representation
of the analysed data. The transparency of the
Rough Set approach is an important advantage
also with respect to some other techniques of
artificial intelligence as neural networks.

The concept of Rough Set theory is based on the
assumption that with every object of the uni-
verse (U) there is associated a certain amount
of information (data, knowledge), expressed by
means of some attributes (Q) used for object
description. More precisely, these information can
be represented in a data table in which rows re-
fer to distinct objects and columns refer to the
considered attributes. Each cell of this table in-
dicates, therefore, a description (quantitative or
qualitative) of the object placed in that row by
means of the attribute in the corresponding col-
umn. If in a data table the set of attributes (Q)
is divided into condition attributes (set C 6= 0)
and decision attributes (set D 6= 0), with C ∪
D = Q, such table is called decision table. Since
it illustrates the functional dependencies between
condition and decision attributes, a decision table
may also be seen as a set of decision rules. These
are logical statements of the type ”if . . . , then

. . .”, where the antecedent condition part (if )
specifies the value(s) assumed by one or more
condition attributes, and the consequence decision
part (then) specifies the values assumed by the
decision attribute(s). Objects having the same
description are indiscernible (similar) with respect
to the available information. The indiscernibility

relation induces a partition of the universe into
blocks of indiscernible objects (elementary sets)
that can be used as ”bricks” to build knowledge
about a real or abstract world. Any subset X of
a universe may be expressed in terms of these
elementary sets either precisely (as a union of ele-
mentary sets) or approximately only. In the latter
case, the subset X may be characterized by two
ordinary sets, called lower and upper approxima-

tions. The lower approximation of X is composed
of all the elementary sets completely included in
X (whose elements x, therefore, certainly belong
to X):

P (X) = {x ∈ U : IP (x) ⊆ X} (1)

where IP represents the indiscernibility relation
on U with respect to a non-empty subset of at-
tributes P ⊆ Q and IP (x) = {y ∈ U : yIP x}
are the equivalence classes of x ∈ U . The upper
approximation of X is composed of all the ele-
mentary sets which have a non-empty intersection
with X (whose elements x, therefore, may belong
to X):

P (X) =
{

x ∈ U : IP (x)
⋂

X 6= ∅
}

(2)

The difference between the upper and lower ap-
proximations constitutes the boundary region of
the Rough Set, whose elements cannot be charac-
terized with certainty as belonging or not to X ,
using the available information. The information
about objects from the boundary region is, there-
fore, inconsistent or ambiguous. For this reason,
the number of objects from the boundary region
may be used as a measure of vagueness of the
information about X .

The definition of the approximations of a subset
X ⊆ U can be extended to a classification,
i.e. a partition Y = {Y1, . . . , Yn} of U . The
subsets Yi, i = 1, . . . , n, are disjunctive classes
of Y . By P -lower (P -upper) approximation of Y

we mean sets P (Y ) = {P (Y1), . . . , P (Yn)} and
PY =

{

P (Y1), . . . , P (Yn)
}

, respectively. Thus,
the index:

γP (Y ) =

∑n

i=1 |P (Yi)|

|U |
(3)

is called quality of the approximation of classifica-

tion Y by set of attributes P , or in short, quality
of classification. It expresses the ratio of all P -
correctly classified objects to all objects in the
universe.

Another important concept is that of ”superflu-
ous” attributes in a decision table. Superfluous
attributes can be eliminated, in fact, without de-
teriorating the original classification. Let P ⊆ Q

and p ∈ P , the attribute p is superfluous in P if
IP = IP−{p}; otherwise, p is indispensable in P .
The set P is independent if all its attributes are
indispensable. The subset P

′

of P is a reduct of
P (denotation Red(P)) if P

′

is independent and
IP

′ = IP . A reduct of P may also be defined
with respect to an approximation of a partition
Y of U . It is then called Y-reduct of P (deno-
tation RedY (P )) and specifies a minimal subset
P

′

of P which keeps the quality of classification
unchanged, i.e. γP

′ (Y ) = γP (Y ). In other words,
the attributes that do not belong to Y-reduct of P

are superfluous with respect to the classification
Y of objects from U . The set containing all the
indispensable attributes of P is known as the Y-
core. Since the Y -core is the intersection of all
the Y -reducts of P , it is included in every Y -
reduct of P . It is the most important subset of
attributes from P because none of its elements
can be removed without deteriorating the quality
of classification.

Finally the rough set approach leads to the in-
duction of a set of decision rules representing the
knowledge contained in the decision table. Each
rule is supported by a certain number of objects
from U . More precisely an object x ∈ U supports
a decision rule if its description matches both
the condition and the decision part of the rule.



To select the most interesting rules the relative

support and the confidence level for each rule are
evaluated. The relative support is given by the
ratio between the number of objects supporting
the rule and the number of objects matching the
decision part of the rule. The confidence level

expresses the ratio between the number of objects
supporting the rule and the number of all objects
matching the condition part of the rule.

3. IMPLEMENTATION OF THE PROPOSED
APPROACH

3.1 The study area

The Rough Set approach based on the indiscerni-

bility relation was integrated and applied for dis-
covering historical monthly operating rules of the
main reservoir with irrigation purposes in Eastern
Sicily (Table 1). The reservoir supplies about 20
000 ha of Catania Plain, mainly (90%) cultivated
with citrus orchards. The distribution network
is supplied by Simeto river; irrigation volumes
are delivered at fixed intervals and applied by
microirrigation methods. The precipitation in the
irrigation district, gauged at 4 sites in the period
1921-1996 by the National Hydrographic Service,
presents an average of 473 mm/year with a max-
imum of 863 mm (in 1969) and a minimum of
195 mm (1981). Stored volumes into the reser-
voir, evaluated by an hydrometer and the reser-
voir area-volume relationship, show a high inter-
annual variation spanning between 97.0 106 m3

in 1973 and 3.0 106 m3 in 1990. Average annual
evaporation losses from the reservoir amount to
about 4.0 106 m3.

The Catania Plain district experienced frequent
shortages with the occurrence of 18 drought pe-
riods characterized by a mean duration of 1.53
years and a cumulated deficit of about 238 mm
(Cancelliere and Rossi, 2003). The water volume
released for irrigation presents a mean value of
about 70.0 106 m3, with a minimum of 2.5 106 m3

in 1990, and appears strictly related to fluctu-
ations of inflow and stored volume. Pluriannual
regulation of the reservoir is not practiced, so
that, for example, during the most severe drought
(1988-1990), the annual release was only 4% of the
average.

3.2 Methodology

The hydrological system-state variables provided
by the reservoir balance applied to the 39 years
from 1964 to 2002 were processed according to
the following procedure.

Historical monthly release from the reservoir
throughout the irrigation season was treated as

the decision attribute. In reservoir operation prob-
lems the choice of condition attributes to explain
the decision attribute is a crucial step. A good
knowledge of the system to be described is es-
sential so that a representative rule system may
be obtained. The reservoir storage at the end of
each of the first four months of the year and the
release over the previous month were assumed as
the attributes controlling the decision. As it is
well known in semi-arid conditions the reservoir
state is strictly related to winter inflows and,
during the irrigation season (May to October),
the downstream demands are large relative to the
inflows. This causes the reservoir releases gen-
erally to depend almost exclusively on previous
reservoir state. The decision table, showing the
set of condition attributes (ai) used to explain the
decision attribute (d), is presented in Table 2.

In the case of decision attributes with continuous
domain a preliminary discretization is required,
in order to get a description of the phenomenon
studied without noisy details. Thus, the decision
attribute was discretized through a two-step pro-
cedure. In the tentative discretization, the min-
imum historical release in the month m of the
irrigation season (rm; with rm 6= 0) and the max-
imum one (Rm) were determined; the number of
release classes (nm) was set to the integer number
closest to

Rm − rm

rm

(4)

where rm represents the lowest historical release
(always equal to zero in the case-study).

Then empirical distributions of monthly release
represented in Figure 1 were fitted with analytical
distributions (normal for June, July and August,
log-normal for May, September and October). An
empirical distribution is influenced by outlying
data (peaks of the distribution) while the ana-
lytical distribution permits a regularization of the
data and allows to build, in the next step, decision
classes with homogeneous data.

The lower and upper bounds of the i-th release
class, respectively xi−1 and xi, ∀i = 1, ..., nm, are
determined in such a way that all the classes have
equal probability of occurrence (Clasadonte et al.,
2003) with respect to the analytical distribution
fm(x) of historical monthly water release from the
reservoir:

xi
∫

xi−1

fm(x)dx =
1

nm

(5)

where x0 = rm. This kind of discretization,
with decision classes of unequal width, allows
to build ”robust” decision classes also with re-
spect to the tails of the analytical distribution,



Table 1. Main characteristics of Pozzillo reservoir and irrigated area

Net Capacity Catchment Annual streamflow* Annual release Irrigated Main Irrigation
(106

m
3) area (106

m
3) (106

m
3) area crop season

(km
2) Min Mean Max Min Mean Max (103

ha)

140 577 3.3 120 295 2.5 68 120 20 citrus May-October

*as evaluated for the hydrologic year

Table 2. Definition of decision and con-
dition attributes used in the case study

Decision attribute
d Monthly released volume throughout the

irrigation season
Condition attributes
a1 Stored volume at the end of January
a2 “ “ “ February
a3 “ “ “ March
a4 “ “ “ April
a5 Released volume in the previous month

Fig. 1. Empirical distribution function of monthly
water release at Pozzillo reservoir (1964 to
1988)

in which the rare events are grouped in decision
classes of greater width. The results of release re-
discretization are reported in Table 3.

Table 3. Discretization of decision at-
tribute for Pozzillo reservoir

Month Water Number of Width release classes

of the release water
[

106
m

3

]

irrigation range release Tentative Re-

season
[

106
m

3

]

classes (nm) discr. discr.

May [0.0 − 17.5] 7 2.5 0.3 − 7.2
June [0.0 − 30.0] 4 7.5 5.4 − 8.8
July [0.0 − 30.0] 3 10.0 6.0 − 16.3

August [0.0 − 40.0] 4 10.0 5.7 − 16.3
September [0.0 − 30.0] 6 5.0 1.6 − 13.7
October [0.0 − 25.0] 7 3.5 1.0 − 12.9

The software Rose (Predki et al., 1998; 1999)
developed by IDSS (University of Poznan, Poland,
2000) was applied to the decision table in order
to discretize condition attributes with continu-
ous domains into the ones with discrete domains
(Fayyad and Irani, 1992). Condition attributes
were discretized in order to obtain very general
rules instead of local rules that could be non-
informative because too specific. More generally,
within the Rough Set analysis, a good discretiza-
tion permits to obtain quite significative results
(reducts, core and quality of classification). The
following Shapley index (Shapley, 1953) was used
to evaluate, within the discovered set of reducts,
the importance of a single condition attribute ai

(∀i = 1, . . . , 5) in terms of quality of classification

(Greco et al., 2001):

ΦS(ai) =
∑

K⊆P−{ai}

(n − |K| − 1)! |K|!

n!
×

× [γ(K ∪ {ai}) − γ(K)] (6)

where P is the set of condition attributes, K

represents all the subsets obtained from set P −
{ai}, |·| denotes the cardinality of the subsets,
n is the number of attributes belonging to P

and γ is the quality of classification. The Shapley

index can also be used to recognize the most
significant combinations of condition attributes
(Greco et al., 2001). To determine the relevance of
possible combinations of attributes the following
generalized Shapley index (Grabisch, 1997) was
herein applied to Rose outputs:

ΦS(A) =
∑

K⊆P−A

(n − |K| − |A|)! |K|!

(n − |A| + 1)!
×

×
∑

L⊆A

(−1)|A|−|L| [γ(L ∪ K)] (7)

where A represents the combination sub-set of
condition attributes, K the remaining combina-
tion subsets (P − A), L all possible subsets of
attributes from A. Positive values of ΦS indicate
that the evaluated subset of condition attribute(s)
is able to improve the quality of classification

of the decision attribute, with respect to each
condition attribute of the examined subset. By
comparing the subsets of attributes, with the same
cardinality, only the subsets with highest values
of ΦS ( with ΦS > 0) were processed by Rose

package and monthly operating rules discovered as
logical statements in the form ”if . . . , then . . .”.
The operating rules with the highest confidence
level and relative support over the threshold of
75% and 25% respectively were selected using an
easy to read spreadsheet. Generally, confidence
level and relative support should be at least equal
to the posed thresholds to assure the reliability of
the discovered rough set criteria (Dimitras et al.,
1999; Clasadonte et al., 2004).

4. RESULTS AND DISCUSSION

Rose application provided the minimal set of con-
dition attributes (reduct) maintaining unchanged
the quality of classification of equation 3 (Table
4). For all months only one reduct was determined
representing also the core of the set of condition
attributes. Stored volume at the end of April



(a4) and release during the previous month (a5)
were recognized as belonging to all the discovered
reducts derived from Rose application. This would
mean that Pozzillo reservoir has been usually op-
erated according to a short-term policy partially
established at the beginning of the irrigation sea-
son.

Table 4. Outputs of Rose application to
the decision table build for Pozzillo reservoir

Month of Quality of Reduct
irrigation classification
season a1 a2 a3 a4 a5

May 1.0 X X X X
June 1.0 X X X X
July 1.0 X X X X

August 1.0 X X X X
September 1.0 X X X X X
October 1.0 X X X X

Condition attributes, as recognized by applying
the Shapley index of equation 6 and 7, are shown
in Table 5.

Table 5. Condition attributes screen
out by the Shapley index

Month of Quality Shapley Cond.
irrigation of Index attributes
season classific. a1 a2 a3 a4 a5

0.09 0.09 X
May 0.54 0.46 X X

0.66 0.06 X X X

0.26 0.26 X X
June 0.71 0.20 X X X

1.00 0.06 X X X X

July 0.17 0.17 X
0.63 0.46 X X

0.06 0.06 X
August 0.31 0.26 X X

0.86 0.20 X X X

0.09 0.09 X
September 0.14 0.06 X X

0.29 0.12 X X X
0.74 0.09 X X X X

0.03 0.03 X
October 0.71 0.69 X X

0.86 0.06 X X X

The most significant operating rules were thus
individuated as representative of the historical
management of Pozzillo reservoir (see Table 6).

The discovered rules can be explained using an
easy logical form; for example, in Table 6 the 3rd

rule for June can be read as: if stored volume in
January is in the range [60.7−132]×106 m3, and
the stored volume in March is in the range [68.7−
99.5]×106 m3, then release in June is in the range
(14.3−19.7]×106 m3. This rule covers 33% of the
objects belonging to the explained decision class
with a confidence level of 100% (more precisely,
this rule explains the releases in the month of June
in the years 1970, 1997 and 1998).

The analysis of the discovered operating rules
highlights a releases strategy generally based on

a two-stage framework. First, the decision maker
examines for later use the state of the reservoir
(stored volumes) in January and/or February, tak-
ing available information on inflow changes into
account. Second, the decision maker, according to
the first phase of the decision process, refines the
operating rules set according to water availability
at the end of March and/or April, and/or at
the month before that of release. Furthermore,
volumes are released using a typical Standard
Operating Policy (SOP), providing release vol-
umes which increase with water availability in the
reservoir without any hedging. In particular, by
using a SOP procedure, reservoirs are depleted to
meet downstream demands without taking into
account the probability of future shortage periods
occurrence (Yeh, 1985).

To generalize, the discovery of operating rules was
also tried working on a larger set of condition
attributes (Table 7), including inflows and stored
volumes within the hydrological year (November
to October). The use of inflow data could be
however limited by the availability of runoff data
or the pretreatment effort (rainfall-runoff trans-
formation).

By analysing the outputs of this trial (on the
anlarged set of condition attributes), it can be
argued that:

• Rose package implementation individuated
several reducts in the enlarged decision table
for all months of the irrigation season; the
intersection between the discovered reducts
(core) is an empty set;

• the combination of condition attributes, ac-
cording to the Shapley index, and the de-
cision rules discovered confirm the results
previously (Table 6); the only new pertains
to the three condition attributes combination
(stored volume at the end of January, inflow
of March and released volume in the previ-
ous month) induced for October that does
not allow to explain the high level of release
(explained in the last rule of Table 6).

5. CONCLUSIONS

The proposed integrated Rough Set approach al-
lowed to exploit the reservoir hydrological and
operational information in order to work out his-
torical release operating rules. The implemented
approach:

• supplies useful elements of knowledge about
reservoir operating rules such as relevance of
attributes, information about their interac-
tion (from quality of classification), minimal
subsets of attributes (reducts) conveying the
relevant knowledge contained in the operat-



Table 6. Operating rules for water release from Pozzillo reservoir as discovered by the
integrated Rough Set approach

Condition attributes (106
m

3) Min\Max
Release in width of

Month Stored volume the release Support Confidence
previous class level

Jan (a1) Feb (a2) Mar (a3) Apr (a4) month (a5) (106
m

3) (%) (%)
May [13 − 22] [2.9 − 65.1] [0 − 0.3] 27 100
Jun [0.9 − 22] [2.9 − 68.3] [3.7 − 48.5] [0 − 0.6] [0 − 8.8] 55 100

[0.9 − 22] [2.9 − 68.3] [49.4 − 132.2] [0 − 0.6] (8.8 − 14.3] 28 100
[60.7 − 132] [68.7 − 99.5] (14.3 − 19.7] 33 100
[60.7 − 132] [99.6 − 130] [0.7 − 16.8] (19.7 − 30] 40 100

Jul [14 − 16.9] (22.3 − 30] 40 100
Aug [2.9 − 36.1] [0 − 5.8] [0 − 12.2] 50 100

[60.3 − 133] [39.6 − 99.6] [18.1 − 27.8] (23.7 − 40] 40 100
Sep [0.9 − 60.7] [2.9 − 35.2] [3.7 − 74.3] [0 − 11.9] [0 − 1.6] 45 100

[0.9 − 60.7] [37.2 − 133] [74.5 − 132] [24.3 − 30.1] (6.5 − 12] 50 100
Oct [2.6 − 42.6] [0 − 11.5] [0 − 1.9] 76 100

[84.3 − 132] [122.4 − 133] [19.8 − 28.4] (12.1 − 25] 67 100

Table 7. Definition of decision and con-
dition attributes used in the Pozzillo re-

servoir case study

Decision attribute
d Monthly released volume throughout the

irrigation season
Condition attributes
c1 ÷ c11 Stored volume at the end of the months

November to September
c12 ÷ c22 Inflow of the months November to Sept.
c23 Released volume in the previous month

ing rules, set of the non-reducible attributes
(core);

• expresses the operating rules in the natural
and understandable form if . . . , then . . . ;

• involves low cognitive efforts for the user
(also in the case of large decision tables):
more precisely, the user must provide only
the decision attribute discretization. The
Rose package allows to perform all calcula-
tions in real-time so that few hours at most
are enough to process an established data-
base;

• operates on original data without require sta-
tistical operators such as average and stan-
dard deviation;

• involves elementary concepts and mathemat-
ical tools, without recourse to any analytical
structures.

Further research would tend to develop and refine
the integrated approach to improve the exploita-
tion of operation and hydrological information on
the reservoir for defining its operations, by intro-
ducing:

• deficit irrigation criteria: to evaluate any ac-
ceptable reduction in water supply for irri-
gation needs, during water shortage periods,
taking into account crop yield response;

• forecast criteria: to assess the effectiveness of
the proposed approach to recognize decision
criteria by considering the uncertainty on
inflow data.
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